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Abstract

This paper provides a theoretical and empirical analysis of the relationship be-

tween airport congestion and airline network structure. We �nd that the development

of hub-and-spoke (HS) networks may have detrimental e¤ects on social welfare in

presence of airport congestion. The theoretical analysis shows that, although airline

pro�ts are typically higher under HS networks, congestion could create incentives for

airlines to adopt fully-connected (FC) networks. However, the welfare analysis leads

to the conclusion that airlines may have an ine¢ cient bias towards HS networks. In

line with the theoretical analysis, our empirical results show that network airlines

are weakly in�uenced by congestion in their choice of frequencies from/to their hub

airports. Consistently with this result, we con�rm that delays are higher in hub

airports controlling for concentration and airport size.
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1 Introduction

With the deregulation of the US air transportation sector, carriers became free to make

strategic choices concerning fares and network structure. The success of hub-and-spoke

(HS) structures in the years following the deregulation, which led to a concentration of

tra¢ c on the spoke routes, is explained by the savings from operating fewer routes and

the exploitation of economies of tra¢ c density from using larger aircraft. However, the

concentration of tra¢ c favored by HS networks has contributed to an increase in airport

congestion. In congested hubs, a high proportion of �ights are a¤ected by delays, can-

cellations and missed connections that end up a¤ecting both air travelers and airlines.

Therefore, congestion is a major concern and a relevant policy issue. A particularity of the

US market is that airport slot constraints are not widely used,1 while this is the norm in

many European large airports. Other measures addressed to overcome the problem of con-

gestion are di¢ cult to implement: investing in capacities is very expensive and congestion

pricing is complex to put into practice.

Di¤erently to network airlines (which operate HS networks), low-cost carriers operate

fully-connected (FC) networks where most air services are point-to-point. The proportion

of delayed �ights in large US concentrated airports is substantially lower when the dominant

airline is a low-cost carrier (in most cases Southwest). As an example, Table 1 shows data

on delays at the main airports of American Airlines and Southwest.2

�Insert here Table 1�

Although the share of Southwest may be as high as that of American, the proportion

of delayed �ights is substantially lower in airports dominated by Southwest. Thus, the

analysis of airline network structure is essential to understand the problem of airport

congestion.

A more comprehensive preliminary evidence on the relationship between airport con-

gestion and airline network structure is found in Fig. 1, which presents the results of an

spline regression that estimates the relationship between the variation of frequencies and

delays (in the previous year) using airport-level data, making the distinction between air-

lines operating in hub airports (i.e., airlines operating HS networks where there is a high

proportion of connecting tra¢ c) and airlines o¤ering services in non-hub airports (i.e.,

airlines operating FC networks where tra¢ c is mostly point-to-point).

�Insert here Fig. 1�
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Airlines reduce frequencies as delays increase in non-hub airports. However, the adjust-

ment of frequencies to higher delays is not clear in hub airports. Thus, this spline regression

shows that airlines operating in hub airports are less sensitive to airport congestion in their

choice of �ight frequencies.3

This paper provides a theoretical and empirical analysis of the relationship between

airport congestion and airline network structure. We show that the development of HS

networks may have detrimental e¤ects on social welfare in presence of airport congestion.

Our theoretical model compares the incentives for airlines to operate either HS or FC

networks in presence of congestion. Although airline pro�ts are typically higher under HS

networks, congestion could create incentives for airlines to adopt FC networks.4 However,

the welfare analysis leads to the conclusion that airlines may have an ine¢ cient bias towards

HS networks.

Furthermore, we use data of large US airports for the period 2005-2010 to examine how

airlines adjust frequencies to congestion both under HS and FC networks. In line with our

theoretical analysis, which predicts and ine¢ cient bias towards HS networks, our empirical

results show that network airlines are weakly in�uenced by congestion in their choice of

frequencies from/their hub airports. Consistently with this result, we also �nd that delays

are higher in hub airports controlling for concentration and airport size.

Our study brings together two strands of literature on air transportation. First, it

is related to the studies on airlines�network choice, which include Brueckner and Zhang

(2001), Pels et al. (2000), Brueckner (2004), Gillen (2006), Bilotkach (2009), and Flores-

Fillol (2009). Most of these papers focus on airlines�choice between FC and HS networks.

Our analysis extends the monopoly case (without congestion) studied in Brueckner (2004)

by examining network choice in a duopoly market with schedule competition where airport

congestion can occur.5

Second, it also contributes to the growing literature on airport congestion. The theo-

retical and empirical studies of airport congestion primarily center around the congestion

self-internalization debate. The hypothesis that airlines at concentrated airports may be

prone to internalize self-imposed congestion was proposed by Brueckner (2002). Mayer

and Sinai (2003) demonstrate that, even though delays at hub airports are longer than

at non-hub gateways, increasing airport concentration does lead to lower delays.6 Rupp

(2009) reversed Mayer and Sinai�s �ndings, using a di¤erent measure of delays. More re-

cent evidence in favor of the congestion internalization hypothesis comes from Ater (2012),
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Flores-Fillol (2010), and Bilotkach and Pai (2012). On the other hand, Daniel (1995) and

Daniel and Harback (2008), despite recognizing the potential for internalization, support

the idea that carriers behave atomistically due to the competitive pressure exerted by fringe

carriers. Brueckner and Van Dender (2008) try to reach a consensus in the internalization

debate showing that some competitive scenarios do lead to self-internalization, while others

do not. Our theoretical model complements the analysis of congestion under HS structures

in Flores-Fillol (2010) through the analysis of FC structures and the comparison of pri-

vate and social bene�ts under both network con�gurations. Beyond the internalization

debate,our empirical application focuses on how airlines adjust frequencies to congestion

under HS and FC networks.7

The rest of the paper is organized as follows. The theoretical model and the equilibrium

analysis is presented in Section 2. The welfare analysis is undertaken in Section 3, while

the empirical analysis is executed in Section 4. A brief conclusion closes the paper.

2 The model and the equilibrium analysis

In a rather simple setting, this section presents a model to characterize FC and HS net-

works, analyzes the equilibrium fares and frequencies, and compares the pro�tability of

each network structure. This model extends the monopoly case studied in Brueckner

(2004) by analyzing network choice in a duopoly market and introducing the presence of

congestion.

We assume the simplest possible network with three cities (A, B and H), two airlines

(1 and 2), and three city-pair markets (AH, BH and AB). Markets AH and BH are

served nonstop and AB can be served either directly (when airlines operate a FC network)

or indirectly via hub H (when airlines operate a HS network), as shown in Fig. 2.

�Insert here Fig. 2�

Passenger population size in each of the city-pair markets is normalized to unity, and

it is assumed that all the passengers undertake travel. Thus, we limit the e¤ect of market

power by assuming fully-served markets so that airlines exert no monopoly power over any

passenger.8 Therefore, the exercise of market power only a¤ects the division of a �xed

tra¢ c pool between the carriers through their choices of fares and frequencies.9
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2.1 Equilibrium analysis of the FC network

In a FC network, both airlines operate �ights between each pair of cities, so that nonstop

travel occurs in each city-pair market. Utility for a consumer traveling in any city-pair

market is given by c� expected schedule delay � congestion damage+ travel benefit.
Firstly, c is consumption expenditure and equals y� pi, where pi is airline i�s fare with

i = 1; 2, and y denotes income, which is assumed to be uniform across consumers without

loss of generality.

Secondly, the expected schedule delay is modeled as in Brueckner (2004) and Brueckner

and Flores-Fillol (2007). Let Z denote the time circumference of the circle and assume a

uniform distribution of consumers in terms of preferred departure time along the circle. In

this framework, the schedule delay is de�ned as the di¤erence between the preferred and

actual departure times, and the expected schedule delay of airline i equals Z=4fi, where

fi is number of (evenly spaced) �ights operated by carrier i, with i = 1; 2. Introducing a

parameter � > 0 capturing the disutility per minute of schedule delay, we get the schedule-

delay disutility �Z=4fi and, de�ning 
 � �Z=4, we obtain the �nal expression 
=fi.10

Thirdly, congestion damage captures the extra time cost per passenger due to conges-

tion and the resulting delays. As in Brueckner and Van Dender (2008) and Flores-Fillol

(2010), we collapse the peak and o¤peak periods from Brueckner�s (2002) analysis into

a single period where congestion is always present. In this setup, congestion depends on

the overall aircraft movements at each airport, which is given by 2f1 + 2f2 because each

airport is connected with the other two airports. Introducing a parameter � � 0 capturing
the disutility of congestion, congestion damage for passengers in each city-pair market is

� (4f1 + 4f2) because they experience congestion at the origin and destination airports.

