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Abstract 

In this paper we propose a parsimonious regime-switching approach to model the 
correlations between assets, the threshold conditional correlation (TCC) model. This 
method allows the dynamics of the correlations to change from one state (or regime) to 
another as a function of observable transition variables. Our model is similar in spirit to 
Silvennoinen and Teräsvirta (2009) and Pelletier (2006) but with the appealing feature 
that it does not suffer from the course of dimensionality. In particular, estimation of the 
parameters of the TCC involves a simple grid search procedure. In addition, it is easy to 
guarantee a positive definite correlation matrix because the TCC estimator is given by 
the sample correlation matrix, which is positive definite by construction. The 
methodology is illustrated by evaluating the behaviour of international equities, 
govenrment bonds and major exchange rates, first separately and then jointly. We also 
test and allow for different parts in the correlation matrix to be governed by different 
transition variables. For this, we estimate a multi-threshold TCC specification. Further, 
we evaluate the economic performance of the TCC model against a constant conditional 
correlation (CCC) estimator using a Diebold-Mariano type test. We conclude that 
threshold correlation modelling gives rise to a significant reduction in portfolio´s 
variance.  
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1. Introduction 

Understanding and predicting the correlation of returns across different asset classes has 

key relevance in many financial economics issues such as asset allocation, risk analysis 

and hedging. In recent years there has emerged a burgeoning literature on multivariate 

GARCH models with dynamic correlations. Authors have proposed a range of 

methodologies in capturing the time-varying structure of the correlations. For instance, 

one of the most frequently used specifications is the Dynamic Conditional Correlation 

(DCC) model which assumes that the conditional correlation evolves linearly according 

to a simple GARCH-type structure (Engle, 2002). Estimation of parameters of the DCC 

model is relatively simple and the model has thus become popular among academics 

and practitioners. 

Recently, two interesting extensions to the DCC model have been proposed in 

the literature. Colacito, Engle, and Ghysels (2011) develop a MIDAS-DCC approach. 

The idea is to distinguish between short-run and long-run correlation components. The 

short-run component varies at high frequencies, while the long-run component does so 

at low frequencies. Another extension is by Kwan et al. (2010) which allows for 

different regimes in the short-run DCC dynamics. However, in this model the long-run 

correlation dynamics are assumed to be constant over time. 

We can ask ourselves if a GARCH-type model is appropriate for the correlations 

because the dynamics of a correlation can be intrinsically different than the behavior of 

a variance, e.g. a correlation is bounded from below and above while a variance is not. 

Another way of allowing for time-varying correlations is to define different states of the 

world or regimes, and to allow for the possibility that the dynamic behaviour of asset 

correlations depend on the regime that occurs at any given point in time. For instance, 

Pelletier (2006) proposed a Markov-switching model that allows the correlation depend 

on the regime that prevails at any given point in time. The Markov-switching model 

assumes that the regime is governed by an underlying Markov-chain process and one 

can only assign probabilities to the occurrence of the different correlation regimes. 

Thus, according to this approach the determinants of correlations cannot be observed. 

Silvennoinen and Teräsvirta (2009) developed a different approach to the 

regime-switching correlation modeling. The proposed smooth transition conditional 

correlation (STCC) model allows the correlation change smoothly as a function of 
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observable transition variables.1 Consequently, the regimes that have occurred in the 

past and present are known with certainty (though they have to be found by statistical 

techniques, of course). From an estimation point of view, we understand that estimation 

of the parameters of both the Pelletier and smooth transition correlation models is not an 

easy task, particularly in high dimensions. 

 Other authors have estimated the conditional correlations using semi-parametric 

and non-parametric techniques (Hafner et al., 2006, Aslanidis and Casas, 2010 and 

Long et al., 2011). Typically, their estimation combines a parametric estimation (e.g., 

GARCH(1,1)) of the volatility with a subsequent nonparametric estimation of the 

correlations. The non-parametric methods appear flexible as correlations a priori can 

take any functional form. Nevertheless, so far there is no evidence that they produce 

economically superior results compared to parametric DCC models (see, for example, 

Aslanidis and Casas, 2010). Besides, the source of variation is the correlation comes 

from one or several conditioning variables with the choice of the appropriate 

conditioning variable(s) being not always clear. 

In this paper we propose a parsimonious regime-switching approach for the 

correlations, the threshold conditional correlation (TCC) model. This method allows the 

dynamics of the correlations to change from one state or regime to another as a function 

of observable transition variables. Our model is similar in spirit to Silvennoinen and 

Teräsvirta (2009) and Pelletier (2006) but with the appealing feature that it does not 

suffer from the course of dimensionality. In particular, estimation of the parameters of 

the TCC involves a simple grid search procedure. More importantly, contrary to the 

previous regime-switching correlations models, in a TCC framework it is easy to 

guarantee a positive definite correlation matrix. This is because the proposed TCC 

estimator is the sample correlation matrix, which is positive definite by construction. 

With regard to the application, we examine the behaviour of international 

equities, government bonds and major exchange rates. Our approach can also test and 

allow for different parts in the correlation matrix to be governed by different transition 

variables. For this, we estimate a multi-threshold TCC specification. Finally, we 

evaluate the economic significance of the threshold model against the constant 

correlation estimator using a Diebold-Mariano type test proposed by Engle and Colacito 

(2006). The results show that the reduction in portfolio variance obtained by the TCC 

                                                 
1 See also earlier work by Silvennoinen and Teräsvirta (2005). A special case of this model with time 
transition was independently introduced by Berben and Jansen (2005). 
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specification is statistically significant. Therefore, from an asset allocation point of view 

our method improves significantly on the benchmark constant correlation specification. 

The paper is organised as follows. Section 2 presents the threshold conditional 

correlation model as well as discusses estimation issues and the test of constant 

correlations. Section 3 presents the results and tests for the economic significance of the 

threshold model. In Section 4, we test for large TCC models where we allow for 

different parts in the correlation matrix to be governed by different transition variables. 

Finally, Section 5 briefly concludes. 

 

 

2. The threshold conditional correlation model 

2.1Model specification 

Consider the following N-dimensional vector process of asset returns ( tr ) 

tt ur               Tt ,...,1                                                                              (1) 

where   denotes the vector of mean returns. The conditional covariances of the shocks 

in (1) are time-varying, such that  

),0(~| 1 ttt HNu                                   (2) 

where 1t  is the information set at time t -1 and (.)N  denotes the multivariate normal 

distribution. Each of the univariate error processes has the specification 

 tititi hu ,
2/1

,,   for Ni ,...,1   

where the errors ti,  form a sequence of independent random variables with mean zero 

and variance one, for each of the asset returns Ni ,...,1 .  Each conditional variance tih ,  

is calculated as the realized variance (RV) of asset prices over a fixed time period or 

assumed to follow a GARCH(1,1) or any other univariate volatility process. 

 Rather than modelling the off-diagonal elements of Ht directly, we use the 

following decomposition  

tttt DRDH                        (3) 

allows the focus to be placed on the conditional correlation matrix tR , where 

),...,( 2/12/1
1 Nttt hhdiagD   is the diagonal standard deviation matrix. We model the 

conditional correlations as follows 
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])[1(][ 1211    ttt sIRsIRR                 (4) 

where 1R  and 2R  are (constant) positive definite correlation matrices, and ][ 1 tsI  is 

an indicator function with 1ts  being the  transition variable and   the threshold value.       

