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Abstract

Solving multi-stage oligopoly models by backward induction can easily become a com-

plex task when �rms are multi-product and demands are derived from a nested logit frame-

work. This paper shows that under the assumption that within-segment �rm shares are

equal across segments, the analytical expression for equilibrium pro�ts can be substantially

simpli�ed. The size of the error arising when this condition does not hold perfectly is also

computed. Through numerical examples, it is shown that the error is rather small in general.

Therefore, using this assumption allows to gain analytical tractability in a class of models

that has been used to approach relevant policy questions, such as for example �rm entry

in an industry or the relation between competition and location. The simplifying approach

proposed in this paper is aimed at helping improving these type of models for reaching more

accurate recommendations.

JEL classi�cation numbers: L11, L13

Keywords: Nested logit, multinomial logit, multi-stage oligopoly models, analytical

solution of multi-stage games.
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1 Introduction

Multi-stage games of oligopolistic competition constitute a popular modeling approach

in Industrial Organization. In particular, models where in the last stage �rms compete

in prices and in previous stages they make a series of decisions based on the pro�tability

realized in the last stage have been widely used to model �rm entry, �rm location or

product choice. The key ingredient of the class of models considered in this paper is that

the price competition stage is modeled following the random utility framework (see for

example Ben-Akiva & Lerman, 1985). This means that each consumer buys just one unit

of a di¤erentiated good to maximize utility. So, the focus is on models where the last

stage of the game is solved following a multinomial or a nested logit approach.

The nested logit is a common approach to the modelization of demand in the context of

product di¤erentiation. It is particularly appropriate whenever substitution patterns are

stronger within certain subsets of products, that can then be grouped into di¤erent nests.

This also allows to soften the incidence of the Independence of Irrelevant Alternatives

problem of the standard multinomial logit, where all products are assumed to be equal

substitutes of each other.

However, the analytical complexity of demand expressions for the nested logit can

render the equilibrium pro�ts expressions of the last stage of the game rather compli-

cated. Then, solving the game by backward induction may become a very di¢ cult, if not

impossible, task. Following a nested logit approach, this paper shows how the expression

for equilibrium pro�ts in the last subgame can become as tractable as the expression that

would be derived from a simple multinomial logit. This is true when the conditional mar-

ket shares of the �rm are equal across its market segments. In this case, each segment is

like a small replica of the whole market in terms of �rm performance, such that a �rm�s

share in any segment is identical to the �rm�s market share.

In the real world this assumption may not be satis�ed. However, whether the error

made in assessing �rm�s pro�ts under such an assumption is important is an empirical

question whose answer will depend on the particular industry of interest. To address this

point, the approximation error and the conditions under which it will be low enough to
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make that assumption admissible are given. Moreover, numerical simulations to show that

the size of the error for many regular market structures is very small, or even negligible,

are provided.

Multi-stage oligopoly games of product di¤erentiation have been used in a wide variety

of contexts.1 For example, Chisholm & Norman (2004) study location decisions by mul-

tiproduct �rms where �rst a leader chooses its locations, then the followers choose theirs

and �nally they all compete in prices within a multinomial logit demand framework.

Although the authors recognize that more �exible product substitution patterns could

be considered, they explicitly exclude the nested logit setup, perhaps due to its added

complexity that could compromise the analytical tractability of their model. Anderson &

de Palma (1992) propose a nested logit demand structure where consumers choose �rst

the �rm and then a product of that �rm. They show the existence of a symmetric equilib-

rium with multiproduct �rms in models where �rms make sequential decisions on entry,

number of products and prices. In this paper, symmetry is not required and the demand

structure is more complex because consumers are assumed to �rst choose among prod-

uct types (or segments) and then they choose a particular product in the given segment.

Each �rm is allowed to sell various products within each segment. However, it is assumed

that an equilibrium exists in the price competition stage of the game. Grossmann (2007)

studies a model where �rms choose �rst the number of products and then they compete à

la Cournot. Grossmann also considers the case of a nested logit demand as in Anderson

& de Palma (1992), but restricting the analysis to a duopoly, for the sake of analytical

tractability. The results in this paper are intended to help softening the computational

burden in these kind of approaches. Other approaches to demand in multi-stage oligopoly

models stick to the frameworks commonly known as the �linear�or the �circular city�.

In these models the functional form of demand allows for quite tractable expressions of

equilibrium pro�t functions. Having simpler expressions eases the resolution of these

games by using backward induction. However, that approach to demand is not the most

1This does not pretend to be an exhaustive list but an illustration of the variety of applications of
these type of models.