Finally, travel benefit has two components, as in Brueckner and Flores-Fillol (2007):

b, equal to the gain from travel; and a, the airline brand-loyalty variable. Without brand

loyalty, the airline with the most attractive frequency/fare combination would attract

all the passengers in the market. However, in presence of brand loyalty, consumers are

presumed to have a preference for a particular carrier, which means that an airline with an

inferior frequency/airfare combination can still attract some passengers. This approach is

formalized by specifying a utility gain from using airline 1 rather than airline 2, denoted

a, and assuming that this gain is uniformly distributed over the range [��=2; �=2], so that
half the consumers prefer airline 1 (and have a > 0) and half prefer airline 2 (and have

a < 0). Therefore, a varies across consumers. Interestingly, � is a measure of (exogenous)
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product di¤erentiation in the sense that a small � indicates similar products and thus small

gain from using one airline or the other; whereas a big � allows for signi�cant utility gains

depending on passenger�s preferred carrier.

The analysis that follows is just presented for carrier 1, and the corresponding expres-

sions for carrier 2 are derived analogously. The utility of a passenger traveling with carrier

1 is

u1 = y � p1 �



f1
� � (4f1 + 4f2) + b+ a. (1)

A passenger loyal to 1 (thus with a > 0) will �y with her preferred carrier when y � p1 �

=f1 + b + a > y � p2 � 
=f2 + b, or equivalently when a > p1 � p2 + 
=f1 � 
=f2 �ba.11 Therefore, there is a minimum required brand-loyalty ba, which depends on fares and
frequencies, such that only those passengers with a > ba will undertake air travel with
airline 1. Otherwise, passengers will choose airline 2. Then, carrier 1�s tra¢ c is given by

q1 =

Z �=2

ba
1
�
da where 1=� gives the density of a.

Carrying out the integration, we obtain the following expression

q1 =
1

2
� 1

�
(p1 � p2 + 
=f1 � 
=f2), (2)

and carrier 2�s demand function is identical after interchanging subscripts.

Quite interestingly, the demand function is independent of passengers�congestion dam-

age because this term cancels out when comparing utilities. As a consequence, airlines will

not take into account the congestion they impose on passengers.

The assumptions on airline costs are the following. Without congestion, as in Brueckner

and Flores-Fillol (2007), a �ight�s operating cost on a certain route is given by � + �s1,

where s1 stands for carrier 1�s aircraft size (i.e., the number of seats), � is a �xed cost

independent of aircraft size, and � is the marginal cost per seat. Under this speci�cation,

cost per seat realistically falls with aircraft size, capturing the presence of economies of

tra¢ c density (i.e., economies from operating a larger aircraft) that are unequivocal in the

airline industry.

Airline�s �ight frequency (f1), aircraft size (s1) and tra¢ c are all related by the equation

s1 = q1=f1, which says that aircraft size equals airline�s total tra¢ c on a route divided by

frequency. Therefore, we are assuming that all seats are �lled, so that load factor equals

100%.12 Note that s1 is an airline choice variable, which is appropriate given that the

demands of airlines ultimately determine the nature of aircraft supplied by manufacturers.

While s1 is thus endogenous, its value is determined residually once q1 and f1 are known.
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Now consider airline congestion costs. Note that the level of congestion on a route is

caused by aircraft movements both at the origin and destination airports. As a conse-

quence, airline�s congestion cost on a route is given by � (4f1 + 4f2) with � � 0, and a

�ight�s operating cost on a route is � + �s1 + � (4f1 + 4f2).

Therefore, carrier 1�s total cost from operating on a route is f1 [� + �s1 + � (3f1 + 3f2)]

or equivalently

c1 = �f1 + �q1 + f1� (4f1 + 4f2) . (3)

Thus, airline 1�s pro�t is �1 = 3 (p1q1 � c1), and it can be rewritten using Eq. (3) as

�1 = 3

8<:(p1 � �) q1| {z }
Margin

� f1 [� + 4� (f1 + f2)]| {z }
Congestion and �xed cost

9=; , (4)

indicating that variable costs are independent of the number of �ights. The corresponding

expression for carrier 2 is identical to Eq. (4) after interchanging subscripts.13

Airline 1 chooses p1 and f1 to maximize Eq. (4), viewing p2 and f2 as parametric. After

plugging Eq. (2) into Eq. (4) and maximizing, the �rst-order conditions are

@�1
@p1

=
1

2
� 1

�
(2p1 � p2 + 
=f1 � 
=f2 � �) = 0, (5)

@�1
@f1

=



�f 21
(p1 � �)� 4� (2f1 + f2)� � = 0. (6)

Since carriers are symmetric, the symmetric equilibrium is the natural focus, and this

equilibrium is found by setting p1 = p2 = p and f1 = f2 = f .14 In this case, from Eq. (5)

we obtain

p = � + �=2, (7)

revealing that the airfare equals the marginal cost of a seat (�) plus a markup that depends

on the degree of product di¤erentiation (�=2). As brand di¤erentiation disappears, the fare

converges to the marginal cost, recovering the Bertrand-equilibrium outcome.

Plugging Eq. (7) into Eq. (6), we get the following equilibrium condition for �ight

frequency

12�f 3| {z }
A(f)

=



2
� �f2| {z }
B(f)

. (8)
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As in Flores-Fillol (2010), the equilibrium frequency is found graphically, as shown in

Fig. 3, where we observe that the f solution occurs at the intersection between a cubic

expression (A (f)) and a quadratic expression (B (f)).

�Insert here Fig. 3�

Looking at Eq. (8) along with Fig. 3, it is easy to carry out a comparative-static

analysis for all the parameters in the model. An increase in carriers�congestion cost (�)

raises the height of the cubic curve, leading to a decrease in f . The reduction of the

equilibrium �ight frequency is a natural reaction to more damaging congestion. When the

disutility of schedule delay (
) rises, the intercept of the quadratic expression increases,

leading to a higher f . Quite intuitively, carriers respond to a rise in the disutility of

schedule delay by increasing �ight frequency. An increase in the aircraft �xed cost (�)

leads to a higher f 2-coe¢ cient and, as a consequence, B (f) becomes more concave and f

decreases. As expected, equilibrium frequency falls when the cost of frequency rises.

Finally, looking at travel volumes, we observe that q1 = 1=2 so that each airline carries

half of the demand in every city-pair market.

2.2 Equilibrium analysis of the HS network

The analysis of the HS case is analogous to the base case in Flores-Fillol (2010). The main

di¤erence with respect to the FC case is that airlines operate �ights on only two routes

(AH and BH) since route AB is eliminated. Therefore, passengers traveling between cities

A and B must make a connecting trip, changing planes at the hub H.

Since congestion depends on the overall aircraft movements at each airport, we need to

distinguish between the spoke airports (A and B) and the hub airport (H). On the one

hand, the spoke airports only serve one route that connects with the hub, and thus the

number of aircraft movements at these two airports is the sum of both carriers�frequency

on the mentioned route, i.e., fh1 + f
h
2 , where superscript h denotes HS network. On the

other hand, the number of aircraft movements at the hub is 2fh1 + 2f
h
2 because the hub

connects with the two spoke airports, re�ecting that congestion is typically a hub-related

phenomenon. Thus, congestion damage for local passengers equals �
�
3fh1 + 3f

h
2

�
since

they experience congestion at one spoke and at the hub, whereas congestion damage for

connecting passengers is �
�
4fh1 + 4f

h
2

�
because they experience congestion at the three

airports.
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Travel bene�t and expected schedule delay are modeled as in the FC case. Finally,

consumption expenditure equals y � phi for local passengers and y � P hi for connecting
passengers, where phi and P

h
i are airline i�s local and connecting fares respectively with

i = 1; 2. Thus, the utility of a local passenger traveling with carrier 1 is

uh1 = y � ph1 �



fh1
� �

�
3fh1 + 3f

h
2

�
+ b+ a, (9)

and, in a similar way, the utility of a connecting passenger traveling with carrier 1 is

Uh1 = y � P h1 �



fh1
� �

�
4fh1 + 4f

h
2

�
+ b� �+ a, (10)

where � is an extra travel cost term that measures layover time, as in Brueckner (2004).