 

2.2 Estimation procedure 

The parameters of interest are mean vector  , the variance matrix tD  parameters 

(denoted by  ) , the correlation matrices 1R  and 2R  (denoted by  ) and the threshold 

 . Estimation of the TCC model is carried out by maximum likelihood (ML) under the 

assumption of normality. Given a value of  , the Gaussian log-likelihood is given by 

  
t tttt rHrHNL ))()(|)ln(|)2ln((

2

1
)/(ln 1    

  
t ttttttt rDRDrRDN ))()(|)ln(|||ln2)2ln((

2

1 111   

  
t ttttt RRDN )|)ln(|||ln2)2ln((

2

1 1                (5) 

where ),(    and )(1   
ttt rD . We follow the literature and divide the 

estimation procedure of    into two separate estimations: the mean and volatility 

estimation first and then the correlation estimation (see, Engle and Sheppard, 2001). In 

particular, conditional on the mean and volatility estimates, the conditional log-

likelihood is  

  
t ttttt RRDNL )ˆˆ|)ln(||ˆ|ln2)2ln((

2

1
),ˆ/(ln 1  

Note that the only portion of the log-likelihood that will influence the parameter 

selection is tttt RR  1|)ln(|  , thus, excluding the constant terms we simply maximize 

 
t tttt RRL )ˆˆ|)(ln(|

2

1
),ˆ/(ln 1               (6) 

Notice that is computationally convenient to first concentrate out ),( 21 RR . That is, 

holding   fixed the sample correlation matrices compute the ML correlation estimator 
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


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


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









t ttt
t t

t ttt
t t

sI
sI

R

sI
sI

R

][ˆˆ
][

1
)(ˆ

][ˆˆ
][

1
)(ˆ

1
1

2

1
1

1











     (7) 

where ))(ˆ),(ˆ( 21  RR  are the sample correlations matrices in each regime, which are 

positive definite by construction.  

Notice that given the information matrix between the parameters   and   is not 

block diagonal, we use the derivatives of the full likelihood function in Eq. (5) to 

estimate the asymptotic covariance matrix of the parameters.    

Finally, estimation of   is given by 

)ˆ/)(ˆ),(ˆ(lnmaxargˆ 21
],[




RRL
UL

       (8) 

It is undesirable for a threshold to be selected which sorts too few observations into one 

or the other regime. This possibility can be excluded by restricting 

   ][][ 11 UtLt sPsP  such that a minimal percentage of the observations (say, 

%20100  ) lie in each regime. Estimation of   is performed by a grid search 

procedure. The final correlation estimates are ))ˆ(ˆ),ˆ(ˆ( 21  RR . 

 

2.3 Threshold effect test 

Before considering the TCC model it is important to determine whether the change in 

correlation is statistically significant. The relevant null hypothesis of no threshold effect 

(or constancy) is 210: RRH  . To that purpose and for exposition purposes, we redefine 

Eq. (5) as follows 

][ 1  tt sIRR                   (9) 

where 2RR   and 21 RR  . With this notation, the null of constancy is tested as 

0:0 H . We perform an extension of the Lagrange Multiplier test developed by Tse 

(2000). More specifically, for a given  , we denote )(s  as the score vector,  

  /)/(ln)( Ls . Then, the partial derivatives with respect to ij  (with 

}{ ij ) parameters are     

 ij
tjtit

ij

sI
L

)(][
)/(ln

,,1 








      (9) 
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where tttNtt R  1
,,1 ),...,(   and }){(][ 1 ijR    .2 Further, we denote )(S  

as the NT   matrix the rows of which are the partial derivatives   /)/(ln tL , for 

Tt ,...,1 . Thus, the LM statistic for testing the hypothesis 
0H , denoted as )(LMC , 

is calculated as follows 

)(ˆ))(ˆ)(ˆ()(ˆ)( 1  sSSsLMC        (10) 

where the hats denote evaluation at ̂ . 

We propose two different statistics: the Sup LMC  and the Ave LMC (see 

Andrews and Ploberger, 1994, and Hansen, 1996). The Sup LMC  is simply the 

maximum of the individual LMC statistics 

  )(maxsup 


LCMLCM
UL 

       (11a) 

The Ave LMC  is the simple average of the individual LMC statistics  

  U
L

LCM
k

AveLCM 
  )(

1
      (11b) 

Note that as the function )(LCM  is non-differentiable in  , we perform a grid-LM 

evaluation over ],[ UL  .  

Given that asymptotic critical values of the sampling distribution of the above 

statistics cannot be tabulated since in general the distribution depends upon moments of 

the sample, a model-based bootstrap is proposed and performed in the following 

computer algorithm format: 

 

Algorithm (Model-based Bootstrap procedure) 

1.  1l  

2.  Generate  Ttl
t 1

)(
  resampling from  Ttt 1

ˆ  , with ),0(~ˆˆˆ 2/1
Nttt IiidR     

(estimated standardized errors under the alternative hypothesis, threshold conditional 

correlation). 

3.  Generate  Ttl
tr 1

)(
  from )(2/1)( ˆˆˆ l

tt
l

t RDr    (model under the null hypothesis, 

constant conditional correlation). 

4.  Compute )(sup lLCM  and )(lAveLCM  for the bootstrap sample series  Ttl
tr 1

)(
 . 

                                                 
2 For details regarding the other derivatives, we refer to Tse (2000). 
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5.  1 ll . Go to step 2 while Bl  . 

6.  Estimate the p-value, from the bootstrap approximation 

   


B

l

l LCMLCMI
B

p
1

)(
sup ]sup[sup

1
 

 


B

l

l
ave AveLCMAveLCMI

B
p

1

)( ][
1

 

 

Note that in step 2, we resample  Ttt 1
ˆ   all the vector t̂ , so we do not do an individual 

resampling. We also treat the realized volatility and threshold variable series as given, 

holding their values fixed in repeated bootstrap samples. 

 

2.4 Finite-sample properties of threshold effect test  

In this section, we study the finite-sample properties of the threshold effect test by 

Monte Carlo simulations. We present two different experiments. In particular, we 

simulate a bivariate volatility model with normal errors using as transition variables the 

realized volatility or the first principal component of the series. The parameter values 

for the DGPs are as follows 

ttt hr ,1
2/1

,1,1  , tt rvh ,1,1 4.0 , 1,1
2

1,1,1 )8.015.0(1   ttt rvrv   

ttt hr ,2
2/1

,2,2  , tt rvh ,2,2 2.0 , 1,2
2

1,2,2 )7.02.0(1   ttt rvrv   









































1

1
,

0

0
~

,2

,1








N

t

t
,  8.0,3.0,3.0,8.01 sc  

 

For the correlation parameter, we tried four different values. The sample size is T=500, 

the number of Monte Carlo replications is M=300, and the number of bootstrap 

replications is B=300. Values of the statistic in (10) are calculated using the analytical 

expression for the first derivatives of the maximum likelihood (ML) estimation.  

