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Affirmative Action through Extra Prizes∗

Matthias Dahm† Patricia Esteve‡

Abstract

Some affirmative action policies establish that a set of disadvantaged competitors has

access to an extra prize. Examples are gender quotas or a prize for national competitors

in an international competition. We analyse the effects of creating an extra prize by

reducing the prize in the main competition. Contestants differ in ability and agents

with relatively low ability belong to a disadvantaged minority. All contestants compete

for the main prize, but only disadvantaged agents can win the extra prize. We show

that an extra prize is a powerful tool to ensure participation of disadvantaged agents.

Moreover, for intermediate levels of the disadvantage of the minority, introducing an

extra prize increases total equilibrium effort compared to a standard contest. Thus,

even a contest designer not interested in affirmative action might establish an extra

prize in order to enhance competition.

Keywords: Asymmetric contest, equality of opportunity, affirmative action, discrimi-

nation, prize structure, exclusion principle

JEL: C72, D72, I38, J78
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international competition, like in film or fireworks awards, or a prize for the best paper by

a young scientist. The purpose of the present paper is to investigate the incentive effects

of this affirmative action instrument. Our main result is to show that this policy is not only

appealing from a normative point of view but can also enhance competition. It can thus be

desirable on efficiency grounds, fostering thereby the social acceptance of the policy.

We analyse the effects of extra prizes in a contest model. These models have been in-

sightful in a variety of competitive situations, including rent-seeking, promotional compe-

tition, labour market tournaments, sports competitions or conflict. Following Stein (2002)

or Franke et al. (2013), we investigate an asymmetric contest in which contestants differ in

ability. Agents with relatively low ability belong to a ‘disadvantaged minority’.1

A standard result in contest theory says that the most inefficient (or least able) agents

might not actively participate in the competition (Stein 2002). And indeed, ‘minority rep-

resentation’ is an important concern in real competitions. For instance, in California the

Disabled Veteran Business Enterprise and Small Business Certification Programs establish

explicit target market shares for these disadvantaged groups. Similarly, the European Union

has target shares for female representation on firms’ boards. The challenge is then to design

affirmative action policies that can reconcile the conflicting aims of reaching both (i) a suf-

ficient level of minority representation and (ii) a sufficient level of competition. Avoiding

trade-offs between these objectives is important because it influences the political support

for and the prevalence of affirmative action policies. Ayres and Cramton (1996), for exam-

ple, report that various California ballot initiatives tried to end state-sponsored affirmative

action because of the belief that eliminating affirmative action could help to solve budget

problems.

In our model the contest designer can create an extra prize at the cost of reducing the

prize in the main competition. All contestants compete for the main prize, but only disad-

vantaged agents can win the extra prize. This fits, for example, quotas for disadvantaged

minorities, like gender quotas, in which the establishment of the quota reduces the budget

available in the main competition. Disadvantaged agents thus should have an incentive to

exert higher effort but it is far from obvious that the overall level of competition will be

strengthened, as advantaged agents have lower incentives to invest.

1For a survey see Konrad (2009). See also Cornes and Hartley (2005) and Ryvkin (2013) for general models

of asymmetric contests. Throughout the paper we follow the language of the affirmative action literature and

use for example the term ‘disadvantaged minority’ for the agents favoured through affirmative action.
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We show that disadvantaged agents indeed do have an incentive to exert higher effort

and that we can think of the effects of extra prizes ‘as raising the ability of disadvantaged

agents’. In this sense extra prizes create a ‘level playing field’, as the abilities of contestants

become more homogeneous. This leads to our first major result that an extra prize is a

powerful tool to ensure participation of disadvantaged agents. With an extra prize both

groups of agents are active; using the language of the affirmative action literature, there is

diversity.

Our main result is to show that extra prizes have the potential to strengthen the overall

level of competition. The reason is that, as the disadvantaged minority competes stronger,

advantaged agents might exert more effort than they otherwise would, resulting in a higher

overall level of competition. More precisely, we show that for intermediate levels of the

disadvantage of the minority, introducing an extra prize increases total equilibrium effort

compared to a standard contest (for example in Stein 2002). We show that the magnitude

of the increase of total effort due to the extra prize might potentially be quite important and

that this effect might arise with or without an increase in minority representation. Thus,

even a contest designer not interested in affirmative action might establish an extra prize in

order to enhance competition.2

A distinctive feature of our model is that some agents might win more than one prize

with a sole effort choice. This fits quotas, provided that at the time of investment (for ex-

ample in education) minority members might still choose between participating in the main

competition or as a minority member. But there are further situations in which this feature

is realistic. For instance, in 2011 the Catalan film Black Bread won both the (Spanish) Goya

Award and the (Catalan) Gaudí Award in the category of Best Film. Another example is

the fireworks contest yearly organized by the City Council of Tarragona. In 2009 a local

firm won both the main (international) prize and the prize for Catalan competitors. Also,

in chess the World Championship does not exclude women, juniors or seniors, but each of

these groups have in addition their separate championship. Currently, in Germany a promi-

nent firm organizes a photo competition that awards a main annual prize and a secondary

2We are not aware of an empirical study that fits exactly our model. The predictions of our model are,

however, in line with empirical evidence. Brown (2011) shows that large differences in ability might reduce

effort. Balafoutas and Sutter (2012) provide experimental evidence that related (but different) affirmative

action policies can have an important impact on minority participation, while not harming the efficiency

of the competition, as predicted by our model. See also Schotter and Weigelt (1992), Franke (2012b) and

Calsamiglia et al. (2013) for further evidence of performance enhancing incentive effects of affirmative action.
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monthly prize that both can be won with the same photo.3

There might, however, be further situations that do not fit our model exactly but for

which our model might serve as a benchmark. Consider the Spanish research programme

“Proyectos Europa Excelencia”. In order to compete in this programme a proposal must

have competed unsuccessfully for a “Starting Grant” of the European Research Council.

Consider promotional competition. Firms invest effort in building up brands. These brand

names affect the market shares of the firms’ products in several markets but not all brands

have products in all markets. Consider for instance rent-seeking. Interest groups expend

effort in activities including setting up offices close to political decision makers, building

up personal networks to legislators, or developing a reputation for competence on specific

issues. Lobbies are often affected by divers legislative issues but not all groups have stakes

in all issues. A broader implication of our model is that in these situations the model of

a standard contest might underestimate the incentives to participate of agents with low

stakes, and sometimes even underestimate total effort.4

Our paper contributes to two strands of literature. The first analyses the incentive effects

of affirmative action policies in competitive situations and the second investigates the prize

structure in contests.