We assume that both airlines generate the same layover time, which enters as a negative

shift factor in the utility of connecting passengers since they dislike waiting.

Therefore, we can compute the demand functions as in the FC case, which are given by

qh1 =
1

2
� 1

�
(ph1 � ph2 + 
=fh1 � 
=fh2 ), (11)

and

Qh1 =
1

2
� 1

�
(P h1 � P h2 + 
=fh1 � 
=fh2 ), (12)

where capital letters denote tra¢ c and fares in market AB. Carrier 2�s demand functions

are identical after interchanging subscripts.

Shifting attention to cost structure, aircraft size is now sh1 =
�
qh1 +Q

h
1

�
=fh1 , because

we need to take into account airline�s total tra¢ c on a route (i.e., local + connecting

tra¢ c). Since congestion on a route is caused by aircraft movements both at the hub

airport (2fh1 + 2f
h
2 ) and at the spoke airport (f

h
1 + f

h
2 ), airline�s congestion cost on a

route is given by �
�
3fh1 + 3f

h
2

�
with � � 0, and a �ight�s operating cost on a route is

� + �sh1 + �
�
3fh1 + 3f

h
2

�
. Therefore, carrier 1�s total cost from operating on a route is

ch1 = �f
h
1 + �

�
qh1 +Q

h
1

�
+ f1�

�
3fh1 + 3f

h
2

�
. (13)

Thus, airline 1�s pro�t is �h1 = 2p
h
1q
h
1 + P

h
1Q

h
1 � 2ch1 , and it can be rewritten using Eq.

(13) as

�h1 = 2
�
ph1 � �

�
qh1| {z }

Local margin

+
�
P h1 � 2�

�
Qh1| {z }

Connecting margin

� 2fh1
�
� + 3�

�
fh1 + f

h
2

��| {z }
Congestion and �xed cost

. (14)
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Now airline 1 chooses ph1 , P
h
1 , and f

h
1 to maximize Eq. (14), viewing p

h
2 , P

h
2 , and f

h
2

as parametric. After plugging Eqs. (11) and (12) into Eq. (14) and maximizing, the

�rst-order conditions are

@�h1
@ph1

=
1

2
� 1

�

�
2ph1 � ph2 + 
=fh1 � 
=fh2 � �

�
= 0, (15)

@�h1
@P h1

=
1

2
� 1

�

�
2P h1 � P h2 + 
=fh1 � 
=fh2 � 2�

�
= 0, (16)

@�h1
@fh1

=



�
�
fh1
�2 �2ph1 + P h1 � 4��� 6� �2fh1 + fh2 �� 2� = 0. (17)

Looking at the symmetric equilibrium, i.e., setting ph1 = p
h
2 = p

h, P h1 = P
h
2 = P

h, and

fh1 = f
h
2 = f

h,15 Eqs. (15) and (16) yield

ph = � + �=2 and P h = 2� + �=2. (18)

The local airfare is as the FC equilibrium fare (see Eq. (7)), and the connecting fare

is similar but takes into account the fact that two routes are needed to serve this market.

The same results are obtained in Flores-Fillol (2009 and 2010) in a similar setup.

It is important to note that, while fares ph1 and P
h
1 are set independently, they must

satisfy non-arbitrage conditions. These conditions are of two types. The �rst type is

written P h1 > ph1 and prevents a local passenger from purchasing an interline ticket (i.e.,

an AB ticket) and then get o¤ at the hub airport. The second type is given by P h1 < 2p
h
1

and ensures that an AB passenger will not be able to travel cheaper by purchasing two

separate tickets (on routesAH andBH). The ful�llment of these conditions can be trivially

observed from inspection of Eq. (18).

Plugging the equilibrium values in Eq. (18) into Eq. (17), we get the following equi-

librium condition for �ight frequency

6�
�
fh
�3| {z }

Ah(f)

=



2
� 2�
3

�
fh
�2| {z }

Bh(f)

. (19)

We have again a cubic expression (Ah (f)) and a quadratic expression (Bh (f)), and

thus the equilibrium frequency fh is generated by a diagram analogous to Fig. 3. The

comparative-static analysis is as in the FC case and each airline carries half of the demand

in every city-pair market, i.e., qh1 = Q
h
1 = 1=2. Which is really interesting is to compare

FC and HS network con�gurations, and to analyze the choice of network type.

9



2.3 Comparison of equilibria and airline network choice

From Eqs. (8) and (19), it is clear that both the f 2-coe¢ cient of the quadratic curve and

the height of the cubic curve in the positive quadrant are greater in the FC case, as shown

in Fig. 4.

�Insert here Fig. 4�

A (f) is higher than Ah (f) in the positive quadrant and B (f) is more concave than

Bh (f) (and both of them have the same intercept 
=2). Therefore, the result in the

following proposition can be established.

Proposition 1 Flight frequency is higher in the HS network than in the FC network, with

fh > f .

Frequencies are higher under HS networks because there is more tra¢ c on each of the

two active routes AH and BH. This �nding extends the duopoly result reported in Flores-

Fillol (2009) to a setting with airport congestion and con�rms the link between frequency

and network structure. After the deregulation, with airlines free to compete on airfares,

softer competition on frequency was expected but exactly the opposite occurred on many

routes, due to the the adoption of HS networks and the concentration of tra¢ c on the

spoke routes.

Since carriers are symmetric, �ight frequency (which di¤ers between FC and HS con-

�gurations) does not a¤ect the equilibrium airfare in markets AH and BH and,16 as a

consequence, p = ph. More interestingly, airlines charge higher airfares in market AB un-

der HS con�gurations (i.e., P h > p), which is explained by the use of two routes to serve

this connecting market.

In equilibrium, the total number of �ights operated by an airline under FC networks is

given by 3f since three routes are active. Analogously, the total number of �ights operated

by an airline under HS networks is 2fh.

Assumption 1 We assume that HS operations reduce the total number of �ights, i.e.,

2fh < 3f .

As pointed out in Brueckner (2004), HS networks are meant to save airline costs through

the operation of fewer routes and, as a consequence, this seems a natural expectation. Note

that the equilibrium aircraft size for an airline is s = q1=f = 1= (2f) under FC networks,

10



and sh =
�
qh1 +Q

h
1

�
=fh1 = 1=f

h in the case of HS networks. Therefore, under Assumption

1, s < sh is observed, an implication of the model that appears to be realistic and that

is in line with Brueckner (2004) and Flores-Fillol (2009). HS con�gurations endow the

passengers with a higher �ight frequency and allow airlines to make cost savings coming

from the presence of economies of tra¢ c density because aircraft size is larger and cost per

seat decreases with aircraft size (as it has been argued before).

To study airlines�network choice, we need to compare equilibrium pro�ts under both

network structures. Computing this pro�t di¤erential is not trivial because there is not an

equilibrium closed-form solution for �ight frequency under either network con�guration.

However, this comparison can be done recasting the optimization problem as a two-stage

problem, where fares are chosen �rst conditional on �ight frequency, and �ight frequency

is then chosen in a second stage. Substituting Eq. (7) into Eq. (4), after simplifying and

applying symmetry, we obtain

�1 (f) =
3�

4
� 3�f � 24�f 2, (20)

where the 3 factor in the �rst term of the expression denotes the number of city-pair

markets served by the airline; the 3 factor in the second term indicates the number of

routes in which the airline operates; and the 24 factor in the third term shows that each

of the 3 routes operated by the airline is a¤ected by 8 aircraft movements (i.e., 4 aircraft

movements of each airline).

Similarly, substituting Eq. (18) into Eq. (14), after simplifying and applying symmetry,

we obtain

�h1
�
fh
�
=
3�

4
� 2�fh � 12�

�
fh
�2
, (21)

where the 3 and the 2 factors in the �rst and the second terms of the expression denote that

the airline serves 3 city-pair markets but only 2 routes; and the 12 factor in the third term

shows that each of the 2 routes operated by an airline is a¤ected by 6 aircraft movements

(i.e., 3 aircraft movements of each airline: 2 at the hub airport and 1 at the spoke airport).