3



adequate in the case of durable goods, where consumers are assumed to be occasional

rather than frequent buyers of the product. Examples of this literature include Zhou &

Vertinsky (2001), who study �rm entry and location decisions in growing markets; Chris-

tou & Vettas (2005), who consider �rm location choices when rivals�quality is not known;

Pal & Sarkar (2002) or Janssen et al. (2005) for the study of multi-store competition and

location decisions; Economides (1993) for models of entry, location and quality choice.

The results proposed in this paper may help in extending these type of analyses to setups

where demand is derived from a random utility framework.

The paper is organized as follows. Section 2 presents the model and derives the equiv-

alence result between multinomial and nested logit expressions for equilibrium pro�ts.

Section 3 computes the approximation error in case the condition for equivalence does

not hold exactly. Section 4 provides numerical simulations to compute the size of errors

under alternative industry con�gurations and illustrates the validity of the approximation

using real data for the Spanish car market. Section 5 concludes.

2 Comparison of equilibrium pro�ts under multino-

mial and nested logit models

Consider a multi-stage oligopoly model where �rms in the last stage simultaneously choose

prices and in the previous stages makes an entry, R&D investment or some other strategic

decision. Assume that the market is segmented as a result of vertical or horizontal product

di¤erentiation. Firms commercialize products in several segments (but not necessarily in

all of them) and are allowed to sell more than one product in the same segment. In the

last stage, each �rm maximizes pro�ts choosing prices for all its products:

max
fpglig

i;g

�l =
<X
g=1

NglX
i=1

(pgli � cgli)MSgli (1)

where g; l; i are segment, �rm and product indexes, respectively. G is the total number of

segments. Ngl is the number of goods of �rm l in segment g. M is the market size. Sgli is

the market share of product i of segment g for �rm l. p and c are, respectively, price and
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marginal cost. It is assumed that marginal costs are constant. However, they can di¤er

across products.2

The �rst-order conditions for this problem can be written as:

MSgli+� (pgli�cgli)M
@Sgli
@pgli

+
X
j 6=i

� (pglj�cglj)M
@Sglj
@pgli

+
X
r 6=g

NrlX
j=1

� (prlj�crlj)M
@Srlj
@pgli

=0 ; g = 1; : : : ; G ; i = 1; : : : ; Ngl

(2)

From these derivatives, depending on the underlying demand structure we will obtain

di¤erent equilibria. To see this, consider two popular demand speci�cations in discrete

choice problems: the nested and the multinomial logit.

2.1 Nested logit

Consider the nested logit model by Anderson et al. (1992). Assume a nesting structure

where consumers decide �rst the segment and then choose a product within that segment.

Each consumer buys only one product to maximize utility. The indirect utility from

product i of �rm l in segment g is given by:

Ugli = kgli � �pgli + "gli = ugli + "gli (3)

where k is some index of product quality summarizing observed product characteristics.

The price coe¢ cient, �, represents the marginal utility of income. Finally, "gli is an

idiosyncratic shock following an extreme value distribution. Then, the market share of

product i of �rm l, conditional on choosing segment g, is:

2It is assumed for simplicity in the exposition that there are no �xed costs. Their absence is innocuous
given that the analysis of the paper focuses on the price competition stage of the game. They are of
course relevant when solving the previous stages of the game. However, their functional form may di¤er
across models (depending on whether we consider and entry decision, or an investment in capacity, for
example). A general formulation to cover that variety of cases would just complicate the notation without
changing the results.
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Sli�g =
exp

�
ugli
�2

�
NgX
j=1

exp
�
ugmj
�2

� (4)

where �2 is a parameter representing the degree of heterogeneity of products within seg-

ment g. The attractiveness of each segment is given by its inclusive value:

Ag = �2 ln

NX
m=1

NglX
j=1�g

exp

�
ugmj
�2

�
(5)

such that the probability of choosing nest g is given by:

Sg =
exp

�
Ag
�1

�
GX
r=1

exp
�
Ar
�1

� (6)

where �1 measures heterogeneity across segments, with �1 > �2. Therefore, the total

market share, Sgli, is:

Sgli = Sg � Sli�g (7)

The price derivatives are then:

@Sgli
@pgli

= �Sgli
�
1

�1
(1� Sg)Sli�g +

1

�2
(1� Sli�g)

�
� (8)

@Sglj
@pgli

= �Sglj
�
1

�1
(1� Sg)Sli�g �

1

�2
Sli�g

�
� (9)

@Srlj
@pgli

=
�

�1
SrljSgli (10)

Substituting the derivatives in (2), the �rst-order conditions become after some algebra:

(pgli � cgli)Sgli =
�2
�
Sgli +

�
1� �2

�1

�
Sli�g

NglX
i=1

(pgli � cgli)Sgli

+
�2
�1
Sgli

GX
g=1

NglX
j=1

(pgli � cgli)Sgli ; i = 1; : : : ; Ngl ; g = 1; : : : ; G

(11)
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Summing over g and i and de�ning Sl =
GX
g=1