Our paper relates to the first strand, because we show that extra prizes create a ‘level

playing field’ which may lead to more intense competition. A growing literature has deter-

mined other policies that affect competition in a similar way, including subsidies to high-cost

suppliers (Ewerhart and Fieseler 2003; Rothkopf et al. 2003), bid preferences and other bi-

ases in the selection of the winner (Ayres and Cramton 1996; Fu 2006; Franke 2012a;

Franke et al. 2013; Lee 2013), share auctions (Alcalde and Dahm 2013), and the handicap

or even exclusion of the most efficient participant (Baye et al. 1993; Che and Gale 2003;

Kirkegaard 2012).5 To the best of our knowledge the affirmative action policy considered

3See www.olympus.de/omd, accessed on 02/08/2013.
4There are also situations which might be interpreted as being the opposite to affirmative action, because

the most efficient agents have access to extra prizes. Consider (European) soccer teams and their investment in

players. All teams compete in the national leagues. In addition, however, the best teams compete in European

competitions, like the Champions League. Or consider elite colleges that have a bias in favour of applicants

who are children of alumni.
5We comment further on the relationship to Baye et al. (1993) in the concluding section. The creation of

a ‘level playing field’ does not always result in the most intense competition. Pérez-Castrillo and Wettstein

(2012) analyse innovation contests under asymmetric information. They provide conditions under which in

a symmetric setting discrimination among contestants is optimal. Such a discrimination (where the size of
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here has not been analysed before.

Our paper also contributes to the literature on the optimal prize structure in contests (e.g.

Glazer and Hassin 1988; Clark and Riis 1998b; Moldovanu and Sela 2001; Szymanski and

Valletti 2005; Moldovanu and Sela 2006; Azmat and Möller 2009; Fu and Lu 2009; Möller

2012), because the introduction of an extra prize establishes a specific prize structure. Our

model, however, differs from this literature by allowing for some contestants to win more

than one prize with a sole effort choice.6

The paper is organized as follows. The next section collects our assumptions and fixes

notation. We conduct our strategic analysis in Section 3. The last section contains conclud-

ing remarks. All proofs are relegated to an Appendix.

2 The Model

A set of risk-neutral contestants N = {1, 2, ..., n} competes for a budget B.7 An agent i’s

share of the budget depends on his effort exerted, which is denoted by ei. Expenditures are

not recovered. Players have different abilities αi > 0 that are reflected in heterogeneous

effort costs ci(ei) = ei/αi. Without loss of generality assume that lower indexed agents have

higher ability, so that αi ≥ αi+1 for all i ∈ {1,2, ..., n− 1}.
There is an observable characteristic that distinguishes agents in such a way that they

can be partitioned into two groups, N = M ∪ D. We interpret D as the disadvantaged

group that is the objective of affirmative action. For this reason we assume that agents in

the prize depends on the identity of the winner) makes the contest asymmetric and can be thought of as ‘the

opposite’ of the creation of a ‘level playing field’. The creation of a ‘level playing field’ can also have unintended

consequences and increase sabotage, see Brown and Chowdhury (2012).
6There are a few models in which a contestant can win multiple prizes. But this requires allocating resources

to different contests, as in Gradstein and Nitzan (1989), or choosing effort twice, as in Sela (2012). There are

also models in which the contest success function is biased towards some participant, see Franke et al. (2013)

for a general model, Franke (2012a) for an affirmative action context and Farmer and Pecorino (1999) or

Dahm and Porteiro (2008) for other environments. This is analytically different from creating an extra prize.

The contest success function considered in the present paper is unbiased.
7In the literature, the outcome of contests has been interpreted to capture either win probabilities or shares

of a prize, see Corchón and Dahm (2010). Since we assume that agents are risk neutral, we do not distinguish

between both interpretations. Our model thus allows for contestants winning prizes with some probability, as

in the case of the aforementioned film awards, or for agents winning shares of a overall budget, as in the case

of quotas.
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M = {1, 2, ..., m} have higher ability than agents in D = {m+ 1, ..., n}.8 To distinguish our

setting from a standard contest we suppose 1≤ m≤ n− 2.

The contest designer aims to maximize total effort by choosing β ∈ [0, 1]. The parameter

β divides the budget into two prizes: B1 = (1− β)B and B2 = βB. Members of group M

only compete for prize B1, while members of group D compete for both prizes. In this sense

prize B2 is an extra prize for group D. Notice that although an agent in D exerts effort only

once, he might win both prizes. Note also that when β = 0 or β = 1 we have a standard

contest without extra prize.9 In order to focus on the effects of an extra prize we follow

most of the literature and consider for each prize an imperfectly discriminating contest in

which an agent i’s share of the budget is proportional to his effort expended, see Tullock

(1980).10

We introduce the following notation. A vector of individual efforts is denoted by e =

(e1, e2, . . . , en) and total effort of a group G of agents is EG =
∑

k∈G ek. Similarly, the vector

of abilities is denoted by α = (α1,α2, . . . ,αn). Given a group of agents G with cardinality

|G|, the harmonic mean of abilities is given by

ΓG ≡
|G|

∑

k∈G
1
αk

.

In the contest with extra prize the expected payoff of player i is

EUi(e) =
eiB1

EN
+

eiB2zi

ED
−

ei

αi
, (1)

where zi ∈ {0, 1} takes value 1 if and only if i ∈ D, and value 0 otherwise. Notice that in

this formulation the win probabilities of the two prizes are independent. It is interesting to

observe that our model also captures a situation in which a disadvantaged agent who wins

8We take it as given that minority agents are (weakly) disadvantaged. See Holzer and Neumark (2000),

Fang and Moro (2010) and Niederle and Vesterlund (2011) for an assessment of the disadvantage in different

contexts.
9With the term standard contest we refer to a situation in which (given the value of β or the behaviour of

other agents) the objective function of active agents reduces to the one in Stein (2002). For simplicity of the

exposition we exclude the case β = 1 from most of our derivations. Sometimes, however, it is convenient to

include this case. The statements referring to β = 1 follow from Stein (2002).
10We follow most of the literature and assume that when in the competition for a prize none of k agent exerts

effort, each agent wins the prize with probability 1/k. Skaperdas (1996) and Clark and Riis (1998a) provide

axiomatic characterizations of the contest success function employed, while Corchón and Dahm (2010) give

a micro-foundation for the interpretation that the outcome is the choice of a designer.
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the main prize also wins the extra prize. In such a situation the expected payoff of player i

is

EUi(e) =
eiB1

EN
+

eiB2zi

EN
+

EM

EN

eiB2zi

ED
−

ei

αi
,

which is equivalent to equation (1).