Therefore, the HS-FC pro�t di¤erential � = �h1
�
fh
�
� �1 (f) can be easily computed

from Eqs. (20) and (21) and is given by

� = �
�
3f � 2fh

�
+ 12�

h
2f 2 �

�
fh
�2i
, (22)

where the �rst term, which is positive, captures the aircraft �xed cost advantage of HS

networks from operating only 2 routes; and the second term, which can be either positive or
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negative, captures the congestion cost advantage that can favor either network structure.

The following proposition discusses the sign of �.

Proposition 2 In absence of congestion (i.e., � = � = 0), airline pro�ts are higher under

HS networks (i.e., � > 0). In presence of congestion, airline pro�ts are higher under HS

networks (i.e., � > 0) when fh 6 21=2f = 1:4f , whereas the sign of the pro�t di¤erential
is ambiguous for fh > 21=2f .

From Proposition 1 and Assumption 1, we know that f < fh < 3f=2. Although FC

networks imply twice the aircraft movements of HS networks, the congestion cost can be

higher under HS con�gurations when fh approaches its upper bound. The corollary that

follows is directly derived from Proposition 2.

Corollary 1 Congestion could create incentives for airlines to adopt FC network con�gu-

rations.

This result could explain the initial success of HS networks after the deregulation, and

how congestion could act as a brake on hubbing strategies.17

3 Social optimum and congestion tolls

Having explained the properties of the equilibrium, we now shift our attention to the

welfare analysis where a social planner dictates �ight frequency. Then we can derive the

congestion tolls that are required to achieve e¢ ciency. Finally, we will compare social

welfare under FC and HS structures and we will assess the equilibrium network choice,

which is the ultimate purpose of this section.

3.1 Welfare analysis of the FC network

Since the fare paid is just a transfer between consumers and airlines, and markets are fully

served (i.e., total tra¢ c is �xed), the planner�s goal is to minimize costs, which are given

by

3

8>>><>>>:
1

2

�



f1
+



f2

�
| {z }
Schedule delay cost

+ 4� (f1 + f2)| {z }
Congestion costs for passengers

+ (f1 + f2) [� + �(4f1 + 4f2)]| {z }
Fixed and congestion costs for airlines

+ �|{z}
Seat cost

9>>>=>>>; .
(23)
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To interpret Eq. (23), recall that total tra¢ c in each market (i.e., markets AH, BH

and AB) is equal to unity. On the passengers side, the schedule delay cost caused by

each airline acquires a factor 3=2, because there are three markets and half of the unitary

population in each market is loyal to each airline. The congestion cost for passengers has

a factor 12 that accounts for all aircraft movements in the three markets (4 corresponding

to each market).

On the airlines side, each carrier bears the �xed cost and the congestion cost of operating

three routes (3�fi and 3fi� (4f1 + 4f2) with i = 1; 2), and the seat cost of serving three

city-pair markets.

The condition for optimal choice of f1 is




2f 21
� � � 4�� 8� (f1 + f2) = 0, (24)

and, after applying symmetry, we obtain the following social-optimum condition

16�f 3| {z }
C(f)

=



2
� (� + 4�) f 2| {z }

D(f)

. (25)

Eqs. (8) and (25) are easily compared. Note that the social-optimum cubic function is

higher than the equilibrium one (i.e., A (f) < C (f) for f > 0); and that the f 2-coe¢ cient

in the quadratic function is larger in the social-optimum condition for � > 0, as depicted

in Fig. 5. Superscript SO denotes socially-optimal values.

�Insert here Fig. 5�

Therefore, equilibrium frequencies are excessive compared with the optimum (i.e., f >

fSO). On the other hand, we also observe that the equilibrium aircraft size is ine¢ ciently

small (i.e., s < sSO) since markets are fully served and all seats are �lled (recall that

s1 = q1=f1). Interestingly, in absence of congestion (i.e., � = � = 0) the ine¢ ciency

disappears and f = fSO =
�


2�

�1=2
and s = sSO =

�
�
2


�1=2
.

Proposition 3 Under congested FC networks, there is an overprovision of �ight frequency

and aircraft size is suboptimal. In absence of congestion, both frequency and aircraft size

are e¢ cient.

As pointed out in Flores-Fillol (2010), when there is congestion airlines operate too

many �ights using overly small aircraft, and a socially preferred outcome would require

13



less frequent �ights and larger aircraft. In fact, the source of the ine¢ cient choice of

�ight frequency can be seen by comparing the �rst-order conditions corresponding to the

equilibrium analysis and the social-optimum analysis. The marginal social congestion

cost from operating an extra �ight on each route 4� + 16�f (after imposing symmetry

in Eq. (24)); and the marginal congestion costs that are taken into account by airlines

are 12�f (after imposing symmetry in Eq. (6)). Therefore, the di¤erence between these

two expressions is 4� + 4�f , which captures the part of social congestion costs that are

not internalized by each airline. More precisely, 4�f represents the congestion in�icted on

the other carrier, and 4� is the congestion experienced by all passengers (including the

carrier�s own passengers) on each of the three routes.

Thus, the per-�ight congestion toll that is needed to reach the social optimum is 4�+4�f

evaluated at the social optimum, i.e.,

T = 4�+ 4�fSO. (26)

Note that the marginal congestion damage (MCD) from an extra �ight on a route is

given by 4�+4�f1+4�f2 (see Eq. (23)); and thus each carrier is charged a toll equal to the

marginal congestion damage evaluated at the social optimum (MCDSO) after subtracting

carrier�s own internalized congestion. The ine¢ ciency in �ight frequency (and thus in

aircraft size) arises because airlines only internalize their own congestion, neglecting the

higher operating costs imposed on other airlines as well as the congestion costs imposed

on all passengers, including their own.

The fact that airlines fail to internalize the congestion in�icted on other carriers is

well documented in the literature,18 and the failure to internalize passenger congestion is

a contribution of Flores-Fillol (2010).19

3.2 Welfare analysis of the HS network

Proceeding in the same way, the cost expression under HS networks is

3

2

�



fh1
+



fh2

�
| {z }
Schedule delay cost

+ 10�
�
fh1 + f

h
2

�| {z }
Congestion costs for passengers

+ �|{z}
Layover time cost

+2(fh1 + f
h
2 )
�
� + �(3fh1 + 3f

h
2 )
�| {z }

Fixed and congestion costs for airlines

+ 4�|{z}
Seat cost

.

(27)

The congestion cost for passengers has now a factor 10 that accounts for all aircraft

movements in the three markets (3 corresponding to each local market, and 4 corresponding
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to market AB), and there is also the layover time cost borne by connecting passengers.

Each carrier bears the �xed cost and the congestion cost of operating two routes (2�fhi
and 2fhi �

�
3fh1 + 3f

h
2

�
with i = 1; 2). Finally, the seat cost acquires a factor 4 because it

incorporates the cost of serving all local passengers on markets AH and BH (who make

use of one route) and all connecting passengers (who make use of two routes).

The condition for optimal choice of fh1 is

3


2
�
fh1
�2 � 2� � 10�� 12� �fh1 + fh2 � = 0, (28)

and, after applying symmetry, we obtain the following social-optimum condition

8�
�
fh
�3| {z }

Ch(f)

=



2
� 2 (� + 5�)

3

�
fh
�2| {z }

Dh(f)

. (29)

Again, the comparison between the expressions in Eqs. (19) and (29) can be represented

by a diagram analogous to the one in Fig. 5, where we observe that equilibrium frequencies

are excessive (i.e., f > fSO) and aircraft size is ine¢ ciently small (i.e., s < sSO).20 As in the

previous case, in absence of congestion, the ine¢ ciency disappears and f = fSO =
�
3

4�

�1=2
and s = sSO =

�
4�
3


�1=2
.21

Proposition 4 Under congested HS networks, there is an overprovision of �ight frequency

and aircraft size is suboptimal. In absence of congestion, both frequency and aircraft size

are e¢ cient.

The marginal social congestion cost from operating an extra �ight on both of the

segments equals 10� + 24�fh (after imposing symmetry in Eq. (28)); and the marginal

congestion costs that are taken into account by airlines are 18�fh (after imposing symmetry

in Eq. (17)). Therefore, the di¤erence between these two expressions is 10�+6�fh, which

captures the part of social congestion costs that are not internalized by each airline. More

precisely, 6�fh represents the congestion in�icted on the other carrier on both routes, and

10� is the congestion experienced by all passengers (including the carrier�s own passengers).