NglX
i=1

Sgli as the total market share of �rm

land Sgl =
NglX
i=1

Sgli as the market share of �rm l in segment g, expression (11) becomes:

�l =
�2
�
MSl +

�
1� �2

�1

�
M

GX
g=1

24NglX
i=1

(pgli � cgli)Sgli

35 NglX
i=1

Sli�g +
�2
�1
Sl�l (12)

Finally, after solving for �l we get the expression for the equilibrium pro�ts:

�l =
�1�2

� (�1 � �2Sl)
MSl +

�1 � �2
�1 � �2Sl

M

GX
g=1

24NglX
i=1

(pgli � cgli)Sgli

35 NglX
i=1

Sli�g (13)

2.2 Multinomial logit

The multinomial logit is a simpler and more tractable approach. However, compared with

the nested logit, it gives rise to less realistic substitution patterns between products. The

multinomial logit can be obtained as a particular case of the nested logit when �1 = �2.

In that case:

Sgli =
exp

�
ugli
�2

�
NX
j=1

exp
�
ugmj
�2

� (14)

with price derivatives:

@Sgli
@pgli

= � �
�2
Sgli (1� Sgli) (15)

@Sglj
@pgli

=
�

�2
SgljSgli (16)

@Srlj
@pgli

=
�

�2
SrljSgli (17)

and equilibrium pro�ts:

�l =
�2
�

Sl
1� Sl

M (18)
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2.3 The equivalence between nested and multinomial logit

The main di¤erence between the expressions for equilibrium pro�ts comes from the sec-

ond summand of (13). The fact that
NglX
i=1

Sli�g can vary across nests prevents any further

attempt to simplify (13). However, the following assumption will allow such a simpli�ca-

tion.

Assumption 1 The market share of a �rm conditional to belonging to a given segment

is the same across segments, i.e.,
NglX
i=1

Sli�g =

NrlX
i=1

Sli�r 8g; r 2 G.

This means that every �rm has the same degree of performance in all the segments

where it is present. However, the shares of each product within nests are allowed to be

di¤erent, i.e. Sli�g 6= Slj�g in general, and this implies that we can have Sgli 6= Sglj , but

also Sgli 6= Srli because although Sli�g = Sli�r still Sg 6= Sr .

Proposition 1 Under assumption 1, the expressions of equilibrium pro�ts in the last

stage of the game for the nested and the multinomial logit are identical.

Proof. Using assumption 1 we can take
NglX
i=1

Sli�g out when summing over g in (13):

�l =
1

�

�1�2
�1 � �2Sl

MSl +
�1 � �2
�1 � �2Sl

M

NslX
i=1

Sli�g

24 GX
g=1

NglX
i=1

(pgli � cgli)Sgli

35 (19)

�l

0@1� �1 � �2
�1 � �2Sl

NglX
i=1

Sli�g

1A =
1

�

�1�2
�1 � �2Sl

MSl (20)

Now recall that: Sl =
GX
g=1

NglX
i=1

Sgli =

GX
g=1

NglX
i=1

SgSli�g =

GX
g=1

Sg

NglX
i=1

Sli�g, but given as-

sumption 1:
GX
g=1

Sg

NglX
i=1

Sli�g =

NglX
i=1

Sli�g

GX
g=1

Sg =

NglX
i=1

Sli�g � 1. Then Sl =
NglX
i=1

Sli�g and

hence:

�l

�
1� �1 � �2

�1 � �2Sl
Sl

�
=

1

�

�1�2
�1 � �2Sl

MSl (21)

�l =
�2
�

Sl
1� Sl

M (22)
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which is identical to (18).

Nevertheless, it is important to clarify that the equilibria in the price competition

stage will be di¤erent for both speci�cations. Or alternatively, from an empirical point of

view, the estimates of parameters � and � consistent with the observed data on p and Sl

will be di¤erent in a nested or in a multinomimal setup.

When �rm�s conditional market shares are equal across segments the total market

share of the �rm is identical to the share within each segment. Within each group, all

products compete in a multinomial logit fashion. Therefore, from the point of view of

the �rm, the whole market is just the addition of several markets that di¤er only in

their size (which is the share of the segment on the total market). The �rm is able to

attain exactly the same share in each of these smaller multinomial logit markets. So,

in practical terms, it is as if the whole market was a multinomial logit one. In other

words, under assumption 1, each segment is like a smaller replica of the whole market.

As a consequence, the nested logit setup can be understood as a repetition of identical

(in terms of pro�tability) multinomial logit setups and so it is natural to obtain a similar

symmetry between nested and multinomial equilibrium pro�ts.