3 Strategic analysis

Our first result establishes that contests with extra prizes are a powerful tool to make sure

that there will be minority representation, since the extra prize will not be uncontested.

Lemma 1. For any (α, B) at least two contestants participate in the contest. Moreover, if β > 0,

at least one agent i ∈ D is active.

For later reference we observe that Lemma 1 implies that ED > 0, if β > 0. In order

to analyse participation in the contest further, we take the derivative of equation (1) and

obtain
∂ EUi(e)
∂ ei

=
EN − ei

(EN )2
B1 +

ED − ei

(ED)2
B2zi −

1
αi

. (2)

Given that (1) is concave in ei, the first-order conditions require that ∂ Ei(e)/∂ ei = 0 if ei > 0

and ∂ Ei(e)/∂ ei ≤ 0 if ei = 0. The former implies that

EN − ei

(EN )2
B1 +

ED − ei

(ED)2
B2zi =

1
αi

. (3)

Consider the agents in set M . For these agents condition (3) reduces to the familiar

expression

ei = EN

�

1−
EN

B1αi

�

, (4)

see Stein (2002). This implies that the higher the ability of an agent, the higher his equilib-

rium effort. If the ability of an agent is low enough, he does not participate. We denote by

m∗ ∈ M the agent with em∗ > 0 such that for all i < m∗, ei > 0 and for all i ∈ M with i > m∗,

ei = 0. We denote by Mm∗ ⊆ M or M ∗ ⊆ M the set of active advantaged agents, depending

on whether we wish to stress the identity of the active agents. If no advantaged agent is

active, we set M ∗ = ; and m∗ = 0.

Consider the agents in set D. Here condition (3) becomes

ei = EN ED

B2EN + B1ED

�

1− EN
B1αi

�

B1(ED)2 + B2(EN )2
. (5)

7



Again, equilibrium effort is ordered by ability. We define Dd∗ , D∗ ⊆ D, and d∗ analogously

to Mm∗ , M ∗ and m∗.11 If no disadvantaged agent is active, we set D∗ = ; and d∗ = 0.

The aim of our strategic analysis is to show that contests with extra prize admit a unique

equilibrium (a formal statement will be provided in Proposition 4), and to investigate the

effects of an extra prize on participation (in Subsection 3.3) and on total effort (in Subsec-

tions 3.4, 3.5 and 3.6). Doing so, however, requires looking first at the two different types of

equilibria that might arise. In the first type of equilibrium only one group is active, and be-

haviour is similar to that in a standard contest. In the second there is diversity and complex

effects emerge. We start by analysing each type of equilibrium successively in Subsections

3.1 and 3.2.

3.1 Standard equilibria

There are two situations in which equilibria that appear in a contest with extra prize are

similar to those in a standard contest. The first is the trivial case when β = 0; when there

is no extra prize. In the second members of the advantaged group are discouraged from

participating because the extra prize is sufficiently large. With a large extra prize the prize

in the main competition is very small and thus it might happen that no advantaged agent

is active. In both cases our model reduces to a standard contest that has been analysed by

Stein (2002). For our purpose it is sufficient to summarize his results as follows.12

Lemma 2. [Stein, 2002] In a standard contest in which a group of agents P = {1,2, . . . , p}
competes for a prize B, the number of active players |P∗| is larger than two and total equilibrium

effort is given by

EN =
|P∗| − 1
|P∗|

BΓP∗ . (6)

In order to describe when standard equilibria appear, it is useful to start with a definition.

To do so denote the set of active disadvantaged agents when no advantaged agent exerts

effort by D∗M∗=;.

11Notice that d∗ does not indicate the cardinality of the set of active agents but the index of the most

disadvantaged active agent: |D∗|= d∗ −m. Note also that if β = 0 or no advantaged agent is active equation

(5) reduces to equation (4). The contest with extra prize becomes a standard contest in which only the agents

of the disadvantaged group participate.
12For the exact expressions of the equilibrium number of active players, individual efforts, win probabilities

and expected utilities, see Stein (2002).
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Definition 1. Let

β ≡ 1−
|D∗M∗=;| − 1

|D∗M∗=;|

ΓD∗M∗=;
Γ{1}

.

Notice that Γ{1} = α1 > 0 and |D∗M∗=;| ≥ 2, implying that β is well defined. The following

result establishes that in any contest, in addition to the trivial case when β = 0, there are

situations in which standard equilibria emerge.

Proposition 1. For any (α, B) we have that β < 1. Moreover, for any β ∈ [β , 1], it is an

equilibrium that the set of active agents is D∗M∗=; and equilibrium behaviour is as in a standard

contest for a prize of size B.

Intuitively, in the equilibria described in Proposition 1 the extra prize is too large. The

extra prize reaches the aim of inducing participation of the disadvantaged group but it does

so by discouraging the members of the advantaged group. We turn now to more moderate

extra prizes which generate equilibria in which members of both groups are active.

3.2 Equilibria with diversity

We start by defining a measure of minority representation, as the percentage of total effort

that is expended by disadvantaged agents

Ω ≡
ED

EN
.

We say that there is diversity if Ω /∈ {0,1}. The following result establishes that an extra

prize of intermediate size guarantees diversity.

Proposition 2. For any (α, B) we have that 0 < β . Moreover, for any β ∈ (0,β), in equilib-

rium, there is diversity.

For later reference, we observe that Proposition 2 implies that EN > ED > 0. In order

to describe total equilibrium effort in an equilibrium with diversity, denote the number of

active agents in the contest by |N ∗|= |M ∗|+ |D∗|.

Proposition 3. Let β ∈ (0,β). For any (α, B),

EN = Υ +
p

Υ 2 −Φ, (7)
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where

Υ ≡
B1

2

�

|M ∗| − 1
|M ∗|

ΓM∗ +
|N ∗| − 1
|N ∗|

ΓN∗

�

and

Φ ≡
B1ΓM∗ΓN∗

|M ∗||N ∗|
((|N ∗| − 1)(|M ∗| − 1)B1 − (|D∗| − 1)B2) .

Notice that equation (7) includes the case in which only one disadvantaged agent is ac-

tive. In this case increasing the extra prize establishes a transfer to the active disadvantaged

agent and reduces the main prize in some proportion. Total effort, however, is like in a

standard contest for a prize of size B1.13

We complete now the description of the candidate equilibrium for β ∈ (0,β). We will

later confirm that this is indeed an equilibrium. A formal statement of existence and unique-

ness of equilibrium will be provided in Proposition 4. Summing up equation (4) over all

advantaged agents and rearranging, we determine

Ω = |M ∗|
Υ +
p
Υ 2 −Φ

B1ΓM∗
− (|M ∗| − 1) ∈ (0, 1),

EM =
�

Υ +
p

Υ 2 −Φ
�

(1−Ω) and

ED =
�

Υ +
p

Υ 2 −Φ
�

Ω.