In this situation, taking into account that there are two routes in the network, the toll

per �ight will be exactly half of the expression 10�+6�f evaluated at the social optimum,

i.e.,

T h = 5�+ 3�fhSO. (30)
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Note that the marginal congestion damage (MCD) from an extra �ight on a route is

given by 5�+3�f1+3�f2 (see Eq. (27)); and thus each carrier is charged a toll equal to the

marginal congestion damage evaluated at the social optimum (MCDSO) after subtracting

carrier�s own internalized congestion. The ine¢ ciency in �ight frequency (and thus in

aircraft size) arises because airlines only internalize their own congestion, neglecting the

higher operating costs imposed on other airlines as well as the congestion costs imposed

on all passengers, including their own.

Brueckner (2004) studies network choice and network e¢ ciency in the monopoly case

(without congestion) and concludes that frequencies are suboptimal (i.e., underprovision of

�ight frequencies). He recognizes that this result is closely linked to the assumed monopoly

market structure and suggests that an oligopoly version of the model with schedule com-

petition could lead to the opposite outcome. This is precisely what we �nd in our analysis

(and is summarized in Propositions 3 and 4).

Looking at Eqs. (26) and (30), we observe that congestion under HS networks is

unequivocally worse for passengers (�rst term of the expressions), and that it is also worse

for airlines for 3fhSO > 4fSO (second term of the expressions).22 Thus, when the latter

inequality holds, we can conclude that the overall congestion damage is higher under HS

networks, and thus T h > T . When congestion is worse for airlines under FC networks, then

3fhSO < 4fSO. In this case, T h > T requires � > �
�
4fSO � 3fhSO

�
, meaning that the

overall congestion damage is higher under HS con�gurations when the advantage for airlines

does not compensate for the disadvantage for passengers. This argument is developed in

the next subsection that focuses on network choice e¢ ciency.

3.3 Network e¢ ciency

From the aforementioned analysis, we conclude that the presence of congestion generates

excessive frequency, independently of the network type. When there is congestion, airlines

operate too many �ights using overly small aircraft (regional jets or even turboprops), and

less frequent �ights and larger aircraft would be socially preferred.

A �nal exercise is to compare the equilibrium and the socially-optimal network choices.

To carry out this exercise, we need to compute a HS-FC welfare di¤erential � =W h�W ,
which is tantamount to computing Eq. (27) � Eq. (23) and yields

� = 2� + k, (31)
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with k = 3

�
1=f � 1=fh

�
� � � � + 4�

�
6f � 5fh

�
. The �rst term in k is positive and

shows the advantage of HS networks in terms of schedule delay given that it yields a larger

�ight frequency. However, k also comprises two negative terms, which are cost elements

related to HS connecting passengers: an extra seat cost because these passengers make

use of two routes (whereas AB passengers just make use of one route under FC networks),

and a layover time cost since these passengers change planes at the hub H. Finally, the

last term of the expression, which captures the di¤erent impact of HS and FC networks

in passengers congestion cost, can be either positive or negative depending on the relative

value of f and fh.

With k = 0, the sign of � is the same as the sign of� and therefore the airlines�preferred

network con�guration coincides with the socially optimal choice. However, with k 6= 0,

airlines�network choices may be ine¢ cient. In absence of congestion (i.e., � = � = 0) then

� > 0, as pointed out in Proposition 2. In this case, a con�ict between private and public

interests can only arise when k < 0, meaning that the extra seat and layover time costs

associated to HS structures are important enough as compared to the HS schedule delay

advantage, i.e., � + � > 3

�
1=f � 1=fh

�
. In presence of airport congestion, studying the

sign of � requires to analyze simultaneously the sign of � and k.

If fh 6 6f=5 = 1:2f then 4�
�
6f � 5fh

�
> 0 and � > 0.23 In this case, there can be a

private-public con�ict when k < 0, i.e., in presence of important extra seat and layover time

costs associated to HS structures, as compared to the HS advantage in terms of schedule

delay and passengers congestion cost, i.e., � + � > 3

�
1=f � 1=fh

�
+ 4�

�
6f � 5fh

�
.

When fh 2 (1:2f; 1:4f ] then 4�
�
6f � 5fh

�
< 0 and � > 0. In this case, there can

be a private-public con�ict when k < 0, i.e., in presence of important extra seat, layover

time, and passengers congestion costs associated to HS structures, as compared to the HS

advantage in terms of schedule delay, i.e., � + �� 4�
�
6f � 5fh

�
> 3


�
1=f � 1=fh

�
.

The di¤erence between these two cases is found on the e¤ect of passengers�congestion

disutility: it is larger under FC networks for fh 6 1:2f , whereas it becomes larger under HS
networks as fh exceeds this threshold value because there is an increase in the probability

of �ight delays, cancellations, and missed connections in the hub airport.

Finally, if fh > 1:4f then 4�
�
6f � 5fh

�
< 0 still holds but the sign of � is ambiguous.

Thus, airlines network choice may exhibit an ine¢ cient bias either toward the HS network

or toward the FC network. In a in a highly congested environment where both airlines�

and passengers�marginal congestion damage (� and �) are large, then � < 0 and k < 0, so

17



that there is no private-public con�ict and the FC is preferred. However, if airlines��xed

cost (�) is su¢ ciently high as compared to airlines�congestion damage (�), then � > 0

and k < 0 could be observed, yielding an airlines�ine¢ cient bias toward HS networks. The

proposition that follows summarizes these results.

Proposition 5 In absence of congestion, airlines network choice may exhibit an ine¢ cient

bias toward the HS network when the extra seat and layover time costs associated to HS

structures overcome to the advantage in terms of schedule delay. In presence of congestion,

this result is reinforced for fh > 1:2f (requiring a high airline �xed cost when fh > 1:4f)

and it also remains true for fh 6 1:2f when passengers� congestion damage is not very

high.

Therefore, airport congestion can yield an ine¢ cient outcome where airlines decide to

adopt HS network con�gurations, whereas the optimal social network would recommend

a FC structure. This result extends and complements the monopoly result in Brueckner

(2004), which also �nds an ine¢ cient bias toward the HS network for fh < 3f=2. The

section that follows tries to analyze empirically these results.

4 An empirical application

The equilibrium analysis in Section 2 shows that airlines may prefer to develop HS networks

because of the exploitation of economies of tra¢ c density, even if this comes at the expense

of higher congestion costs both for passengers and airlines. The welfare analysis in Section

3 leads to the conclusion that there is an overprovision of �ight frequency under HS and

FC networks in presence of congestion, and airlines may have an ine¢ cient bias towards

HS con�gurations. In this section, we want to examine empirically (i) how airlines adjust

frequencies to congestion both under HS and FC networks, and (ii) whether delays are

higher in airports dominated by network airlines (i.e., airlines providing services in HS

con�gurations).

The results of the empirical analysis are consistent with what it is found in the theo-

retical model: (i) airlines react less to congestion when they operate HS con�gurations (as

compared to FC networks), and (ii) delays are higher in airports dominated by network

airlines (controlling for airport size and concentration level).
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We have data of the 51 largest US airports during the period 2005-2010, which include

the most congested airports in the country. Airline frequencies are expected to be high on

routes that have one of these airports as an endpoint. Our analysis assumes that network

airlines operate in a HS manner at their hub airports, while the rest of airlines provide

point-to-point connections.24 Data on airline frequencies and �ight shares at the airport

level have been obtained from RDC Aviation (Capstats statistics). Since we focus on US

domestic tra¢ c, intercontinental �ights are excluded from the analysis.

Network airlines are understood to be those carriers that belonged to an international

alliance (i.e., Oneworld, Star Alliance, and SkyTeam) in the considered period, i.e., Amer-

ican Airlines, Continental, Delta, Northwest, United, and US Airways. Today, the amount

of connecting tra¢ c that can be channeled by an airline not involved in an international al-

liance is necessarily modest. We consider the following hub airports: Dallas (DFW), Miami

(MIA), and Chicago (ORD) for American Airlines; Cleveland (CLE), Houston (IAH), and

New York (EWR) for Continental; Atlanta (ATL), Cincinnati (CVG), New York (JFK),

and Salt Lake City (SLC) for Delta; Detroit (DTW), Memphis (MEM), and Minneapolis

(MSP) for Northwest; Chicago (ORD), Denver (DEN), San Francisco (SFO), and Wash-

ington Dulles (IAD) for United; and Charlotte (CLT), Philadelphia (PHX), and Phoenix

(PHX) for US Airways.