The usefulness of this result can be better illustrated with an example. Consider

a standard two-stage empirical model of entry where each �rm �rst decide whether to

introduce a product and then in the second stage all �rms set prices simultaneously. We

can solve the price competition stage for the equilibrium vector of prices, P �. Once these

are known, under assumption 1 we can solve for the �rst stage of the game, assessing the

pro�tability of the entry decision, by plugging them in (22) instead of using (13), which is

much more cumbersome. In this manner, we can combine the more �exible substitution

patterns of a demand derived from a nested logit speci�cation with the simplicity of a

multinomial logit when solving for the previous stages of the game.

3 Approximation error

It could be the case that in the context of a particular industry or problem of interest the

conditional market shares of the �rm cannot be regarded as being exactly identical across
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segments. There may be signi�cant or large di¤erences. Therefore, it is important to

know the bias that assumption 1 would be introducing in the computation of equilibrium

pro�ts in the price competition subgame, should it not hold perfectly.

De�nition 1 Denote the �rm�s conditional market share by Scgl =
NglX
i=1

Sli�g and its total

share by Sl =
GX
g=1

SgS
c
gl . The di¤erence dgl = S

c
gl�Sl, is a measure of the departure from

assumption 1 for each segment g where �rm l is producing.

Proposition 2 When assumption 1 does not hold, the percentage approximation error in

equilibrium pro�ts due to the use of (22) instead of (13) in the price competition stage of

the game is: �error = � (1� �2) Sl
1�Sl

GX
g=1

�gl
�truel

dgl
Sl
, where �truel = �l, as given by expression

(13).

Proof. Substituting dgl in (13) and rearranging terms gives:

�l

�
�1 � �2Sl � �1Sl + �2Sl

�1 � �2Sl

�
=

�1�2
� (�1 � �2Sl)

MSl +
�1 � �2
�1 � �2Sl

GX
g=1

�gldgl (23)

where �gl =M
NglX
i=1

(pgli � cgli)Sgli such that
GX
g=1

�gl = �l . Then, renaming �l as �truel :

�truel =
�1�2

� (�1 � �1Sl)
MSl +

�1 � �2
�1 � �1Sl

GX
g=1

�gldgl (24)

Now recall that if we obviate the di¤erences in �rm�s (within-segment) conditional market

shares and we assume they are equal (and thus equal to Sl) the corresponding expression

for pro�ts would be:

�apprl =
�2

� (1� Sl)
MSl (25)

Therefore, we can de�ne the percentage error of approximation as:

�error =
�apprl � �truel

�truel

=
�1
�truel

�1 � �2
�1 � �1Sl

GX
g=1

�gldgl (26)
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Normalizing �1 = 1 and rearranging terms:

�error = � (1� �2)
Sl

1� Sl

GX
g=1

�gl
�truel

dgl
Sl

(27)

Therefore, the percentage error of approximation is a function of the similarity parame-

ter, the ratio of �rm�s market share to rivals�share and a weighted sum of the percentage

di¤erence between �rm�s conditional shares and �rm�s total share using as weights the

proportion of each segment pro�ts over �rm�s total pro�t. As �2 decreases, the absolute

value of the error increases. If �2 = 1 the error vanishes because in that case we are back

to the standard multinomial setting and thus there is no error by de�nition. Expression

(27) shows that the non-ful�llment of assumption 1 gives rise to some error through the

term dgl. However, the total error is also a function of other elements that could o¤set

the deviations induced by dg. Therefore, the approximation error may be very small even

for large violations of assumption 1 (see section 4 below), meaning that the multinomial

logit can be, in general, a good approximation of the nested logit in terms of pro�tability.

Moreover, notice that:

Remark 1 The approximation error for �rm l depends only on �rm�s l shares and pro�ts.

Remark 2 A higher �rm share will increase the error through higher Sl
1�Sl .

Remark 3 The term
GX
g=1

�gl
�truel

dgl
Sl
can be positive or negative depending on the sign of the

dgl
Sl
terms and their respective weights.

In particular, dgl
Sl
can be positive or negative and greater or lower than one in absolute

value. It will trivially be zero when the conditional market shares of the �rm are equal

across segments. The weight �gl
�truel

is a priori in the interval [0; 1]. However, if we are

willing to consider the possibility of having negative pro�ts in some (or all) segments that

needs not to be the case. Nevertheless, if we have in mind a medium or long run situation,

where unpro�table products (�rms) exit the market we can restrict ourselves to the case

of non-negative pro�ts. In this way the sum is indeed a weighted average.
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Remark 4 If the relative weight of each segment in �rm�s total pro�t is similar (equal)

to each segment share, then the approximation error will likely be close to (equal) zero,

because
GX
g=1

Sgdgl = 0.3

This in turn would imply that the ranking of pro�tability or market performance is

very similar (equal) across segments and that each segment is a replica of size Sg of the

whole market. This remark is important because it shows that the approximation error

can be very small even in cases where the assumption of equal conditional shares is not

met by a large amount (dgl large).