 In Table 1 we report the rejection frequencies at the significance levels of 1%, 

5% and 10%. As seen, the actual size of the test is close to the nominal size. Thus, we 

conclude the test does not generally seem to suffer from any size distortion. 
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3. Empirical results 

3.1 Data and preliminary statistics 

We estimate the correlations of a portfolio containing equities, bonds and exchange 

rates. In particular, we include the stock market indices of Australia (ASX 200), Britain 

(FTSE 100), France (CAC 40), Germany (DAX 30), Hong Kong (HANG SENG), Japan 

(NIKKEI 225) and the US (S&P 500). We also consider the 10-year constant maturity 

bonds of Britain (UK 10Y), France (FR 10Y), Germany (GER 10Y), Italy (IT 10Y), 

Japan (JP 10Y) and the US (US 10Y). As for the exchanges rates, we use bilateral 

exchange rates (vs. US $) of Australian dollar (AUD), British pound (GBP), the Euro 

(EUR), Japanese yen (JPY), South African rand (ZAR) and Swiss franc (CHF). All data 

is obtained from DataStream. The sample period starts on June 1992 and ends on March 

2011, which yields 980 weekly observations. This long time span features several 

episodes of financial market turbulence (e.g., Asian crisis, LTCM, Russian crisis, 

terrorist attacks in September 2001 and recent financial crisis) as well as tranquil 

periods.  

Descriptive statistics of the data are presented in Table 2. During this period, 

bonds provide lower standard deviations, but also surprisingly, higher returns compared 

to equities. Further, the standardized returns are less skewed and less fat-tailed than the 

raw returns. Tables 3-5 reports the sample (unconditional) correlations of returns across 

markets, using the whole sample period. As seen, the correlation is very high for the stock 

pair DAX 30 vs. CAC 40, between the three Eurozone bond indices for the exchange 

rate CHF vs. EUR. On the other hand, the three Japanese assets to show low correlation 

with the other markets, suggesting that the Japanese markets are comparatively 

disconnected from global market developments. 

 

3.2 Modelling cycle 

As mentioned before, we divide the estimation procedure into two separate estimations: 

the mean and variance estimation first and then the correlation estimation. In particular, 

for the conditional variances we calculate the realized volatility using daily returns. We 

also tested whether the realized variances sufficiently capture the dominant volatility 

dynamics in the data. For this, we applied the Ljung-Box statistic for testing 

autocorrelation up to Tm    lags in the squared standardized returns. The results (last 

column of Table 2) showed that the null hypothesis of no serial correlation is rejected 
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only in the case of the Euro exchange rate with a p-value of 0.035). Hence, we 

concluded that the realized variances capture the volatilities dynamics in the data quite 

adequately.3 

As for the correlations, we first consider the three financial markets/blocks 

separately (equities, bond and exchange rates). For each market, we estimate bivariate 

as well as higher-dimensional TCC models. The bivariate results give us insights 

regarding how “homogeneous” are the blocks in terms of the chosen transition variables 

for the conditional correlations. We make use of the following candidate transition 

variables (1-week lag):  

- Realized variances of each block return series, tirv , , using daily frequency 

returns. 

- Principal components of realized variances in the block.  

- Each standardized return series, titi rvr ,, / , separately.  

- Absolute value of block standardized return series separately.  

- Principal components of standardized return series in the block. 

- Absolute value of principal components of standardized return series in the 

block. 

 - CBOE (Chicago Board of Options Exchange) VIX volatility index. The VIX is 

considered a leading measure of the market´s near term volatility. It is a measure of 

market expectations of future volatility of S&P 500 implied by the options trading on 

this index. In practice, we calculated the realized mean of the VIX index over the week 

using daily data. 

 

In total, we employ between 43 and 50 candidate transition variables for each 

block/market.  

 

3.2 Pairwise and block analyses 

The pairwise estimation results of three markets are shown in Tables 6-11. As 

mentioned, the paiwise results would give us insights regarding how “homogeneous” 

are the blocks with regards to the chosen transition variables. We use the following 

evaluation criteria: For each bivariate model we first calculate the log-likelood value 

                                                 
3 Nevertheless, we also estimated a standard GARCH(1,1) process and our results remain qualitatively the 
same.  
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using each candidate transition variable. Then, for the transition variable with the 

achieved maximun log-likelood value we assign position 1, for the second best position 

2 and so on, and report the mean position (denoted by Mean Position). Then, for each 

bivariate model we also calculate the difference between the log-likelood obtained by 

the candidate variable and the log-likelood achieved by the best candidate for this pair 

and summed the difference over all pairs (denoted by Loss Function). The lower the 

Loss Function of the best transition variable compared to the other candidates, the more 

“homogemeous” would be the block in terms of the transition variable. In Tables 6-8, 

we report the results for the seven best transition variables as well as for the worst 

candidate for the three markets, respectively.  

 The equity returns analysis shows that the best transition variable is the VIX 

volatility index (Table 6). It achieves a Mean Position of 1.95 and has a Loss Function 

of 30.75. In second place comes the realized variance of the FTSE 100 with the realized 

variance of S&P500 following next as the third best transition variable. In terms of loss, 

the difference between the VIX and the other candidates can be large implying that 

Ccan be considered as the homogeneous transition for the different bivariate models. On 

the other hand, the results for bonds show that the best transition variable is the absolute 

value of the 5th principal component of series (Table 7). Interestingly, this principal 

component is basically the difference between the German/French and the Italian bonds: 

...)10(779.0)10(376.0)10(48.0)( 11115   tttt YITYFRYGERPcAbs   

Thus, this spread may reflect the premium over the Italian bonds. Further, the VIX 

volatility index comes in third place with a Loss Function of 307 and a Mean Position 

of 13.8.  As for the exchange rate results in Table 8, once again the VIX provides the 

best-fit transition variable, though it achieves a Loss Function of 110 and a Mean 

Position of 15.19. Interestingly, the difference now between the VIX and other 

candidates such as the realized variance of the South African rand and Australian dollar 

is small. This implies that different candidate variables contain similar information 

making the choice of the most suitable transition variable not being clear as in the case 

of equities or bonds. 

Turning to the blocks, the results for three markets are reported in Tables 9-11. 

In particular, for each block we estimated high-dimensional models by using each 

candidate transition variable and in the tables we reported the correlation matrices 

obtained by using the best-fit candidate. As seen, for all three cases the results are 



 12

consistent with the bivariate analysis. That is, for equities the best fit is obtained using 

the VIX volatility index. More specifically, the TCC model gives a threshold estimate 

of 33.21ˆ  , and one may thus speak about high and low volatility regimes (Tables 9a-

b). During the former, i.e., when the volatility index exceeds the estimated threshold, 

which constitutes 38.2% of the sample, the correlations are higher than during calm 

periods. That is, the uncertainty of the investors shows as an increase in the correlations. 

This result is in line with the other studies in the literature, for example, Ang and 

Bekaert (2002), Baele (2005), Longin and Solnik (2001), Ramchand and Susmel (1998), 

among others. For bonds, the TCC results in Tables 10a-b show that the lower the 

premium over the Italian bonds the stronger is the correlation between international 

bond markets, a result which is expected. As for the exchange rates (Tables 11a-b), the 

model gives a threshold estimate of 14.16ˆ  , which is about in the middle of the VIX 

distribution. We find that in the high-volatility regime the correlations between the 

exchanges rates become weaker (in absolute value). 