Although Southwest passengers could take advantage of some connecting �ights, its

network can still be considered as FC. Southwest only uses one type of plane, it does not

have regional subsidiaries to feed its main airports, and �ights schedules are not clustered

in coordinated banks of arrivals and departures. In this vein, Boguslaski et al. (2004) show

that Southwest�s bulk of tra¢ c is found on dense point-to-point routes.

We measure congestion at the airport level. We de�ne the levels of congestion as the

percentage of originating �ights that have been delayed more than �fteen minutes in a given

airport. Data of delays have been obtained from the US Department of Transportation.25

Table 2 shows some features of the airports included in our sample.

�Insert here Table 2�

Regarding hub airports, the share of the dominant airline in terms of total airport de-

partures is normally above 60%, except for some cases (New York (JFK), Chicago (ORD),

and Phoenix (PHX)) where two airlines have a relatively large share. In the considered

period, the percentage of delayed �ights in hub airports is well above 20%, and it is close
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to 30% in the more congested airports (New York (EWR and JFK), Chicago (ORD), and

Philadelphia (PHL)). Salt Lake City (SLC) and Phoenix (PHX) are the only hub airports

having a percentage of delayed �ights slightly below 20%.

A high number of non-hub airports are dominated by Southwest. In some of these air-

ports, the share of Southwest is above 75%, like Dallas (DAL), Houston (HOU), Chicago

(MDW), and Oakland (OAK). Thus, the levels of concentration in non-hub airports domi-

nated by Southwest may also be very high. The percentage of delayed �ights in Southwest-

dominated airports is usually above 20%, although it seems that the levels of congestion

are generally lower than in hub airports. The non-hub airports where Southwest is not the

dominant airline generally show low concentration and congestion levels. However, New

York (LGA), which is a slot constrained airport, is also very congested.

4.1 The relationship between frequencies and delays

The spline regression displayed in Fig, 1 already shows some preliminary evidence (with-

out any restriction) on the relationship between airport congestion and airline network

structure. It suggests that airlines operating in hub airports are less sensitive to airport

congestion in their choice of �ight frequencies. However, we should distinguish the di¤erent

airlines operating at each airport and control for demand to come to a de�nite conclusion.

Thus, we estimate the following equation for the airline i at airport a from urban area u

Freqi;a;t = �0 + �1Popu;t�1 + �2GDPpcu;t�1 + �3Delaysa;t�1 + �4D
hub
i;a + �5D

hub
i;a xDelaysa;t�1

+�6D
2006
t + �7D

2007
t + �8D

2008
t + �9D

2009
t + �10D

2010
t + ".

(32)

The dependent variable (Freqi;a;t) is the total number of annual �ights that each airline

o¤ers in the corresponding airport. Data of the explanatory variables are for the previous

year because airline frequencies at the airport level in period t should be in�uenced by

airport and airline features in period t � 1. Among the explanatory variables, we include
variables related to local demand: population (Popu;t�1), GDP per capita (GDPpcu;t�1),

and time dummies for each year of the considered period, being 2005 the excluded year.

Data on population and GDP per capita, which has been obtained from the US census,

refer to the Metropolitan Statistical Area (MSA) where the airport is located.

We can expect a positive sign of the coe¢ cients associated to the population and in-

come variables. Airlines may have incentives to increase the number of �ights on routes

departing from airports located in areas with a higher local demand. Thus, demand of
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airline services should be higher in airports located in more populated and richer urban

areas. Furthermore, the economic recession shows its �rst e¤ects on demand for air trans-

portation in 2008, although it must be taken into account that airlines schedule frequencies

some months in advance. Thus, the year dummies may identify the impact of the economic

recession on the demand and, hence, on airline frequencies.

Along with variables related to local demand, we consider a measure of airport con-

gestion (Delaysa;t�1), which is constructed as the percentage of total �ights in the air-

port with a delay exceeding �fteen minutes. Furthermore, we consider a dummy variable

(Dhub
i;a ) that takes the value one for network airlines operating in their hub airports and

zero otherwise. Finally, we include a variable that results from the interaction between the

dummy variable for network airlines operating in their hubs and the measure of congestion

(Dhub
i;a xDelaysa;t�1).

Controlling for local demand, frequencies of network airlines in their hub airports (i.e.,

airlines operating HS networks) should be higher than frequencies of other airlines in

those hub airports and than frequencies of any airline operating in non-hub airports (i.e.,

airlines operating FC networks). The reason is the exploitation of connecting tra¢ c, which

is independent from local demand. Thus, we expect a positive sign in the coe¢ cient

associated to Dhub
i;a .

The relationship between frequencies and delays is determined by the coe¢ cient asso-

ciated to the delays variable (�3). Furthermore, the slope of the relationship frequencies-

delays for network airlines operating in their hubs (i.e., airlines operating HS networks)

will also be in�uenced by the coe¢ cient associated to the interaction variable between

delays and the dummy for network airlines at hub airports (�5). Overall, airline frequen-

cies should fall when delays rise because of the costs associated to congestion. Hence, we

expect �3 < 0. However, if network airlines at their hubs react less to delays than the rest

of airlines, we should expect �5 > 0. This result would be consistent with the theoretical

model where we �nd an ine¢ cient bias towards HS networks in presence of congestion.

The estimation is made using Ordinary Least Squares (OLS) and airport �xed e¤ects

(within estimator) for di¤erent subsamples.26 An advantage of the �xed-e¤ects model is

that it allows controlling for any omitted variable, which is correlated with the variables of

interest and does not change over time. However, a shortcoming of the �xed e¤ects model

is that it may be less informative than other estimation techniques because the within

variation of data may be low and time-invariant variables are not identi�ed. This implies
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that the dummy for hub airports and its interaction with the delays variable, which are

two important variables in our analysis, must be excluded from the regression.

The OLS estimation of Eq. (32) is made for the full sample and for a subsample that

just considers concentrated airports to take into account the internalization hypothesis.

According to this hypothesis, airlines only internalize their own congestion, neglecting the

higher operating costs imposed on other airlines as well as the congestion costs imposed

on all passengers. Therefore, delays should have a higher impact on frequencies in more

concentrated airports (regardless of the network con�guration they operate) because the

dominating airline should respond to the congestion costs generated by its own �ights.

The estimation of Eq. (32) with airport �xed e¤ects is made for a subsample that con-

siders hub airports and another one that considers non-hub airports.27 If airlines operating

under HS networks react less to congestion than airlines operating FC structures, then the

delays variable should have a stronger (negative) in�uence on frequencies in the subsample

that considers non-hub airports.

Standard errors are robust to heterocedasticity and are clustered by time to account for

any problem of serial autocorrelation. Since there could be a simultaneous determination

of frequencies and delays, we deal with this potential endogeneity bias by using the �rst

lag of the delays variable. Delays at the airport in period t� 1 should not be conditioned
upon frequencies in period t. Note also that the frequency variable is at the airline-airport

level, while the delays variable is at the airport level.

Another econometric issue that must be mentioned is the high correlation between

the variables Dhub
i;a and Dhub

i;a xDelaysa;t�1, which may pose a multicollinearity problem

that could distort the individual identi�cation of these variables. However, additional

regressions excluding either of the two variables show that the sign and the statistical

signi�cance of both variables is not altered.28

�Insert here Table 3�

Table 3 depicts some descriptive statistics of the variables used in the empirical analysis.

From this table, it is clear that congestion is a general problem in the US largest airports

since the mean percentage of delayed �ights is about 23%. However, there is a wide

dispersion across the airports of the sample because the minimum value is 13% and the

maximum is about 38%. The rest of variables also show a high enough variability to

provide robust estimations. Note that we consider as concentrated those airports having
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a mean Her�ndahl-Hirschman Index (HHI) higher than the sample mean, which is 0:33.

The concentration index is measured through the share of airlines in the airports in terms

of total departures.