Remark 5 In general, the larger the di¤erence between �gl
�truel

and the respective segment

share, Sg, the larger will be the approximation error.

4 Applications

4.1 Numerical simulations for approximation errors

In the previous section we have derived an analytical expression for the approximation

error and provided some insights on the factors that can make it higher or lower. Here, I

will compute the error size for alternative market structures. Equation (27) is a function

of four elements that are bounded between 0 and 1: The dissimilarity parameter (�2)

ranges between 0 (perfect nesting) and 1 (multinomial case); market shares, Sl 2 [0; 1]

by de�nition; the ratio of �rm�s variable pro�ts in a segment to �rm�s total pro�ts can

be assumed to be in the [0; 1] interval in the long run, as argued in the previous section;

and the �rm�s share conditional to segment g, Scgl, which determines dgl, is also between

0 and 1 by de�nition.

In a theoretical model Sl, Scgl and dgl are function of equilibrium prices (and charac-

teristics) as given by equations 4 and 7. One possible approach to the simulation exercise

3
GX
g=1

Sgdgl =
GX
g=1

Sg

�
Scgl � Sl

�
=

GX
g=1

SgS
c
gl �

GX
g=1

SgSl = Sl � Sl
GX
g=1

Sg = 0
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would be to parametrize some industry by specifying the number of �rms, their cost func-

tions, the number of segments, the number of products and their characteristics, etc. and

computing the equilibrium prices, shares and pro�ts to obtain the approximation errors

for each possible combination.

However, the number of possibilities quickly grows beyond the limits of feasibility

as soon as we start to combine alternative values for each of the primitives involved.

Therefore, the approach I will follow consists on relying on the boundness of market

shares that compose expression (27) to compute the approximation error for each possible

combination of (equilibrium) values of each of its four ingredients. In doing so, I obviate

the fact that some combinations may not take place in some oligopoly models, but still I

can compute how large the error would be if it was possible to have such combinations.

More precisely, I assume a market where products can be segmented in four groups

with �2 = 0:4, meaning a value of 0:6 for the similarity parameter within nests. The

ratio �sl
�truel

, the conditional market share, Scgl and the segment share, Sg can take six

values, from 0 to 1 in steps of 0:2, in each of the four segments.4 This implies 1296

alternative combinations for Scgl (6
4), and 56 di¤erent possibilities for Sg and

�gl
�truel

(notice

that for a combination to be valid both segment shares and ratio of pro�ts must sum

up to 1 across segments, this restricts the total number of valid possibilities). Next, I

compute all possible values of Sl that can be obtained from the combination of Scgl and Sg

(1296�56 = 72576). Then, Sl and Scgl are used to compute the 72576 possible values of
dgl
Sl

in each of the 4 segments. This is combined with the 56 possible alternatives for �gl
�truel

to

compute the associated error to each of the 4 064 256 possible combinations (72576�56).

In this manner we can have the approximation error for quite di¤erent industry structures,

for example cases where the ratio of pro�ts is similar to segment shares while the relative

di¤erence is very high, or very small. The only parameters that are restricted to not vary

are �2 and the number of segments. �2 enter the expression of the approximation error

linearly, so it is easy to infer what would be the impact of lowering or increasing it. The

4The Matlab script used to perform the numerical simulations is available from the author upon
request.
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number of segments is chosen somewhat arbitrarily to �t standard segmentation patterns,

but also to prevent the number of possible combinations to become prohibitively large.

Figure 1 shows the absolute value of approximation errors (z-axis) for each of the

possible combinations of dgl
Sl
(x-axis) and �gl

�truel
(y-axis) described above. Each point of the

x-axis represents one of the 72576 possible combinations of dgl
Sl
, each of this combinations

has 4 elements, one for each segment. The 56 combinations of �gl
�truel

are represented in

the y-axis. Each of them is also composed of 4 elements. The z-axis represents the errors

associated with all possible combinations of 4-tuples of �gl
�truel

and dgl
Sl
as given by expression

(27). The 4-tuples in x- and y-axis are sorted according to the sum across segments of the

absolute values of dgl
Sl
and �gl

�truel
, respectively. Therefore, elements located closer to the

origin are meant to represent smaller aggregate deviations. The z-axis is scaled in per unit

terms (for example, a value of 0:1 in the z-axis represents an error of 10% as computed

from expression (27)). Figure 1 provides several insights: �rstly, errors can be very large

and very small, depending on how the elements combine. Secondly, dgl
Sl
is the leading factor

in increasing the size of the error. Thirdly, approximation errors become of unreasonable

magnitude only when the relative di¤erences in shares, dgl
Sl
, are also extremely high. As

it was said before, we can compute errors for all possible combinations, even for those

combinations that are not too likely to occur.