The next step of our analysis is to test the hypothesis of constant correlations 

against threshold-type correlations with the application of the supLCM and AveLCM 

tests given by Eq. (11a-b). This is done for the three blocks seperately using the best 

transition variables from the aforementioned analysis. The p-values were calculated 

using the model-based bootstrap experiment with B=300 replications (described in 

Section 2.4). The results, reported in Table 12, show that all six p-values are effectively 

zero. Thus, we conclude that there is strong support for the threshold specifications for 

those three transition variables. 

 

3.3 Economic significance 

In this section, we investigate the implications of time-varying correlations on asset 

allocation. So far, the literature has centred on evaluating the statistical performance of 

correlation models rather than their economic significance. In contrast, we focus on the 

latter. Specifically, we examine the performance of the TCC specification against the 

constant conditional correlation (CCC) model (benchmark) using the Diebold-Mariano 

type test proposed by Engle and Colacito (2006).  

Suppose that we have two different time series of the covariance matrices 

 2 1j
j

tH  and a set of hypothesized vectors of expected returns  Kkk
1  (divided by the 

required excess return, 0 ), where 2,1j  corresponds to the benchmark and 
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alternative (TCC) models. For each period we calculate a set of optimal portfolio 

weights, kj
tw ,   based on a covariance matrix and on an expected return. The portfolio´s 

return is given by 

 )()( ,, rrw t
kj

t
kj

t   

where 
)()()(

)()(
1

1
,

kj
t

k

kj
tkj

t
H

H
w








  and r  denotes (sample) mean returns. The Diebold-

Mariano type test statistic is calculated as the difference between realized portfolio 

variance obtained from the CCC and the TCC models 

2,22,1 )()( k
t

k
t

k
tu    

Under the null hypothesis, the expected value of k
tu  is zero for all k implying that the 

threshold model does not reduce portfolio’ s variance. To improve the sampling 

properties of the test, we also perform the weighted version of the test where we divide 

k
tu  by its standard deviation 

     2/11211 )()(2 k
t

kk
t

kk
t

k
t HHuv    

 

We implement a GMM procedure to estimate jointly 

  

K
tu

K
t

tut

tut

u

u

u

,

2
,

2

1
,

1

...













        (12) 

 

or the weighted version of the test 

  

K
tv

K
t

tvt

tvt

v

v

v

,

2
,

2

1
,

1

...













        (13) 

 

The null hypothesis of equal variances is 0:0 H . In a multivariate setting, one 

problem in running Eq. (12)-(13) is the choice of the appropriate vector of expected 

returns, which may lead to an unbearable number of possible combinations. We follow 

Engle and Colacito (2006) and focus on hedging portfolios. More specifically, we select 
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vectors of expected returns for which one entry is equal to one, while everything else is 

zero. That is, one asset is hedged against all other assets.  

Table 13 shows the GMM estimates of coefficients and t-statistics for the test. As 

seen, the threshold correlation modelling gives rise to a significant reduction in portfolio´s 

variance. This holds for all three markets. As expected, the weighted version of the test 

implies stronger rejections of the null of equal variance. Thus, we conclude that from an 

asset allocation point of view, the threshold model for correlations improves 

significantly on the benchmark constant correlation specification. 

  

 

4. Testing for large TCC models 

One important issue is whether the previous three blocks can be unified in a single time-

varying correlation framework. In particular, given the different transition variables for 

equities and for bonds in our application, can we estimate a single TCC specification for 

these two financial markets (blocks)? More importantly, can we allow for different parts 

in the correlation matrix to be governed by different transition variables? If so, how can 

we guarantee that the resulting correlation matrix is positive definite?  

Suppose that we have two different groups of assets such as equities and bonds. 

Their conditional correlation matrix is given by 

t
b
t

bs
t

sb
t

s
t

b
t

s
t R

RR

RR
Var 




























  

where  s
t  is a 11n  vector of standardized equity return shocks and b

t  is a 12n  

vector of standardized bond return shocks. The upper block of the diagonal of tR  

denoted by s
tR  is the correlation matrix of the equities, while the lower block of the 

diagonal of tR  denoted by b
tR  is the correlation matrix of the bonds. Then, the off-

diagonal blocks sb
tR (and )(  sb

t
bs
t RR ) are the cross-correlations between equities and 

bonds.4    

 Based on our previous results, consider a TCC model with two threshold 

variables 

][][][][
11111111 4321 b

b
s

s
b

b
s

s
b

b
s

s
b

b
s

s
t tttttttt

ssIRssIRssIRssIRR  


 

                                                 
4 Note that this part of the correlation matrix is neither a correlation matrix with ones on the diagonal nor 
necessarily a square matrix.   
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            (14) 

where 













b
i

bs
i

sb
i

s
i

i

RR

RR
R , i =1,…,4. It is of interest to test whether b

ts 1  implies a statistically 

significant change in the correlation matrix of the equities and/or s
ts 1  produces a 

statistically significant change in the correlation matrix of the bonds. Regarding the 

cross-correlations between equities and bonds, it is intuitive to allow for both variables 

to act as transition variables. In particular, the relevant null hypothesis is given by5 

 

 bbbbssss RRRRRRRRH 423143210:     (15)  

 

In this case, under 0H  the correlations of equities are governed only by s
ts 1  while the 

correlations of bonds are driven only by b
ts 1 . Notice that given that s

ts 1  is the threshold 

of equities (e.g., 1tVIX  from the previous analysis) and b
ts 1  is the threshold of bonds 

(e.g., 15)( tPcAbs  from the previous analysis) under the null hypothesis both threshold 

parameters are identified. Thus, under the null there are no nuisance parameters. That is, 

the model is a TCC both under the null and the alternative. This implies that the 

threshold estimates are superconsistent and thus a classical Wald-type test can be 

applied taking s  and b  as known.            

As seen, under the alternative hypothesis, the model is a TCC model with two 

thresholds (double-threshold TCC) for all correlations pairs. Thus, if we reject the null 

we estimate a four-regime TCC model. In this case, estimation can be carried out by 

extending the estimation procedure of the two-regime TCC described in section 2.2. 

Interestingly, under the null hypothesis the model is a restricted four-regime 

TCC model that allows for different parts in the correlation matrix to be governed by 

different transition variables. Thus, if we do not reject the null we should estimate this 

model by guaranteeing that the resulting correlation matrix is positive definite. To do so 

we proceed as follows. Consider the following transformation of the standardized 

shocks 

                                                 
5 Notice that the null can be decomposed in two null hypotheses: 

ssss RRRRH 43210:   and bbbb RRRRH 42310:  . Under the former null the correlations of 

equities are governed only by s
ts 1  while under the latter, the correlations bonds are driven only by b

ts 1 . 
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The variance of the vector *
t  is given by 
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Notice that by construction Eq. (16) guarantees that tR  is positive definite if )( *
tVar   is 

positive definite.  

To estimate Eq. (16), we use two-regime TCC models for equities and for the 

bonds, separately (as in the previous section) and obtain consistent estimates for s
tR  and 

b
tR . Then, we calculate 









 b
t

b
t

s
t

s
tt RR  ˆˆ,ˆˆˆ

2/12/1*  and use again a four-regime TCC 

specification to estimate the variance matrix )( *
tVar  . Finally, we recover the estimate 

of sb
tR  from the estimate of 

2/12/1  b
t

sb
t

s
t RRR . 

 Table 14 shows that the null hypothesis in Eq. (15) is strongly rejected. This 

applies to both the joint and block-wise tests. Thus, we proceed by estimating a four-

regime (double-threshold) TCC specification. The results are reported in the Appendix.  