The expressions for individual efforts of the active agents are obtained as follows.14 First

introducing equation (7) in equation (4), yielding for i ∈ M ∗

ei =
�

Υ +
p

Υ 2 −Φ
�

�

1−
Υ +
p
Υ 2 −Φ

αiB1

�

. (8)

For i ∈ D we use equations (7) and (17) in equation (5) obtaining

ei =
�

Υ +
p

Υ 2 −Φ
�

Ω
B1Ω

�

1− Υ+
p
Υ 2−Φ

αi B1

�

+ B2

B1Ω2 + B2
. (9)

Since agents of the advantaged group only compete for one prize, only the win proba-

bility for prize B1 is of interest. This is immediately determined. For i ∈ M ∗ we have

pi = 1−
Υ +
p
Υ 2 −Φ

αiB1
.

13See Claim 1 in Appendix A.1.5.
14When there is no extra prize (β = 0) or when |D∗|= 1 both expressions coincide and reduce to the one in

Stein (2002). The first observation follows from the fact that for β = 0 equation (7) reduces to equation (6),

see the proof of Proposition 5. For the second observation, notice that Ω= 1−
�

Υ +
p
Υ 2 −Φ

�

/(B1ΓD∗) when

|D∗|= 1.
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Members of the disadvantaged group, however, have the chance to obtain two prizes, and

thus two win probabilities. The win probability of agent i ∈ D∗ for prize B1 is

pi = Ω
B1Ω

�

1− Υ+
p
Υ 2−Φ

αi B1

�

+ B2

B1Ω2 + B2
,

while the win probability of agent i ∈ D∗ for prize B2 is

qi =
B1Ω

�

1− Υ+
p
Υ 2−Φ

αi B1

�

+ B2

B1Ω2 + B2
.

Lastly, we state the expected equilibrium utilities of the active agents. For i ∈ M ∗ we

have

EUi = B1

�

1−
Υ +
p
Υ 2 −Φ

αiB1

�2

,

and for i ∈ D∗ one obtains

EUi =

�

B1Ω
�

1− Υ+
p
Υ 2−Φ

αi B1

�

+ B2

�2

B1Ω2 + B2
.

3.3 The effects of the extra prize on participation

We are now in a position to investigate the effects of the extra prize on participation. Re-

member that with the help of condition (4) we have already established that ei > 0 for i ∈ M

requires sufficient ability

αi >
Υ +
p
Υ 2 −Φ

B1
, (10)

and thus ei > 0 for i ∈ M implies e j > 0 for j < i. Moreover, for disadvantaged agents a

similar property holds; ei > 0 for i ∈ D requires

αi >
Υ +
p
Υ 2 −Φ

B1

B1Ω

B1Ω+ B2
. (11)

Again ei > 0 for i ∈ D implies e j > 0 for m < j < i. Hence it suffices to characterize

candidate sets of active agents by the highest index of the agents in the sets: Mm∗ ⊆ M and

Dd∗ ⊆ D. The overall set of active agents can then be characterized with the help of these

two indexes: N m∗
d∗ ≡ Mm∗ ∪ Dd∗ .

15

15If one of these sets is empty, say M∗ = ;, we write N0
d∗ .
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Example 1. Consider M = {1, 2} and D = {3, 4}. Since at least two contestants are active,

the candidate sets of active agents are N 2
0 = {1,2}, N 1

3 = {1, 3}, N 0
4 = {3,4}, N 2

3 = {1, 2,3},
N 1

4 = {1,3, 4}, and N 2
4 = {1,2, 3,4}. When β = 0, it can not be that agent 3 is active when

agent 2 is not. Hence we exclude N 0
4 , N 1

3 , and N 1
4 . When β > 0, Proposition 2 implies that N 2

0

will not be relevant.

Lastly, building on equation (11), we define for the disadvantaged agents i ∈ D the

effective ability α̂i as follows

α̂i ≡ αi

�

1+
B2

B1Ω

�

≥ αi.

So we can think of the extra prize as boosting the ability of the disadvantaged agents–the left

hand side of equation (11)–, while the threshold for being active remains as in a standard

contest–the right hand side of equation (10). We summarize the preceding formally as

Corollary 1. For any (α, B), the set of active contestants N m∗
d∗ is found as the largest index

m∗ = {0, 1,2, . . . , m} such that, given d∗,

αm∗ >
Υ +
p
Υ 2 −Φ

B1
(12)

holds and the largest index d∗ = {0, m+ 1, m+ 2, . . . , n} such that, given m∗,

α̂d∗ >
Υ +
p
Υ 2 −Φ

B1
(13)

is true.

Corollary 1 complements Lemma 1 and Proposition 2. It shows from a different angle

that the extra prize might have a strong effect on participation. When β = 0 and there is no

extra prize, effective ability α̂i is equal to αi. Disadvantaged agents have the lowest incen-

tives among all contestants to participate, as their ability to compete is lowest. Introducing

the extra prize, however, affects the participation conditions of both types of agents.

To see this it is instructive to consider the derivative of the right hand side of both par-

ticipation conditions (12) and (13) with respect to β . Since ∂ (EN/B1)/∂ β ≥ 0, the ex-

tra prize discourages participation of advantaged agents. For disadvantaged agents, how-

ever, there is a countervailing effect, because their effective ability α̂i is also raised, as

12



∂ (B2/B1Ω)/∂ β > 0.16

These two countervailing effects imply that extra prizes have the potential to induce

participation of disadvantaged agents who are not active without such a prize and to dis-

courage participation of advantaged agents who are active without such a prize. We will

observe these forces in later sections in more specific settings.

We are now in a position to state formally existence and uniqueness of equilibrium. For

β /∈ (0,β) the result follows from Stein (2002) or Fang (2002). For β ∈ (0,β) we provide

in Appendix A.1.6 a proof proceeding in three steps. First we confirm that the candidate

strategies in equations (8) and (9) are indeed an equilibrium. Second, we prove uniqueness

of the equilibrium in pure strategies by showing that the set of active contestants N m∗
d∗ is

unique and, lastly, we show that there is no equilibrium in mixed strategies.

Proposition 4. For any (α, B), there is a unique equilibrium in which the set of active contes-

tants N m∗
d∗ employ the pure strategies described in equations (8) and (9), while the other agents

exert no effort.