Having these facts in mind, it is more interesting to focus on industry structures that

may be of particular interest in theoretical or applied work. For instance, consider again

an industry with 4 segments of equal size (S1 = S2 = S3 = S4 = 0:25) and �2 = 0:4. Now,

the conditional share of a �rm in any segment is restricted to take values between 0 and

0:2 in intervals of 0:05 (Scsl = 0; 0:05; 0:10; 0:15; 0:2). This means that in each segment

there is at least 5 operating �rms. The set of values that
�vgl

�v;truel

can take is trimmed to

exclude the extreme cases where the �rm obtains more than 90% or less than 10% of its

total pro�ts from only one segment. The idea here is that we want to concentrate on

industry con�gurations where �rms are really making business in more than one segment.

Under this new parametrization we can compute again approximation errors. The result

is plotted in Figure 2 and we can observe that now errors are always below 20% and
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in fact they are in almost all cases even below 10%. Interestingly, we obtain such low

approximation errors even for large di¤erences between conditional shares and total shares.

Recall that dgl measures how well our assumption is satis�ed. Figure 3 plots the sum of

the absolute values of dgl
Sl
across segments, i.e., for each of the 625 possible 4-tuples of dgl

Sl

that correspond to the x-axis of Figure 2, the term
4X
g=1

���dglSl ��� is computed. The values are
sorted from smaller to larger as in Figure 2 and the y-axis of Figure 3 is also expressed

in per unit terms. By comparing Figure 3 with the shape of Figure 2 along the x-axis we

can see that the largest approximation errors correspond to the largest deviations from

the assumption of equal conditional shares. But the approximation errors remain low

(below 10%) even for large deviations of 300% to 400%. It is not until deviations reach

values over 400% that approximation errors get larger, and even in that case they remain

below 20%. This occurs because, as noted in section 3, the approximation error depends

on several factors that can keep the error small even if assumption 1 is not close to be

ful�lled (see remark 4). This suggests that this approximation can therefore be applied

even if the conditional market shares of �rms are not really that close one another. The

suitability of the approximation will be determined also by the particular structure of the

industry of interest. Just by knowing the number of segments and �rms�shares we can be

able to recover the approximation errors for alternative combinations of �gl
�truel

(assuming

we cannot know �rms�pro�ts) using expression (27). If the errors so computed are small

enough then we can employ the approximation for our analysis, regardless of how large

the di¤erences between �rms�conditional shares might be.

So far, we have looked only to one particular industry con�guration. Let�s see now

what happens when we move to alternative settings. If we reduce the least number of

�rms per segment to 4 (i.e., Scgl can be 0:25) we observe that the maximum of the errors

is a bit above 20% but still they are mostly below 10% (Figure 4). When we allow for

only at most two �rms per segment we start having some larger approximation errors,

although still in most cases they are very low (Figure 5). Therefore, as the number of

�rms in each segment increases the approximation error quickly decreases. This happens

because the approximation error as computed in expression (27) is increasing in �rm�s
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market share, Sl,5 and the smaller the number of �rms the larger will tend to be, in

general, their market shares.

The previous results were obtained assuming equally sized segments. If we consider

a more polarized structure where for example two of the segments are large and two are

small (Sg = 0:1; 0:4; 0:4; 0:1) we will have higher errors (compare Figures 2 and 6), but still

similar to those of Figure 5. Assuming a less polarized segmentation, Sg = 0:2; 0:3; 0:3; 0:2,

will signi�cantly reduce the size of errors (Figure 7) to the levels that we have in the

base case of Figure 2. Therefore, when the size of the segments is not too di¤erent the

approximation errors are small. As was shown in section 3 (remark 4), the approximation

error is smaller the more similar are segment shares, Sg, and relative pro�ts,
�gl
�truel

. It

turns out that when segment shares are equal or similar, the di¤erences between Sg and

�gl
�truel

tend to be smaller on average as compared with cases where the segment shares are

more polarized. As a consequence, the approximation errors are smaller in those cases.

In summary, the comparison of results for alternative speci�c industry con�gurations

suggests that, with four segments, when we have �ve or more �rms in each segment

and/or when segments have a relatively similar size the approximation errors from using

a simpli�ed expression for equilibrium pro�ts will be very small or even negligible. Only

when the number of �rms is very small and the size of segments is very polarized we may

have some particular industry con�guration for which the approximation error gets larger.

Arbitrarily large errors are only likely to occur when we consider situations that simulta-

neously combine several extreme (and perhaps unlikely) cases. Therefore, irrespective of

what the equilibrium strategies may be, the numerical simulations show that whenever

the equilibrium market shares associated to them lie within a certain interval, the second

summand of equation (13) will be small enough to ensure that the approximation error

from using equation (22) is also small.