To investigate the economic implication of such a large TCC specification we perform 

the Engle and Colacito (2006) test described in Section 3.3. Under the null hypothesis 

the unrestricted four-regime TCC model in Eq. (14) reduces the portfolio’s variance 

compared to the restricted four-regime TCC in Eq. (16). Table 15 shows the GMM 

estimates of coefficients and t-statistics for the test. As seen, both versions of the test are 

highly significant. Thus, we conclude that from an economic point of view, the 

unrestricted four-regime TCC improves significantly over the restricted four-regime 

TCC model. 



 17

Regarding the blocks of equities and exchange rates, our previous analysis 

shows that these two financial markets have a common transition variable (VIX index). 

Therefore, the issue here is to test for an additional regime in a two-regime TCC 

specification for these two blocks jointly. In particular, under the null hypothesis a two-

regime TCC specification is adequate whereas the alternative supports a three-regime 

TCC specification. The correlation model under the alternative is given by 

 

][][][ 2132112111    tttt sIRsIRsIRR     

or what is the same 

][][][ 21112111    tttt sIsIRsIRR         (17) 

 

with 230: RRH  . The null of two-regime TCC is tested as 0:0 H . This is a 

special case of the unrestricted four-regime TCC as the transition variables are the same. 

In order to ensure identification we require 21    and hence that the two correlation 

transitions occur at different values of the transition variable.  

Under the null hypothesis 2  is not identified, so we use a supremum-type test. 

As in the case of no threshold effect test (described in Section 2.3) we use the Lagrange 

Multiplier statistic developed by Tse (2000). For that we need to calculate the 

derivatives of the log-likelihood with respect to all the parameter (that appear under the 

alternative) evaluated in the estimated parameters under the null. 

Table 16 shows that the null hypothesis of an adequate two-regime TCC model 

for stock and exchange rates is not rejected. Thus, we do not proceed with estimation of 

a three-regime TCC specification. All in all, for these two groups of assets (equities and 

exchange rates) we conclude that a two-regime TCC specification captures adequately 

the correlation dynamics. 

In principle, one could follow the same steps and extend the above analysis to 

estimate an even larger TCC model (one-threshold or multi-threshold) for all three 

financial markets. However, this is beyond the scope of this paper and is left to the 

interested reader.  
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5. Conclusions 

In this paper we propose a (single and multi-threshold) threshold conditional correlation 

(TCC) model. The appealing feature of this correlation model is that it does not suffer 

from the course of dimensionality. In particular, estimation of the parameters of the 

TCC involves a simple grid search procedure. In addition, it is easy to guarantee a 

positive definite correlation matrix because the TCC estimator is given by the sample 

correlation matrix, which is positive definite by construction. The methodology is 

illustrated by evaluating the behaviour of international equities, govenrment bonds and 

major exchange rates, first separately and then jointly. We also test and allow for 

different parts in the correlation matrix to be governed by different transition variables. 

For this, we estimate a multi-threshold TCC specification. Further, from an economic 

point of view, we conclude that TCC model gives rise to a significant reduction in 

portfolio´s variance. 
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Table 1: Finite-sample properties of threshold effect test 
 

Transition variable Realized volatility Principal components 

 1% 5% 10% 1% 5% 10% 

8.0      supLCM 0.026 0.053 0.10 0.016 0.08 0.136 

                  AveLCM 0.023 0.053 0.103 0.026 0.093 0.13 

3.0      supLCM 0.01 0.046 0.10 0.013 0.07 0.12 

                  AveLCM 0.006 0.05 0.096 0.016 0.066 0.126 

3.0   supLCM 0.01 0.056 0.086 0.026 0.066 0.13 

                  AveLCM 0.013 0.06 0.106 0.02 0.056 0.136 

8.0   supLCM   0 0.056 0.116 0.01 0.056 0.106 

                  AveLCM 0.013 0.043 0.096 0.01 0.073 0.116 

Notes: Actual size of the threshold effect test (rejection frequencies). The sample size is 
T=500, the number of Monte Carlo replications is M=300, and the number of bootstrap 
replications is B=300. 
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Table 2: Summary statistics  
 

 

                Abbr. 
 

 

 Mean     St.dev  Skewness Kurtosis  

 

   Standardized 
Skewness  Kurtosis  

 

LB- Squared 
Standardized  

Australia Equities - ASX 200  0.103 2.067 -0.581 5.713 -0.156 2.035 0.856 

UK Equities - FTSE 100  0.079 2.336 -0.569 5.873 -0.097 2.104 0.275 

Hong Kong Equities – HANG 
SENG 

 0.139 3.694 -0.565 6.917 -0.123 1.855 0.189 

France Equities – CAC 40  0.070 2.848 -0.346 5.266 -0.130 2.100 0.766 

US Equities - S&P 500  0.116 2.416 -1.139 14.98 -0.148 2.114 0.550 

Germany Equities - DAX 30  0.140 3.018 -0.575 6.256 -0.150 2.104 0.157 

Japan Equities - NIKKEI 225 -0.055 3.043 -0.285 5.567 -0.039 2.084 0.214 

Germany bonds - GER 10Y  0.139 1.583  0.372 5.009 -0.081 2.138 0.409 

France bonds - FR 10Y  0.147 1.568  0.288 4.927 -0.095 2.141 0.703 

Italy bonds - IT 10Y  0.151 1.813 -0.237 7.050 -0.100 2.058 0.129 

Japan bonds - JP 10Y  0.128 1.666  0.639 7.201 -0.033 2.144 0.268 

UK bonds - UK 10Y  0.130 1.532 -0.486 5.875 -0.104 2.126 0.574 

US bonds – US 10Y  0.116 1.017  0.031 4.633 -0.096 2.028 0.499 

British pound – GBP -0.013 1.358 -0.946 9.034 -0.094 2.102 0.454 

Australian dollar – AUD  0.027 1.647 -0.842 7.349 -0.020 2.071 0.200 

Swiss franc – CHF -0.046 1.533 -0.591 6.935  0.051 2.123 0.088 

Euro – EUR -0.005 1.410 -0.074 5.980  0.060 2.049 0.035** 

Japanese yen - JPY  -0.043 1.492 -0.921 9.798 -0.008 2.123 0.103 

South African rand – ZAR  0.090 2.101  0.834 11.91  0.007 2.084 0.724 

Notes: The standardized skewness and kurtosis are the skewness and kurtosis of the returns standardized by the 
realized standard deviation. The Ljung-Box statistic (p-value) tests autocorrelation up to 31 lags in the squares 
of standardized returns, distributed as chi-2 with 31 degrees of freedom. Source is DataStream. 
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Table 3: Unconditional correlations between equity returns  
 

  
ASX 200 

 
FTSE 100 

 
HANG SENG 

 
CAC 40 

 
S&P 500 

 
DAX 30 

 
NIKKEI 225 

ASX 200   1       

FTSE 100 0.588   1      

HANG SENG 0.539 0.539   1     

CAC 40 0.556 0.829 0.507   1    

S&P 500 0.547 0.694 0.474 0.696   1   

DAX 30 0.555 0.771 0.527 0.851 0.706   1  

NIKKEI 225 0.522 0.438 0.430 0.451 0.438 0.452    1 

 
 
 
 
 