3.4 The effects of the extra prize on total effort

We establish first the existence of an optimal size for the extra prize.

Proposition 5. For any (α, B), there is β∗ ∈ [0,β) such that EN (β) attains a maximum at β∗.

The previous proposition establishes that a maximum is well defined. Concerning the

optimal size of the extra prize, it uses the well known result that it is never optimal to exclude

all advantaged agents (Fang, 2002). In the general model, determining the optimal size of

the extra prize is complex because, as we will see for example in Example 5, total effort is

not differentiable with respect to β . In light of this problem, we derive now a necessary

condition for β∗ > 0.

Given the participation condition (4), we can always find β = ε with ε > 0 but suffi-

ciently close to zero such that the set of active agents will consist of the same set of agents

16For completeness we mention that ∂ (EN/B1)/∂ β > 0 requires |D∗| > 1, see Appendix A.1.5. When only

one disadvantaged agent is active, increasing the extra prize does not affect participation of active agents. The

reason is that increasing the extra prize establishes a transfer to the active disadvantaged agent and reduces the

main prize in some proportion. This does not affect participation of active agents, because in a Tullock contest

participation is not affected when valuations are multiplied by a constant. Note also that when EN/B1 = α1

and the most efficient agent ceases to be active, condition (11) becomes condition (10), where B1 is replaced

by B.

13



as for β = 0, except when there was no minority representation (Proposition 2). In the lat-

ter case, at least the most efficient disadvantaged agent also becomes active. Formally, we

define the following sets of agents. Let M ∗
β=0 ⊆ M and D∗

β=0 ⊆ D be the sets of advantaged

and disadvantaged agents that are active for β = 0, respectively. Let

D∗
αm+1
= {i ∈ D : αi = αm+1}

be the most able of the disadvantaged agents. Notice that this set has at least cardinality

one. The cardinality is higher when there is more than one agent with the highest ability.

In the following Proposition, M ∗
ε
, D∗

ε
, and N ∗

ε
refer to M ∗

β=0, D∗
β=0 ∪ D∗

αm+1
, and M ∗

ε
∪ D∗

ε
,

respectively. Lastly we define the following numbers

γ≡
|M ∗

ε
| − 1

|M ∗
ε
|

|N ∗
ε
|

|N ∗
ε
| − 1

, δ ≡
|M ∗

ε
| − 1

|M ∗
ε
|
|N ∗
ε
| − 1

|N ∗
ε
| − 2

and ζ≡
|N ∗
ε
|
�

|N ∗
ε
| − 2

�

�

|N ∗
ε
| − 1

�2 .

Notice that when |M ∗
ε
|> 1, ζ= γ/δ.

Proposition 6. Let |D∗
ε
|> 1. For any (α, B),

β∗ > 0 if γδ <
ΓN∗ε
ΓM∗ε

< ζ. (14)

The previous Proposition requires |D∗
ε
| > 1. This is a weaker condition than asking to

have more than one agent with exactly ability αm+1. It rules out situations in which only one

disadvantaged agent is active. If |D∗
ε
| = 1, increasing the extra prize establishes a transfer

to the active disadvantaged agent and reduces the main prize in some proportion. Thus the

contested rent is reduced and total effort declines.17

Proposition 6 provides a condition assuring that a revenue maximizing contest organizer

finds it in his interest to establish an extra prize. Why does an extra prize have the potential

to increase total effort? The reason is that an extra prize increases the effective ability α̂i

of disadvantaged agents. This balances the competition and results in higher total effort,

provided condition (14) is fulfilled. The latter condition requires that the ratio of harmonic

means is strictly smaller than than one, because γ, δ and ζ are all strictly smaller than

one when |D∗
ε
| > 1. Thus, the minority must be disadvantaged, as it can be shown that

ΓN∗ε /ΓM∗ε < 1 if and only if ΓD∗ε < ΓM∗ε . On the other hand, there is also a lower bound on the

ratio of harmonic means, so that the disadvantage of the minority must be of an intermediate

level. We will gain further intuition into condition (14) in what follows.

17In Claim 1 in Appendix A.1.5 we show that in this case EN = (|N ∗ε | − 1)B(1− β)/|N ∗ε |.
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3.5 Homogeneity within groups

We consider now the case in which all agents in a given group have the same ability. Such

a situation represents the benchmark of minimal heterogeneity in our model. We will see

that condition (14) is also a sufficient condition under this assumption.

Suppose that αi = α for all i ∈ M and αi = α for all i ∈ D. We denote α/α≡ α ∈ (0, 1].

Because of the symmetry within groups conditions (4) and (5) imply that either all group

members are active, or none is. So for β = 0 the set of active agents is either M or N . For

β ∈ (0,β), the set of active agents is N , while for larger values for β only group D is active.

Moreover, β simplifies to 1− (n−m− 1)α/(n−m).

Consider now Proposition 6. Notice that by assumption if D is active at least two dis-

advantaged agents are expending effort; thus |D∗
ε
| > 1 is always fulfilled. Straightforward

algebra yields

ΓN∗ε
ΓM∗ε
=

α

1− m
n (1−α)

.

The right hand side of this expression is strictly increasing in α. Moreover, it tends to zero

when α goes to zero, and goes to one when α approaches one. Thus condition (14) is

fulfilled for intermediate values of α. The next result states the precise condition.

Proposition 7. For any (α, B), β∗ > 0 if and only if

(m− 1)2(n−m)
m(m(n−m)− 1)

< α <
(n−m)(n− 2)

1+ (n−m)(n− 2)
. (15)

Moreover, for any n and m, there exists α such that β∗ > 0.

The assumption of homogeneity within groups allows to strengthen Proposition 6 con-

siderably. On one hand, condition (14) becomes also a sufficient condition. On the other,

for any configuration of groups there exist intermediate levels of disadvantage such that a

revenue maximizing contest organizer finds it in his interest to establish an extra prize.

We provide now two examples that provide further intuition into condition (15) and il-

lustrate the magnitude by which an extra prize might increase total effort. In both examples

we set B = 1. We also normalize α= 1, so that α= α.

Example 2. Let M = {1} and D = {2, 3}. Consider a standard contest with β = 0. Since at

least two agents are active, all agents are active, and total effort is given by EN = 2α/(2+α).

Introducing a sufficiently small extra prize, β < β = 1−α/2, all agents stay active. Condition
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Figure 1: Total effort in Example 2.

(15) becomes 0 < α < 2/3. Once the extra prize becomes sufficiently large, β > β , only

disadvantaged agents are active and total effort is given by ED = α/2.