Table 4 shows the results of the estimation of Eq. (32) for di¤erent subsamples using

OLS and airport �xed e¤ects. Table 5 reports the elasticities obtained from the estimated

coe¢ cients evaluated at sample means in relation to Delaysa;t�1 and Dhub
i;a . The overall

explanatory power of the model is notably high. Furthermore, the elasticities obtained for

the main variables are also remarkable.

�Insert here Tables 4 and 5�

We con�rm that airlines o¤er higher frequencies in airports where the urban area can

potentially involve a higher demand for air travel. The coe¢ cient associated to the pop-

ulation variable is always positive, although it is statistically signi�cant only in the OLS

regression that considers the full sample.

The GDP per capita variable does not show a statistically-signi�cant positive e¤ect on

airline frequencies, while the coe¢ cient associated to the 2010 dummy variable (after the

global recession) is always negative and statistically signi�cant.

As expected, the coe¢ cient of the dummy for hub airports is positive and statistically

signi�cant in the regressions that can be identi�ed. Hence, network airlines in their hub

airports provide more frequencies than the rest of airlines in those hub airports, but also

than any airline (even dominant airlines) in non-hub airports. This �nding con�rms the

result in Proposition 1 and is explained by the fact that HS network con�gurations are

characterized by the exploitation of connecting services and the concentration of tra¢ c on

the routes connecting di¤erent endpoints with the hub airport.

Overall, we �nd that airlines operating under HS networks are less in�uenced by airport

congestion in their choice of frequencies. In the OLS regressions, the coe¢ cient associated

with the delays variable is negative and statistically signi�cant both in the full sample and

in the sample with concentrated airports. However, the e¤ect of delays on frequencies is

mitigated in the case of network airlines operating in their hub airports because the co-

e¢ cient associated with the interaction between the dummy variable for network airlines

operating in their hubs and the measure of congestion is positive and statistically signi�-

cant (both in the full sample and in the sample with concentrated airports). In terms of

elasticities, a 10 percent increase in airport delays implies a decrease of about 3 percent
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in airline frequencies. This negative relationship is partially compensated when airlines

operate HS networks as the (positive) elasticity obtained from the interaction variable is

about 1-3 percent. Furthermore, in the regressions with airport �xed e¤ects, the coe¢ -

cient associated with the delays variable is negative and statistically signi�cant for non-hub

airports, while it is positive (although not statistically signi�cant) for hub airports. The

di¤erences in terms of elasticities are very high.

Shifting attention to concentrated airports (airports with a mean concentration index

higher than the sample mean), we �nd weak evidence in favor of the internalization hy-

pothesis. Airlines are slightly more sensitive to delays in concentrated airports because the

elasticity obtained from the estimated coe¢ cient of the delays variable (which is always

negative) is a little higher. However, the positive elasticity of the interaction variable is

particularly high on concentrated airports. Therefore, the results for airlines operating

HS networks are not favorable to the internalization hypothesis. In any case, the aim

of the analysis is not to provide direct tests on the internalization hypothesis, although

we have to take into account the extent to which our results are a¤ected by the levels of

concentration at the considered airports. As we have seen in our theoretical model where

own congestion is always internalized, congestion is unequivocally worse for passengers

and may also be worse for airlines under HS networks (as compared to FC networks).

Therefore, independently of the internalization phenomenon, HS networks may be socially

detrimental.

In short, we �nd that airlines operating HS networks are less in�uenced by congestion

in their choice of frequencies. Recall that airlines may exploit network e¤ects under HS

networks: higher frequencies enhance demand and a higher demand implies savings in

terms of economies of tra¢ c density. Furthermore, they save �xed costs by operating

fewer routes than under a FC network, as can be seen from inspection of Eq. (22).

As pointed out in Flores-Fillol (2010), network size in HS con�gurations may contribute

to explain this behavior. On the one hand, by adding a new route to an existing HS

network, carriers gain access to one local market and to n connecting markets and, hence,

they increase �ight frequency. However, on the other hand, there is also an additional

aircraft movement at the hub airport that increases congestion, a¤ecting both carriers and

passengers. It seems that the �rst e¤ect partially compensates the second one for the

airlines in our sample.
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4.2 Hub airports and delays

Results of regressions of Eq. (32) provide evidence that airlines operating a HS network

react less to delays. To examine the consequences of this behavior on passengers, we run

an additional regression at the airport level. Controlling for the number of departures

and concentration, we want to test whether delays are higher in hub airports. Thus, we

estimate the following equation at airport a

Delaysa;t = �0 + �1Freqa;t�1 + �2D
hub
a + �HHIa;t�1 + �4D

2007
t + �5D

2008
t + �6D

2009
t +

�7D
2010
t + ".

(33)

The dependent variable is our measure of airport congestion, which is the percentage of

total �ights in the airport with a delay exceeding �fteen minutes. As explanatory variables,

we consider the total number of annual �ights in the airport, a dummy variable that takes

the value one for hub airports where the dominant airline adopts a HS network, and the

HHI in terms of airline frequencies. Finally, we include time dummies for each year of the

considered period, being 2006 the excluded year. Recall that the explanatory variables are

lagged one year and that no data is available for frequencies in 2004. Thus, the �rst year

of the considered period is lost in the estimation of Eq. (33).

Quite naturally, we should expect a positive relationship between frequencies (which

are a measure of airport size) and delays. The possible simultaneous determination of

delays and frequencies is taken into account by considering one year lag of the frequencies

variable.29

As we have mentioned above, the empirical literature on airport congestion has focused

on testing the internalization hypothesis. A positive evidence of it would be a negative

relationship between delays and the concentration index. As in the case of the frequencies

variable, we also consider one year lag of the concentration variable.

Furthermore, we expect a positive relationship between delays and the hub airport

variable. For a given level of frequencies and competition at the airport, delays should

be higher in hub airports. In line with the previous results, delays should be higher in

hub airports because airlines operating under HS are less in�uenced by congestion in their

choice of frequencies

The estimation is made using OLS. The use of �xed e¤ects implies losing one time

invariant variable (i.e., the dummy for hub airports), which makes the rest of explanatory

variables statistically non-signi�cant. It seems that the airport �xed e¤ects capture all the
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relevant relationships in our context.

Table 6 reports the results of the estimates of Eq. (33). We con�rm that delays

are higher in larger airports because the frequency variable is positive and statistically

signi�cant. The concentration variable is negative but it is not statistically signi�cant,

so that we do not �nd clear evidence of internalization. The time dummies are negative

and statistically signi�cant from 2008 onwards. The fall in demand due to the economic

downturn in 2009 can explain this result.

�Insert here Table 6�

Finally, the hub variable is positive and statistically signi�cant as expected. Controlling

for the number of frequencies and concentration, we �nd evidence that delays are higher in

airports where airlines are operating under a HS con�guration. From our results, we could

also infer that the internalization hypothesis is weaker when we distinguish between hub

and non-hub airports. It seems that airlines operating HS networks do not fully internalize

congestion even when their share of frequencies in the corresponding hub airport is very

high. The explanation is found in the aforementioned network bene�ts that airlines may

obtain from operating under HS networks.

5 Concluding remarks

Network carriers tend to concentrate tra¢ c at few airports. Under HS networks, airlines

may exploit network e¤ects: higher frequencies enhance demand and a higher demand

implies savings in terms of economies of tra¢ c density. Furthermore they save costs by

operating fewer routes than under a FC network. This concentration of tra¢ c exacerbates

congestion problems, which cause substantial costs for passengers and airlines.

Airport congestion has not been adequately tackled from a public policy perspective.

This may be explained by di¤erent factors such as the di¢ culties in implementing conges-

tion pricing or the high investments costs associated to airport expansions. As a conse-

quence, congestion still remains a severe problem in the air transportation industry, which

becomes especially serious in the US where only four airports are slot-constrained.