Table 4: Unconditional correlations between bond returns  
 

  
GER 10Y 

 
FR 10Y 

 
IT 10Y 

 
JP 10Y 

 
UK 10Y 

 
US 10Y 

GER 10Y   1      

FR 10Y 0.958   1     

IT 10Y 0.774 0.818   1    

JP 10Y 0.415 0.379 0.241   1   

UK 10Y 0.680 0.679 0.618 0.236   1  

US 10Y 0.391 0.387 0.308 0.248 0.401    1 

 
 
 
 
 

Table 5: Unconditional correlations between exchange rates  
 

  
GBP 

 
AUD 

 
CHF 

 
EUR 

 
JPY 

 
ZAR 

GBP   1      

AUD  0.398   1     

CHF -0.606 -0.346   1    

EUR -0.684 -0.452 0.895   1   

JPY -0.174 -0.099 0.387 0.319   1  

ZAR -0.284 -0.424 0.268 0.345 0.027   1 
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Table 6: Equities pairwise analysis 
 

 

Transition Variable 

 
Mean Position 

 
Loss Function 

VIX      1.95    -30.75 

Realized variance of FTSE 
100 

     3.14   -122.71 

Realized variance of S&P 500      3.33   -131.58 

Realized variance of DAX 30      8.04   -199.10 

Absolute value of the 7th 
principal component of 
series 

     9.85   -240.74 

Realized variance of CAC 40      9.09   -243.92 

Realized variance of ASX200    14.04   -259.50 

…   

Absolute value of CAC 40    41.23   -387.23 

 
 

Table 7: Bonds pairwise analysis 
 

 

Transition Variable 

 
Mean Position 

 
Loss Function 

Absolute value of the 5th 
principal component of 
series 

     2.13    -68.99 
 

Absolute value of the 6th 
principal component of 
series 

     3.66   -102.62 

VIX     13.88   -307.45 

3rd principal component of 
the realized variance of 
series  

     8.73   -387.80 

5th principal component of 
the absolute value of series 

     8.73   -420.13 

6th principal component of 
series 

     6.20   -424.55 

6th principal component of 
the absolute value of series 

    7.80   -469.72 

…   

Absolute value of JP 10Y    31.93   -630.29 
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Table 8: Exchange rates pairwise analysis 
  

 

Transition Variable 

 
Mean Position 

 
Loss Function 

VIX      15.19    -110 

Realized variance of ZAR      18.09   -132.19 

Realized variance of AUD     13.85   -134.38 

Realized variance of GBP      11.80   -141.82 

1st principal component of 
the realized variance of 
series 

     21.80   -148.06 

2nd absolute value of 
principal component of 
series 

     21.57   -149.51 

2nd principal component of 
series 

    22.04   -153.44 

…   

2nd principal component of 
absolute value of series 

   31.33   -192.10 
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Table 9a: Single-transition TCC correlations for equities  
Regime1: 33.211tVIX  (low volatility) 

  
ASX 200 

 
FTSE 100 

 
HANG SENG 

 
CAC 40 

 
S&P 500 

 
DAX 30 

 
NIKKEI 225 

ASX 200   1       

FTSE 100 0.410   1      

HANG SENG 0.362 0.397   1     

CAC 40 0.356 0.692 0.368   1    

S&P 500 0.347 0.514 0.361 0.500   1   

DAX 30 0.413 0.645 0.401 0.710 0.516   1  

NIKKEI 225 0.365 0.315 0.263 0.313 0.320 0.292    1 

 
 
 

Table 9b: Single-transition TCC correlations for equities 
Regime 2: 33.211tVIX  (high volatility) 

  
ASX 200 

 
FTSE 100 

 
HANG SENG 

 
CAC 40 

 
S&P 500 

 
DAX 30 

 
NIKKEI 225 

ASX 200   1       

FTSE 100 0.582   1      

HANG SENG 0.624 0.598   1     

CAC 40 0.603 0.860 0.598   1    

S&P 500 0.621 0.717 0.590 0.775   1   

DAX 30 0.611 0.773 0.622 0.870 0.732   1  

NIKKEI 225 0.573 0.474 0.578 0.516 0.458 0.503    1 
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Table 10a: Single-transition TCC correlations for bonds 
Regime 1: 201.0)( 15 tPcAbs  (low Italian bond premium) 

  
GER 10Y 

 
FR 10Y 

 
IT 10Y 

 
JP 10Y 

 
UK 10Y 

 
US 10Y 

GER 10Y   1      

FR 10Y 0.970   1     

IT 10Y 0.939 0.947   1    

JP 10Y 0.407 0.385 0.363   1   

UK 10Y 0.689 0.697 0.666 0.323   1  

US 10Y 0.417 0.397 0.366 0.301 0.465    1 

 
 
 

Table 10b: Single-transition TCC correlations for bonds  
Regime 2: 201.0)( 15 tPcAbs  (high Italian bond premium) 

  
GER 10Y 

 
FR 10Y 

 
IT 10Y 

 
JP 10Y 

 
UK 10Y 

 
US 10Y 

GER 10Y   1      

FR 10Y 0.892   1     

IT 10Y 0.622 0.672   1    

JP 10Y 0.366 0.326 0.132   1   

UK 10Y 0.570 0.567 0.492 0.164   1  

US 10Y 0.189 0.181 0.176 0.108 0.298    1 
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Table 11a: Single-transition TCC correlations for exchange rates 
Regime 1: 14.161tVIX  (low volatility) 

   
GBP 

 
AUD 

 
CHF 

 
EUR 

 
JPY 

 
ZAR 

GBP   1      

AUD  0.302   1     

CHF -0.706 -0.293   1    

EUR -0.719 -0.282 0.901   1   

JPY -0.331 -0.116 0.498 0.475   1  

ZAR -0.365 -0.177 0.340 0.413 0.127   1 

 
 
 

Table 11b: Single-transition TCC correlations for exchange rates  
Regime 2: 14.161tVIX  (high volatility) 

  
GBP 

 
AUD 

 
CHF 

 
EUR 

 
JPY 

 
ZAR 

GBP   1      

AUD  0.288   1     

CHF -0.535 -0.310   1    

EUR -0.618 -0.403 0.880   1   

JPY -0.114 -0.155 0.287 0.244   1  

ZAR -0.280 -0.377 0.319 0.367 0.036   1 
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Table 12: Constancy tests  
 

  
supLCM 

 
AveLCM 
 

Equities     202.1 

  (0.000) 

   129.8 

  (0.000) 

   

Bonds     280.5 

  (0.000) 

   176.6 

  (0.000) 

   

Exchange rates     105.3 

  (0.000) 

   66.7 

  (0.000) 

   

Notes: supLCM and AveLCM  statistics, see Eq. (11a-b). Bootstrapped p-
values in parentheses, where the number of bootstrap replications is B=300. 
The tests are performed using the following transition variables: 1tVIX  for 

equities and exchange rates, 15)( tPcAbs  for bonds.  