Figure 1 shows the effect of the extra prize (horizontal axis) on total effort (vertical axis).

The lower curve assumes α= 0.1, for which condition (15) holds. Total effort reaches a maxi-

mum for β∗ = 0.36, where total effort is equal to 0.1395. This implies a percentage increase of

46% compared to the standard contest. The upper curve assumes α= 0.7, for which condition

(15) does not hold. Total effort is weakly decreasing in the size of the extra prize. Hence β∗ = 0.

Notice that in the previous example the left hand side of condition (15) is zero. The

next example considers two advantaged agents and shows that abilities can be both too

homogeneous and too heterogeneous for an extra prize to have an effect. In the latter case,

however, the extra prize stimulates participation.

Example 3. Let M = {1, 2} and D = {3, 4}. Consider a standard contest with β = 0. If all

agents are active total effort is given by EN = 3α/(2+2α). If only advantaged agents are active

total effort is given by EM = 1/2. In both cases follows from condition (4) that disadvantaged

agents are active if α > 1/2, and total effort is continuous in α. Introducing a sufficiently

small extra prize, β < β = 1−α/2, assures that all agents are active. Condition (15) becomes

1/3 < α < 4/5. Once the extra prize becomes sufficiently large, β > β , only disadvantaged

agents are active and total effort is given by ED = α/2.

Again, we display in Figure 2 several cases. The highest curve assumes α = 0.9, while

16
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Figure 2: Total effort in Example 3.

the lowest supposes α = 0.2. In both condition (15) does not hold. The curve in the middle

displays α= 0.55, for which the condition holds. In the case of α= 0.2 minority participation

has increased.18

3.6 Heterogeneity within groups

We consider now very briefly the case in which agents in a group have different abilities. We

look at the simplest three agent setting in order to make the following two points. Example 4

proves that Condition (14) can be informative in such a setting, while Example 5 shows that

Condition (14) is no longer a sufficient condition under this assumption. In both examples

we set B = 1.

Example 4. Let M = {1} and D = {2,3}. Consider the following vector of abilities α =

(1,0.105, 0.1). Here disadvantaged agents are strong enough and always active. Straightfor-

ward calculation reveals that Condition (14) holds. Indeed the optimal extra prize is β∗ = 0.35,

inducing an almost 45% increase of total effort with respect to a standard contest. Once the

extra prize is large enough (β = 0.948) agent 1 ceases to be active. The upper curve in Figure

3 displays this case.

18Unlike the biased contest model in Franke et al. (2013) the optimal contest in case of α = 0.2 has only

two active agents.
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Figure 3: Total effort in Examples 4 and 5.

Example 5. Let M = {1} and D = {2, 3}. Consider the same abilities as in Example 4 but set

α3 = 0.06. This weakens agent 3 so that he is not active without an extra prize. Notice that

Condition (14) does not hold. Once the extra prize becomes large enough, however, agent 3

becomes active (β = 0.0526). This fosters competition and increases total effort. The optimal

extra prize is β∗ = 0.38, inducing an almost 45% increase of total effort with respect to a

standard contest. Once the extra prize is large enough (β = 0.96) agent 1 ceases to be active.

The lower curve in Figure 3 visualizes this case.

Notice that Examples 3 and 5 imply that the increase in total effort triggered by the

introduction of an extra prize might arise with or without an increase in minority represen-

tation.

4 Conclusions

This paper analysed the effects of establishing an extra prize for disadvantaged agents in

a contest model. Examples of this affirmative action policy are gender quotas or prizes

for national competitors in an international competition. We have shown that even very

small extra prizes are very effective in making sure that there is minority representation

in the competition. Moreover, for intermediate levels of the disadvantage of the minority,

establishing an extra prize increases total equilibrium effort compared to a standard con-

test. Extra prizes might therefore be designed purely on efficiency grounds, which should

18



facilitate the social acceptance of this affirmative action policy.

But in the real world affirmative action is not designed purely on efficiency grounds. In

so far our assumption that the designer does not value minority representation at all–which

is captured supposing that he is only interested in total effort–is very conservative and even

unrealistic. In reality, as in the aforementioned examples of California’s Disabled Veteran

Business Enterprise and Small Business Certification Programs or the European Union’s tar-

get shares for female representation on firms’ boards, he will be willing to trade-off some

effort for minority representation and thus might find it desirable to establish an extra prize

even at the cost of some reduction in total effort.19

An important result in contest theory is the exclusion principle, see Baye et al. (1993).

This principle applies when the contest success function is responsive enough to effort, as in

the all-pay auction (see Baye et al. 1993; Alcalde and Dahm 2007; and Alcalde and Dahm

2010). It says that a contest designer might sometimes strengthen competition and increase

total effort by excluding the contestant with the highest valuation from participating in the

competition. For the contest success function employed in this paper, however, Fang (2002)

has shown that the exclusion principle does not apply. Our analysis allows a deeper under-

standing of the forces underlying the exclusion principle. The reason is that establishing an

extra prize reduces the main prize and partially excludes the most efficient competitor(s).

As Fang (2002) has shown, complete exclusion is never beneficial. Partial exclusion, how-

ever, might foster competition and increase total effort. In this sense, a partial exclusion

principle applies to Tullock contests.

Our analysis suggests several avenues for future research. A first generalizes the contest

structure to several extra prizes. Think of researchers competing with very similar research

proposals for funding from local governments (the extra prizes) and from the central gov-

ernment (the main prize). What is the optimal degree of decentralization of research funds?

Another avenue endows the contest designer not only with the opportunity to create an ex-

tra prize but also with the power to choose the contestants that qualify for it. What is the

optimal set of agents competing for the extra prize?

19Notice that 1 − Ω measures the win probability of advantaged agents, which declines as the extra prize

increases (as ∂ (EN/B1)/∂ β > 0 provided at least two disadvantaged agents are active). Thus the designer

can easily balance the trade-off between total effort and minority representation.
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A Appendix

A.1 Proofs

In this Appendix we provide a proof for the results stated in the main text. In addition to

the notation introduced there, we simplify mathematical expressions using

Σ ≡
1
4

�

|M ∗| − 1
|M ∗|

Γ ∗M −
|N ∗| − 1
|N ∗|

Γ ∗N

�2

+
ΓM∗ΓN∗

|M ∗||N ∗|
(|D∗| − 1)

β

1− β
,

and, given a group G ∈ {N , M , D}, it will also prove useful to define a weighted harmonic

mean of abilities as

ΛG∗ ≡
|G∗| − 1
|G∗|

ΓG∗ .