5Recall remark 2 in section 3.
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4.2 A real data example

The numerical examples give some insights on the type of situations where the approxi-

mation in Proposition 2 may be valid. This subsection illustrates its application to data

for the Spanish car market during the 1990�s. The data set contains monthly information

on new car registrations for all �rms in the market from January 1990 to December 2000.

This is a segmented market where up to eight di¤erent groups of products are de�ned,

based on both vertical and horizontal di¤erentiation. These segments are: Small-Mini,

Small, Compact, Intermediate, High-Intermediate, Luxury, Sport and Minivan. There-

fore, the data set provides information on real market shares at the segment and market

levels.6 Unfortunately, the information on pro�tability is not available. During these

eleven years a total of 33 brands are present in the market, which gives a total of 363

possible �rm-year observations. Nevertheless, due to entry and exit, not all the �rms are

operating all the time. The observed number of �rm-year combinations is 323. During

the sample period, most �rms operate in 3 to 5 segments. Only a few �rms in some given

years sell products in 7 or 8 segments.

In this market, the di¤erence between conditional shares and market shares varies a

lot across �rm-year observations. Figure 8 displays the sum, for each �rm-year, of dgl

relative to Sl in absolute value in all segments (measured in per unit terms). Figure

10 presents the sum of absolute values of deviations in absolute terms, i.e.,
X
g

dgl. In

both cases it is clear that some �rms are very far from satisfying assumption 1, while in

other cases it may be plausible. Figures 9 and 11 show that the frequency of extreme

violations of assumption 1 is small, but that still large di¤erences exist. Consequently, we

can anticipate that by making use of the approximation proposed in this paper, we will

incur in some approximation error. However, as discussed in the previous section, the fact

that dgl is large does not necessarily imply that the approximation error is also large.

Therefore, for each �rm-year combination the approximation error as given by ex-

pression (27) is computed.7 The value of �2 is assumed to be 0.4, as in the numerical

6Some additional information on product characteristics is also available. However, this is not relevant
for the application here. See Moral & Jaumandreu (2007) for more details on the data set.

7The period of reference for the approximation errors is the year because this avoids the in�uence of
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examples. The ratio �gl
�truel

is also unknown and therefore the same approach of the pre-

vious subsection is followed: For each �rm-year all possible combinations of segment

relative pro�tability are computed, assuming that it must be between 0 and 1 and in-

creasing it in steps of 0.05 (i.e. 5%). In order to avoid extremely unrealistic cases, the

combinations where at least one segment represents less than 10% or more than 90% of

total pro�ts, are excluded. For example, in 1990 Ford was operating in �ve segments,

this implied 771 possible combinations of relative pro�tability like (0:1; 0:1; 0:1; 0:1; 0:6)

or (0:4; 0:1; 0:25; 0:15; 0:1), but not (0:05; 0; 0; 0; 0:95) or (0:05; 0:05; 0:2; 0:2; 0:5) because

they would imply that some segments contribute less than 10% or more than 90% to total

pro�ts. The number of possible combinations varies as the number of segments where the

�rm is present varies. So, for instance, in 1994 Ford was selling cars in six segments and

then the total number of possible combinations was 923, like (0:1; 0:1; 0:1; 0:1; 0:1; 0:5) and

so on.

Under these conditions, Figure 12 plots the size of approximation errors. The x-axis

contains each observed �rm-year combination, the y-axis represents the maximum number

of possible combinations of relative pro�tability. We can see that errors are in general very

small for all �rms in all years, with just very few outliers. The largest error in absolute

value is of 36%.

Figure 13 displays the histogram of approximation errors and shows that they are

almost always below 10%. That error of 36% actually corresponds to the brand Renault

in 1990. In that year, Renault was operating in �ve segments selling a total of 164798

units (57673 in Small, 70033 in Compact, 34983 in High-Intermediate, 1178 in Luxury

and 931 in Minivan). Regarding the relative pro�tability per segment, a total of 771

combinations, as described above, were possible for Renault in 1990. It turns out that the

largest approximation error of 36% corresponds to a particular combination of relative

pro�tability that assigns a very low weight to the Small and Compact segments while

assigning a large one to Minivan and Luxury. More precisely, the error of 36% is the result

seasonal patterns and the potential perturbations that more volatile, higher frequency data could induce.
Moreover, the year is usually one important period of reference for �rms in terms of sales and pro�ts
objectives.
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of assuming that the Small and Compact segments represent only a 20% of Renault�s total

pro�ts in 1990, while they account for more than 77% of sales in that period, and at the

same time the Minivan segment is assumed to generate the 60% of total pro�ts being just

a 0.5% of Renault�s sales. It seems very unlikely that this combination of pro�tability

per segment may be close to the true one. However, even in this extreme situation the

approximation error is just a 36%. The remaining outliers in Figure 13 can be explained

in the same way.