 
 
 
 
 

Table 13: Asset allocation tests 1 
 

  
Diebold-Mariano test 
(unweighted) 

 
Diebold-Mariano test 
(weighted) 

Equities        -0.014 

      (-2.229) 

       -0.019 

      (-5.104) 

   

Bonds         -0.004 

      (-3.200) 

       -0.017 

      (-3.952) 

   

Exchange rates       -0.006 

    (-2.736) 

      -0.029 

     (-4.872) 

   

Notes: GMM estimates of coefficients and t-statistics for testing that the TCC produces 
a smaller variance than the constant correlation model (CCC). Negative values are 
evidence in favour of the TCC.   
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Table 14: Testing for large TCC models (equities and bonds) 
 

 Wald statistic 

  (p-value) 

ssss RRRRH 43210:       105.8 

   (0.000) 

  
bbbb RRRRH 42310:      117.6 

  (0.000) 

  
bbbbssss RRRRRRRRH 423143210:      257.9 

  (0.000) 

  

Notes: Tests restricted four-regime TCC vs. unrestricted four-regime TCC. The 
first null hypothesis tests for the significance of 15)( tPcAbs  as a threshold 

variable (additional to 1tVIX ) for the correlation matrix of the equities. The 

number of restrictions for the equities is 42, so the Wald statistic follows a 
2
42 . The second null tests for the significance of 1tVIX  as a threshold 

variable (additional to 15)( tPcAbs ) for the correlation matrix of the bonds. 

The number of restrictions for the bonds is 30, so the Wald statistic follows a 
2
30 . The third null hypothesis tests jointly for the aforementioned two 

hypotheses. 
 
 
 
 
 

Table 15: Asset allocation tests 2 (equities and bonds) 
 

 
Diebold-Mariano test 
(unweighted) 

 
Diebold-Mariano test 
(weighted) 

       -0.011 

      (-8.890) 

       -0.045 

      (-8.438) 

  

Notes: GMM estimates of coefficients and t-statistics for 
testing that the unrestricted four-regime TCC in Eq. (14) 
produces a smaller variance than the restricted four-regime 
TCC in Eq. (16). Negative values are evidence in favour of the 
unrestricted four-regime model.   
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Table 16: Testing for large TCC models (equities and exchange rates) 
 

 
supLCM 

 
AveLCM 
 

   0.699  

  (0.150) ? 

   0.995 

  (0.125) ? 

  

Notes: Tests of two-regime TCC vs. three-regime 
TCC models. supLCM and AveLCM statistics. 
Bootstrapped p-values in parentheses, where the 
number of bootstrap replications is B=300. The 
tests are performed using 1tVIX  as transition 

variable. 
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Table A1: Data Overview 
 

 

Symbol  

 

Name  

ASX 200 S&P/ASX 200 - PRICE INDEX (Australia) 

FTSE 100 FTSE 100 - PRICE INDEX (United Kingdom) 

HANG SENG HANG SENG - PRICE INDEX (Hong Kong) 

CAC 40 CAC 40 - PRICE INDEX (France) 

S&P 500 
S&P 500 COMPOSITE - PRICE INDEX (United 
States) 

DAX 30 
DAX 30 PERFORMANCE - PRICE INDEX 
(Germany) 

NIKKEI 225 
NIKKEI 225 STOCK AVERAGE – PRICE INDEX 
(Japan) 

GER 10Y 
BD BENCHMARK 10 YEAR DS GOVT. INDEX - 
TOT RETURN IND (~U$) (Germany) 

FR 10Y 
FR BENCHMARK 10 YEAR DS GOVT. INDEX - 
TOT RETURN IND (~U$)(France) 

IT 10Y 
IT BENCHMARK 10 YEAR DS GOVT. INDEX - 
TOT RETURN IND (~U$) (Italy) 

JP 10Y 
JP BENCHMARK 10 YEAR DS GOVT. INDEX - 
TOT RETURN IND (~U$) (Japan) 

UK 10Y 
UK BENCHMARK 10 YEAR DS GOVT. INDEX - 
TOT RETURN IND (~U$) (United Kingdom) 

US 10Y 
US BENCHMARK 10 YEAR DS GOVT. INDEX - 
TOT RETURN IND (~U$) (United States) 

GDP 
GBP TO USD (BOE) - EXCHANGE RATE (British 
pound vs. $) 

AUD 
AUD TO USD (BOE) - EXCHANGE RATE 
(Australian dollar vs. $) 

CHF 
USD TO CHF (BOE) - EXCHANGE RATE (Swiss 
franc vs. $) 

EUR 
USD TO EUR (BOE) - EXCHANGE RATE (Euro vs. 
$) 

JPY 
USD TO JPY (BOE) - EXCHANGE RATE (Yen vs. 
$) 

ZAR USD TO ZAR (BOE) - EXCHANGE RATE (South 
African rand vs. $) 
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Table A2: Double-transition TCC correlations for equities and bonds 
Regime 1: 0.2054)(19.9480 151   tt PcAbsVIX   

 
  

ASX 200 
 
FTSE 100 

 
HANG SENG 

 
CAC 40 

 
S&P 500 

 
DAX 30 

 
NIKKEI 225 

 
GER 10Y 

 
FR 10Y 

 
IT 10Y 

 
JP 10Y 

 
UK 10Y 

 
US 10Y 

ASX 200  1             

FTSE 100  0.491   1            

HANG 
SENG 

 
0.355  0.400   1           

CAC 40 
 
0.455 

 0.783  0.452   1          

S&P 500  0.445  0.583  0.410  0.617   1         

DAX 30  0.415  0.709  0.470  0.817  0.596   1        

NIKKEI 
225 

 0.430  0.456  0.318  0.426  0.462  0.408    1       

GER 10Y  0.003 -0.126  0.038 -0.119 -0.016 -0.189 -0.183 1      

FR 10Y -0.007 -0.110  0.053 -0.087  0.007 -0.177 -0.183 0.978 1     

IT 10Y  0.004 -0.102  0.050 -0.088  0.005 -0.171 -0.174 0.989 0.988 1    

JP 10Y -0.022 -0.233  0.032 -0.199 -0.052 -0.225 -0.267 0.559 0.544 0.524 1   

UK 10Y -0.045 -0.151  0.112 -0.118  0.003 -0.173 
-0.134 
 

0.770 0.769 0.760 0.437 1  

US 10Y -0.051 -0.173 -0.018 -0.160 -0.074 -0.208 -0.104 0.371 0.379 0.364 0.356 0.478 1 

 
 
 

Table A2: Double-transition TCC correlations for equities and bonds  
Regime 2: 0.2054)(19.9480 151   tt PcAbsVIX  

 
  

ASX 200 
 
FTSE 100 

 
HANG SENG 

 
CAC 40 

 
S&P 500 

 
DAX 30 

 
NIKKEI 225 

 
GER 10Y 

 
FR 10Y 

 
IT 10Y 

 
JP 10Y 

 
UK 10Y 

 
US 10Y 

ASX 200  1             

FTSE 100 0.346   1            

HANG 
SENG 0.347  0.345   1           

CAC 40 0.264  0.595 0.249   1          

S&P 500 0.259  0.426 0.308   0.378   1         

DAX 30 0.417  0.583 0.297   0.582  0.423   1        

NIKKEI 
225 0.313  0.203 0.167   0.212  0.187  0.170    1       

GER 10Y 0.096 -0.045 0.085  -0.175  0.095 -0.046  -0.040 1      

FR 10Y 0.028 -0.020 0.065  -0.031  0.079 -0.048  -0.097  0.844 1     

IT 10Y 0.178  0.085 0.223   0.116  0.158  0.142   0.084  0.418  0.490 1    

JP 10Y 0.015 -0.083 0.029  -0.252 -0.045 -0.139  -0.254  0.377  0.327  0.071 1   

UK 10Y 0.168  0.088 0.159   0.051  0.201  0.068   0.044  0.514  0.526  0.417 0.193 1  

US 10Y 0.090  0.123 0.113   0.132  0.448  0.203   0.048  0.248  0.240  0.254 0.082 0.333 1 
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Table A3: Double-transition TCC correlations for equities and bonds  
Regime 3: 0.2054)(19.9480 151   tt PcAbsVIX  