In addition we simplify vectors of individual efforts when we focus on an agent i using the

shorter notation e = (ei, e−i), where e−i = (. . . , ei−1, ei+1, . . . ).

A.1.1 Proof of Lemma 1

For β = 0, the statement follows from Stein (2002). By way of contradiction let β > 0

and suppose that there is an equilibrium in which ei = 0 for all agents i ∈ D. Suppose

some advantaged agent exerts effort (otherwise a standard argument applies and proves the

lemma). Notice that EUi(ei, e−i) = B2/(n−m). Consider the alternative effort ẽi = ε > 0.

This deviation yields

EUi(ẽi, e−i)> B2 −
ε

αi
.

Since B2 − ε/αi is larger than B2/(n−m) for ε small enough, an equilibrium cannot have

ei = 0 for all agents i ∈ D. Q.E.D.

A.1.2 Proof of Proposition 1

Consider the first statement. Since |D∗M∗=;| ≥ 2, we have that ΓD∗M∗=; > 0. Thus we have

β < 1.

Consider now the second statement. It follows from Stein (2002) that if M ∗ = ; no

agent i ∈ D can profitably deviate from the strategies described in the statement. So let the

agents i ∈ D use these strategies and assume that j ∈ M deviates to e j > 0. Since the payoffs
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are concave, ∂ E j(e)/∂ e j|e j=0 > 0 must hold. This implies α jB1 > ED, where D = D∗M∗=;, or

equivalently

1− β >
|D∗M∗=;| − 1

|D∗M∗=;|

ΓD∗M∗=;
Γ{ j}

.

But since α1 ≥ α j and β ∈ [β , 1], we have

|D∗M∗=;| − 1

|D∗M∗=;|

ΓD∗M∗=;
Γ{ j}

≥
|D∗M∗=;| − 1

|D∗M∗=;|

ΓD∗M∗=;
Γ{1}

≥ 1− β ,

a contradiction. Q.E.D.

A.1.3 Proof of Proposition 2

Consider the first statement. We have that β > 0 if and only if

α1 >
|D∗M∗=;| − 1

|D∗M∗=;|
ΓD∗M∗=;

.

This inequality holds, because

α1 > ΞD∗M∗=;
≥ ΓD∗M∗=; >

|D∗M∗=;| − 1

|D∗M∗=;|
ΓD∗M∗=;

,

where ΞD∗M∗=;
is the arithmetic mean of abilities of the agents in D∗M∗=;.

20

Now consider the second statement and suppose β ∈ (0,β). From Lemma 1 we know

that D∗ 6= ;. By way of contradiction suppose that M ∗ = ;. Then e1 = 0, implying that

∂ E1(e)/∂ e1 ≤ 0 must hold. This implies α1B1 ≤ EN . On the other hand, M ∗ = ; implies

that EN = ED, where D = D∗M∗=;. Therefore the following must hold

1− β ≤
|D∗M∗=;| − 1

|D∗M∗=;|

ΓD∗M∗=;
Γ{1}

.

Since, however β < β we obtain

|D∗M∗=;| − 1

|D∗M∗=;|

ΓD∗M∗=;
Γ{1}

< 1− β ,

a contradiction. Q.E.D.

20It is well known that the the arithmetic mean is not smaller than the harmonic mean and a proof is thus

omitted.
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A.1.4 Proof of Proposition 3

We prove the statement with the help of two lemmatas.

Lemma 3. For any (α, B), if β ∈ (0,β), then

EN ∈ {Υ −
p

Υ 2 −Φ,Υ +
p

Υ 2 −Φ}.

Proof: First notice that the two candidate expressions for EN are well defined, because we

can write

Υ 2 −Φ =
(B1)2

4

�

|M ∗| − 1
|M ∗|

ΓM∗ −
|N ∗| − 1
|N ∗|

ΓN∗

�2

+
B1ΓM∗ΓN∗

|M ∗||N ∗|
(|D∗| − 1)B2 ≥ 0. (16)

Summing up equation (3) over all i ∈ M and rearranging yields

ED =
(EN )2

B1

|M ∗|
ΓM∗
− (|M ∗| − 1)EN . (17)

Summing up equation (3) over all i ∈ D, inserting equation (17) and rearranging, yields

the following quadratic equation

0 = (EN)
2

�

∑

i∈N∗
1
αi

��

∑

i∈M∗
1
αi

�

B1

−EN

��

∑

i∈N∗

1
αi

�

(|M ∗| − 1) +

�

∑

i∈M∗

1
αi

�

(|N ∗| − 1)

�

(18)

+(|N ∗| − 1)(|M ∗| − 1)B1 − (|D∗| − 1)B2.

From here we obtain

(EN )
2 − EN 2Υ +Φ= 0,

implying the statement. Q.E.D.

Lemma 4. For any (α, B), if β ∈ (0,β), then

EN 6= Υ −
p

Υ 2 −Φ.

Proof: Suppose M ∗ 6= ; and EN = Υ −
p
Υ 2 −Φ. Following equation (16), we can write

EN = Υ −
p

X 2 + Y , where

X ≡
B1

2

�

|M ∗| − 1
|M ∗|

ΓM∗ −
|N ∗| − 1
|N ∗|

ΓN∗

�

Y ≡
B1ΓM∗ΓN∗

|M ∗||N ∗|
(|D∗| − 1)B2.
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Since the function f (x) =
p

x is increasing in its argument and Y ≥ 0, we have EN ≤
Υ −
p

X 2, where

p

X 2 =











B1
2 (ΛM∗ −ΛN∗) if ΛM∗ ≥ ΛN∗

B1
2 (ΛN∗ −ΛM∗) if ΛM∗ < ΛN∗

. (19)

The remainder of the proof distinguishes these two cases and shows that each of them leads

to ED ≤ 0, contradicting Lemma 1.

Suppose ΛM∗ ≥ ΛN∗ , which implies that EN ≤ ΛN∗B1. Using equation (17) we obtain

ED ≤ EN

�

ΛN∗
|M ∗|
ΓM∗
− (|M ∗| − 1)

�

≤ 0,

where the last inequality comes from the fact that

ΛM∗ ≥ ΛN∗⇔ ΛN∗
|M ∗|
ΓM∗
≤ |M ∗| − 1.

Suppose ΛM∗ > ΛN∗ , which implies that EN ≤ ΛM∗B1. Using equation (17) we obtain

ED = EN

�

EN

B1

|M ∗|
ΓM∗
− (|M ∗| − 1)

�

≤ 0,

where the last inequality comes from the fact that

EN ≤ ΛM∗B1⇔
EN

B1

|M ∗|
ΓM∗
≤ |M ∗| − 1.