From a social point of view, our analysis suggests that policy measures promoting direct

connections away from hubs may have social bene�ts. Policy makers and airport operators

could use tools such as airport charges (both the level and the relation with the weight
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of the aircraft), investment in capacities, and marketing of the cities where the airports

are located. From our results, we can also infer that the rules determining the allocation

and use of slots in the US should be re-designed so as to create incentives for airlines to

increase aircraft size and reduce �ight frequency.
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Notes
1Only four US airports are slot-constrained: O�Hare at Chicago, Ronald Reagan at Washington, and

La Guardia and JFK at New York.
2Table 2 provides more extensive data by considering the 51 largest US airports during the period

2005-2010.
3An advantage of the spline regression is that it does not impose any restriction or shape in the functional

form of the considered relationship. However, we should distinguish the di¤erent airlines operating at each

airport and control for demand to come to a de�nite conclusion.
4In a di¤erent setting without congestion, Fageda and Flores-Fillol (2012a and 2012b) study the surge

of new point-to-point connections in thin markets, which seems to be related to the success of two major

innovations in the provision of air services: the regional jet technology and the low-cost business model.
5Other studies of frequency choice and scheduling competition include works by Brueckner (2004),

Brueckner and Flores-Fillol (2007), Flores-Fillol (2010). Empirical analysis of the determinants of aircraft

size and �ight frequency choice in the US airline industry has been o¤ered by Pai (2010). Bilotkach et

al. (2010) focuses primarily on the relationship between the frequency choice and distance and o¤ers an

analysis of the frequency choice by the airlines on a set of European markets.
6Santos and Robin (2010) replicate the analysis of Mayer and Sinai (2003) using European data. Their

results are favorable to the internalization hypothesis but they �nd mixed evidence in the relationship

between airlines�destinations at the airport and delays.
7Other empirical papers assess the e¤ects of delays for airlines and passengers. For example, Forbes

(2008) uses data of routes of La Guardia airport (one of the four slot constrained airports in the US) to

study price responses to �ight delays, �nding an average price reduction per additional minute of �ight

delay of $1:42 for direct passengers and of $0:77 for connecting passengers. Britto et al. (2012) examine the

impact of delays on consumer and producer welfare for a sample of US routes. They �nd that delays have

an upward impact on prices and a negative impact on demand. From their results, a 10 percent decrease

in delays would imply a bene�t of $1:50-$2:50 for passenger, while the gains for airlines of reducing delays

are about three times higher. From a di¤erent perspective, Morrison and Whinston (2007) compare the

welfare e¤ects of traditional congestion tolls and the optimal congestion that would take into account the

internalization, �nding that there are not substantial gains from applying the optimal congestion tolls.
8We follow the approach in Flores-Fillol (2010). Partially-served markets introduce tractability com-

plications derived from the presence of market power. In such a case, it is di¢ cult to have unambiguous

e¤ects because a reduction in a carrier�s �ight volume mitigates airport congestion but raises fares (through

a standard market-power e¤ect). As a result, airline choices involve both the exploitation of market power

and the desire to limit congestion. Therefore, for the sake of simplicity and to have clear results, we rule

out market power by assuming fully-served markets.
9In a related model without congestion and network structure, Brueckner and Flores-Fillol (2007)

allow for partially-served markets by considering the possibility of having low-type passengers, who are

characterized by a low valuation of travel and may not undertake air travel. In a di¤erent setting without

congestion, Flores-Fillol (2009) compares FC and HS networks allowing for partially-served markets, and
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�nds that HS networks arise when costs are su¢ ciently low, and that �ight frequency can become excessive

under HS con�gurations.
10Therefore consumers compare fares (p1 and p2) and expected schedule delay (
=f1 and 
=f2) of both

airlines. While this approach may not be fully accurate for individual consumers, it appears to capture the

choice setting of a corporate travel department, which must sign an exclusive contract with a particular

airline for transporting its employees. The travel department cares about the average schedule delay

for the company employees, while also seeking low fares. It signs an exclusive contract with the airline

providing the best combination of these features. Alternatively, the model could apply to individual

business travelers, who cannot predict their travel times and thus purchase refundable full-fare tickets,

which allow them to board the next �ight upon arriving at the airport. In either case, the precise departure

times of individual �ights are not relevant, accounting for the simplicity of the overall approach.
11Analogously, the utility of a passenger traveling with carrier 2 is u2 = y�p2� 


f2
�� (4f1 + 4f2)+b�a,

with a < 0 for passengers loyal to carrier 2 and a > 0 for passengers loyal to carrier 1.
12As in Fageda and Flores-Fillol (2012a), the 100% load factor assumption could be relaxed by consider-

ing l1s1 = q1=f1, where l1 2 [0; 1] stands for load factor; and l1s1 is interpreted as the number of passengers
per �ight, which depends both on the load factor and the aircraft size. However, this distinction is not

needed for the purposes of this analysis and therefore we do not include it to keep the setting as simple

as possible. In any case, high load factors are a prerequisite for pro�table operations, and the industry

average load factor is around 75% (data from IATA, see www.iata.org).
13As suggested before, when maximizing pro�ts, carriers do not take into account the congestion in�icted

on passengers since demand functions are independent of passengers�congestion damage.
14The second-order conditions @2�1=@p21; @

2�1=@f
2
1 < 0 are satis�ed by inspection. The remaining

positivity condition on the Hessian determinant, which is assumed to hold, requires p1 � � > 

4f1
� 4��f31


 ,

i.e., the margins in each of the markets operated by an airline have to be su¢ ciently large.
15The second-order conditions @2�h1=@

�
ph1
�2
; @2�h1=@

�
Ph1
�2
; @2�h1=@

�
fh1
�2
< 0 are satis�ed by inspec-

tion. The remaining positivity condition on the Hessian determinant, which is assumed to hold, requires

2
�
ph1 � �

�
+
�
Ph1 � 2�

�
> 3

�


4fh1

� 2��(fh1 )
3




�
, i.e., the sum of margins in the three markets operated by

an airline has to be su¢ ciently large.
16Note that the �rst-order condition for p1 is the same both under FC and under HS.
17As commented in footnote 4, Fageda and Flores-Fillol (2012a and 2012b) study the surge of new

point-to-point connections in thin markets in a di¤erent setting without congestion.
18See Brueckner (2002 and 2005), Mayer and Sinai (2003), and Brueckner and Van Dender (2008).
19Therefore, the rule pointed out in Brueckner and Van Dender (2008) suggesting that each airline

is charged MCDSO times its airport �ight share (which equals 1=2 in the symmetric equilibrium) does

not apply to our setting because airlines are also charged by the congestion imposed on all passengers.

Levying atomistic tolls would imply charging MCDSO to each airline since these kind of tolls ignore

carriers�own-congestion internalization.
20Recall that, under HS con�gurations, s1 = (q1 +Q1) =f1 because both local and connecting passengers

travel on routes AH and BH.
21It is easy to observe that, in absence of congestion, fh > f and sh > s.
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22By comparing Eqs. (25) and (29), we can easily observe that fhSO > fSO, but both 3fhSO > 4fSO

and 3fhSO < 4fSO are possible.
23Proposition 2 shows that fh 6 1:4f is a su¢ cient condition ensuring � > 0, whereas the sign of � is

ambiguous for fh > 1:4f .
24This is a simpli�cation because all airlines may o¤er connecting services in any airport when their

frequencies are su¢ ciently high. However, we think this is sensible assumption given that the bulk of HS

operations in the US domestic market are network airlines�services connecting their hub airports.
25There are previous empirical literature on the determinants of delays (Mayer and Sinai, 2003; Rupp,

2009; Santos and Robin, 2010) that use data at the �ight level and measure congestion as the di¤erence

between the actual and scheduled time and/or the di¤erence between the actual and the minimum feasible

time of the �ight. For the purposes of our empirical analysis, which is the study of the in�uence of delays

on frequency choices of airlines at the airport level, such a disaggregated analysis is not needed.
26The Hausman test rejects the use of random e¤ects, which are likely to be correlated with the ex-

planatory variables. Furthermore, results of regressions that use variables in �rst di¤erences are not

satisfactory because of the very low explanatory power of the model (most of the independent variables

are not statistically signi�cant).
27The Chow test shows the existence of a structural break between these two subsamples.
28The results of these additional regressions are available upon request from the authors.
29Previous papers examining the determinants of delays use data at the �ight level, ignoring airport

size (with the exception of Brueckner, 2002). However, the disaggregated analysis has some advantages

because it allows analyzing the airlines behavior at a very detailed level, and some technical re�nements

like the inclusion of airport �xed e¤ects can be considered.

32



Figures and Tables

Fig. 1: Median-spline between frequencies and delays (airport

level data)

Fig. 2: The FC and HS networks
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Fig. 3: The f solution

Fig. 4: Comparing f � and f �h
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Fig. 5: Overprovision of frequency
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