 
  

ASX 200 
 
FTSE 100 

 
HANG SENG 

 
CAC 40 

 
S&P 500 

 
DAX 30 

 
NIKKEI 225 

 
GER 10Y 

 
FR 10Y 

 
IT 10Y 

 
JP 10Y 

 
UK 10Y 

 
US 10Y 

ASX 200  1             

FTSE 100  0.500   1            

HANG 
SENG  0.556  0.596   1           

CAC 40  0.551  0.837  0.573   1          

S&P 500  0.576  0.648  0.539  0.755   1         

DAX 30  0.574  0.753  0.588  0.864  0.725   1        

NIKKEI 
225 

 0.517  0.453  0.571  0.486  0.445  0.480    1       

GER 10Y -0.037 -0.131 -0.039 -0.121 -0.055 -0.099 -0.046 1      

FR 10Y -0.010 -0.108 -0.018 -0.092 -0.012 -0.077 -0.040 0.977 1     

IT 10Y  0.004 -0.085 -0.009 -0.075 -0.003 -0.051 -0.018 0.985 0.983 1    

JP 10Y -0.220 -0.258 -0.158 -0.254 -0.196 -0.238 -0.225 0.388 0.367 0.313 1   

UK 10Y -0.015 -0.135 -0.048 -0.055 -0.007 -0.068 -0.109 0.710 0.717 0.692 0.255 1  

US 10Y -0.201 -0.256 -0.274 -0.236 -0.237 -0.279 -0.222 0.395 0.378 0.358 0.318 0.429 1 

 
 
 
 

Table A4: Double-transition TCC correlations for equities and bonds  
Regime 4: 0.2054)(19.9480 151   tt PcAbsVIX  

 
  

ASX 200 
 
FTSE 100 

 
HANG SENG 

 
CAC 40 

 
S&P 500 

 
DAX 30 

 
NIKKEI 225 

 
GER 10Y 

 
FR 10Y 

 
IT 10Y 

 
JP 10Y 

 
UK 10Y 

 
US 10Y 

ASX 200  1             

FTSE 100  0.635   1            

HANG 
SENG 

 0.673  0.613   1           

CAC 40  0.590  0.860  0.627   1          

S&P 500  0.599  0.776  0.602  0.737   1         

DAX 30  0.562  0.749  0.631  0.860  0.676   1        

NIKKEI 
225  0.551  0.395  0.499  0.457  0.379  0.423    1       

GER 10Y -0.015 -0.049  0.058 -0.182 -0.083 -0.221 -0.017 1      

FR 10Y  0.029  0.007  0.114 -0.116 -0.009 -0.172  0.066 0.933 1     

IT 10Y  0.113  0.117  0.164 -0.045  0.022 -0.113  0.140 0.811 0.843 1    

JP 10Y -0.040 -0.044  0.017 -0.051 -0.034 -0.138 -0.184 0.160 0.120 0.131 1   

UK 10Y  0.000 -0.039  0.187  0.034 -0.019 -0.009  0.002 0.473 0.458 0.410 0.116 1  

US 10Y -0.131 -0.119 -0.096 -0.237 -0.124 -0.192 -0.219 0.247 0.192 0.082 0.074 0.345 1 

 
 

 
 
 
 
 



 33

References 
Andrews D.W.K. and W. Ploberger (1994). Optimal tests when a nuisance parameter is 
present only under the alternative, Econometrica 62, 1383-1414. 
 
Ang A. and G. Bekaert (2002), International asset allocation with regime shifts, Journal 
of Financial Studies 15, 1137-1187. 
 
Aslanidis N. and I. Casas (2010), Modelling asset correlations during the recent 
financial crisis: A semiparametric approach, CREATES Research Paper 2010-71, 
Aarhus University. 
 
Baele L. (2005), Volatility spillover effects in European equity markets, Journal of 
Financial and Quantitative Analysis 40, 373-401. 
 
Berben R.P. and W.J. Jansen (2005), Comovement in international equity markets: a 
sectoral view’, Journal of International Money and Finance 24, 832-857. 
 
Bollerslev T.(1990), Modelling the coherence in short-run nominal exchange rates: A 
multivariate generalized arch model, Review of Economics and Statistics 72, 498-505. 
 
Cappiello L., R. Engle and K. Sheppard (2006), Asymmetric dynamics in the 
correlations of global equity and bond returns, Journal of Financial Econometrics 4, 
537-572. 
  
Colacito R., R. Engle and E. Ghysels (2011), A component model for dynamic 
correlations, Journal of Econometrics 164, 45-59. 
 
Engle R. (2002), Dynamic conditional correlation: a simple class of multivariate 
generalized autoregressive conditional heteroskedasticity models, Journal of Business 
and Economic Statistics 20, 339-350. 
 
Engle, R. and Colacito R (2006), Testing and valuing dynamic correlations for asset 
allocation, Journal of Business and Economic Statistics 24, 238-253.  
 
Engle R. and K. Sheppard (2001), Theoretical and empirical properties of dynamic 
conditional multivariate GARCH, NBER Working Paper 8554. 
 
Hafner C.M., D.J.C. Van Dijk and P.H. Franses (2006), Semi-parametric modelling of 
correlation dynamics, Advances in Econometrics, 59-103. 
 
Hansen B.E. (1996), Inference when a nuisance parameter is not identified under the null 
hypothesis, Econometrica 64, 413-430. 
 
Kwan W., W.K. Li and K.W. Ng (2010), A multivariate threshold varying conditional 
correlations model, Econometric Reviews 29, 20–38. 
 
Long X.D., L.J. Sun and A. Ullah (2011), Estimation of dynamic conditional 
covariance: A semiparametric multivariate model, Journal of Business Economics and 
Statistics 29, 109-125. 
 



 34

Longin F. and B. Solnik (2001), Extreme correlation and international equity markets, 
Journal of Finance 56, 649-676. 
 
Pelletier D. (2006), Regime switching for dynamic correlations, Journal of 
Econometrics 131, 445-473. 
 
Ramchand L. and R. Susmel (1998), Volatility and cross correlation across major stock 
markets, Journal of Empirical Finance 5, 397-416. 
 
Silvennoinen A. and T. Teräsvirta (2005), Multivariate autoregressive conditional 
heteroskedasticity with smooth transitions in conditional correlations, Working Paper 
Series in Economics and Finance 577, SSE/EFI. 
 
Silvennoinen A. and T. Teräsvirta (2009), Modelling multivariate conditional 
heteroskedasticity with the double smooth transition conditional correlation GARCH 
model, Journal of Financial Econometrics 7, 373-411. 
 
Tse Y.K. (2000), A test for constant correlations in a multivariate GARCH model, 
Journal of Econometrics 98, 107-127. 
 

 


	wp25-2012
	WPAslanidis and Martinez_vs7.pdf