Therefore, this example shows that even for unreasonable combinations of relative

pro�tability, the maximum error we can have for any �rm in the Spanish market is not

larger than 36%. Whenever the relative pro�tability is not completely dissociated of

market shares, the approximation error is very small, as Figure 13 shows. This means

that the equilibrium pro�ts from using a nested logit in the price competition stage can

be fairly well approximated by a multinomial logit expression.

5 Concluding remarks

This paper proposes an approach to facilitate the backward induction solution of multi-

stage oligopoly games where in the last stage multi-product �rms compete in prices in

the context of a nested logit framework with two nests. I show that when �rms have

similar conditional market shares across segments the analytical expression for equilibrium

pro�ts of a nested logit is identical to the multinomial logit counterpart. However, the

equilibrium prices and quantities will obviously be di¤erent in both speci�cations. What

becomes identical is the functional form of equilibrium pro�ts with respect to the strategic

variables and parameters of the problem in the last subgame. However, this is enough

to simplify the resolution of the previous subgames of the problem because the new

expression, while still non-linear, is much less involved.

I also compute the approximation error that occurs if conditional shares are not exactly

equal across segments. When dealing with real data, even if the assumption is plausible

it is likely that conditional shares are not numerically identical. Hence, it is important

to know by how much the approximated equilibrium pro�ts in the last stage of the game
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would di¤er as compared to the true ones. I show, using numerical simulations, that

for many regular industry con�gurations the approximation error is actually small or

negligible even when the assumption is not ful�lled by a large amount. Therefore, in

these cases the equilibrium pro�ts in a simpler multinomial framework can be regarded

as a good approximation to those that would obtain in a nested logit context.

Finally, the simplifying approach proposed in the paper is also applied to real data

from the Spanish car market in 1990-2000. The approximation errors turn out to be very

small, even if for some �rms the assumption of equal conditional shares across segments if

far from being satis�ed. This suggests that the scope for the application of this simplifying

approach can be broad.
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Figures

Figure 1: Approximation errors for all the combinations of �gl
�truel

, Scgl and Sg taking values

(0; 0:2; 0:4; 0:6; 0:8; 1)
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Figure 2: Approximation errors for all the combinations of Sg = (0:25; 0:25; 0:25; 0:25), �gl
�truel

=

(0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9) and Scgl = (0; 0:05; 0:1; 0:15; 0:2)

Figure 3: Sum of absolute values of relative di¤erences across segments for the con�gurations of the
x-axis of Figure 2
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Figure 4: Approximation errors for all the combinations of Sg = (0:25; 0:25; 0:25; 0:25), �gl
�truel

=

(0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9) and Scgl = (0; 0:05; 0:1; 0:15; 0:2; 0:25)

Figure 5: Approximation errors for all the combinations of Sg = (0:25; 0:25; 0:25; 0:25), �gl
�truel

=

(0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9) and Scgl = (0; 0:05; 0:1; 0:15; 0:2; 0:25; 0:3; 0:35; 0:4; 0:45; 0:5)
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Figure 6: Approximation errors for all the combinations of Sg = (0:1; 0:4; 0:4; 0:1), �gl
�truel

=

(0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9) and Scgl = (0; 0:05; 0:1; 0:15; 0:2)

Figure 7: Approximation errors for all the combinations of Sg = (0:2; 0:3; 0:3; 0:2), �gl
�truel

=

(0:1; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7; 0:8; 0:9) and Scgl = (0; 0:05; 0:1; 0:15; 0:2)
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Figure 8: Assessment of the degree of ful�llment of Assumption 1 in the data for the Spanish car market
(in relative terms)

Figure 9: Histogram of the departures from Assumption 1 (in relative terms) for all �rms in the Spanish
car market
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Figure 10: Assessment of the degree of ful�llment of Assumption 1 in the data for the Spanish car
market (in absolute terms)

Figure 11: Histogram of the departures from Assumption 1 (in absolute terms) for all �rms in the
Spanish car market
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Figure 12: Approximation errors using data on the Spanish car market and considering �gl
�truel

=

(0:1; 0:15; 0:2; 0:25; 0:3; 0:35; 0:4; 0:45; 0:5; 0:55; 0:6; 0:65; 0:7; 0:75; 0:8; 0:85; 0:9)

Figure 13: Histogram of approximation errors using data on the Spanish car market and considering
�gl
�truel

= (0:1; 0:15; 0:2; 0:25; 0:3; 0:35; 0:4; 0:45; 0:5; 0:55; 0:6; 0:65; 0:7; 0:75; 0:8; 0:85; 0:9)
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