Q.E.D.

Proposition 3 follows directly from Lemmatas 3 and 4. Q.E.D.

A.1.5 The derivatives mentioned in Subsection 3.3

Remember that by Proposition 2, |D∗| ≥ 1 holds.

Claim 1. ∂ (EN/B1)
∂ β = 0 if |D∗|= 1 and ∂ (EN/B1)

∂ β > 0 if |D∗|> 1.

Proof: Let β > 0. Suppose |D∗|= 1. From equation (16), we have EN = Υ +
p

X 2, where

p

X 2 =











B1
2 (ΛM∗ −ΛN∗) if ΛM∗ ≥ ΛN∗

B1
2 (ΛN∗ −ΛM∗) if ΛM∗ < ΛN∗

, (20)
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implying

EN =











ΛM∗B1 if ΛM∗ ≥ ΛN∗

ΛN∗B1 if ΛM∗ < ΛN∗

. (21)

Assume EN = ΛM∗B1. Equation (17) and Proposition 2 imply EN > ΛM∗B1, a contradiction.

Thus EN = ΛN∗B1 and ∂ (EN/B1)/∂ β = 0.

Suppose |D∗|> 1. We have that

EN

B1
=

1
2

�

|M ∗| − 1
|M ∗|

Γ ∗M +
|N ∗| − 1
|N ∗|

Γ ∗N

�

+
p
Σ,

with
p
Σ> 0. Taking the derivative we obtain

∂ (EN/B1)
∂ β

=
ΓM∗ΓN∗(|D∗| − 1)

2|M ∗||N ∗|(1− β)2
p
Σ
> 0.

Q.E.D.

Claim 2. ∂ (B2/(B1Ω)
∂ β > 0.

Proof: Let β > 0. We have that

∂
�

B2
B1Ω

�

∂ β
=
∂
�

β

1−β

�

∂ β

1
Ω
+

β

1− β
∂
�

1
Ω

�

∂ β
.

Notice that
∂
�

β

1−β

�

∂ β

1
Ω
=

1
(1− β)2Ω

> 0,

as Ω ∈ (0, 1). Suppose |D∗|= 1. From Claim 1, we know that EN = ΛN∗B1. This implies that

Ω= 1−ΛN∗/ΓD∗ . Therefore ∂ (1/(Ω)
∂ β = 0 and ∂ (B2/(B1Ω)

∂ β > 0.

Suppose |D∗|> 1 and remember that this implies that
p
Σ> 0. Using Claim 1, we obtain

β

1− β
∂
�

1
Ω

�

∂ β
= −

β

(1− β)3Ω2

ΓN∗(|D∗| − 1)

2|N ∗|
p
Σ

.

Hence we have that ∂ (B2/(B1Ω)
∂ β > 0 if and only if

1− |M ∗|+
EN

B1

|M ∗|
ΓM∗

>
β

(1− β)
ΓN∗(|D∗| − 1)

2|N ∗|
p
Σ

.
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Introducing EN/B1 from Claim 1 and rearranging yields

1
2

�

|N ∗| − 1
|N ∗|

Γ ∗N −
|M ∗| − 1
|M ∗|

Γ ∗M

�

+
p
Σ>

β

(1− β)
|D∗| − 1

2
p
Σ

ΓN∗

|N ∗|
ΓM∗

|M ∗|
.

Multiplying by 2
p
Σ and collecting terms we obtain

1
2

�

|M ∗| − 1
|M ∗|

Γ ∗M −
|N ∗| − 1
|N ∗|

Γ ∗N

�2

+
β(|D∗| − 1)
(1− β)

ΓN∗

|N ∗|
ΓM∗

|M ∗|

>

�

|M ∗| − 1
|M ∗|

Γ ∗M −
|N ∗| − 1
|N ∗|

Γ ∗N

�p
Σ.

Squaring and cancelling terms yields finally that ∂ (B2/(B1Ω)
∂ β > 0 if and only if

β(|D∗| − 1)
(1− β)

ΓN∗

|N ∗|
ΓM∗

|M ∗|
> 0,

which is true for β > 0. Q.E.D.

A.1.6 Proof of Proposition 4

We prove Proposition 4 in three steps. In Claim 3 we confirm that the candidate strategies in

equations (8) and (9) are indeed an equilibrium. Second, we prove in Claim 4 uniqueness

of the equilibrium in pure strategies. Lastly, we show in Claim 5 that there is no equilibrium

in mixed strategies.

Claim 3. The candidate efforts described in Proposition 4 constitute an equilibrium.

Proof: Denote the vector of individual candidate equilibrium efforts by e∗. Consider an

agent i and assume that all other agents exert the candidate equilibrium effort e∗j for any

j 6= i. Agent i chooses ei ≥ 0 in order to maximize equation (1). Since we already know

that active agents do not have an incentive to deviate from the candidate equilibrium effort,

consider inactive agents.

Consider first agent i ∈ {m∗ + 1, . . . , m}. The first order condition evaluated at e∗i = 0 is

1
EN (e∗)

B1 −
1
αi
≤ 0,

which by equation (10) is negative. Hence e∗i = 0 is indeed a best response.

Consider next agent i ∈ {d∗ + 1, . . . , n}. The first order condition evaluated at e∗i = 0 is

1
EN (e∗)

B1 +
1

ED(e∗)
B2 −

1
αi
≤ 0,

which using the definition of Ω and equation (11) can be shown to be negative. Thus e∗i = 0

is indeed a best response. Q.E.D.
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Claim 4. There is no other pure strategy equilibrium.

Proof: Proceeding by contradiction, suppose that for a given β there are two different sets

of active contestants H ≡ N m
d− j and J ≡ N m−k

d . Notice that j and k must both be strictly larger

than zero.21 Moreover, Lemma 1 implies that we can focus on 1 ≤ k ≤ m and 1 ≤ j < d.

In each equilibrium we indicate total effort by EH and EJ ; and distinguish similarly ΩH and

ΩJ .

In equilibrium H the following participation conditions must hold

αm >
EH

B1
, αd ≤

EH

B1

B1ΩH

B1ΩH + B2
,

while in equilibrium J we must have, when k < m,

αm ≤
EJ

B1
, αd >

EJ

B1

B1ΩJ

B1ΩJ + B2
,

and for k = m,

αd >
EJ

B1
.

Notice that the conditions referring to agent m imply that EJ > EH . We establish now

that ΩJ > ΩH holds.

ΩJ −ΩH = m

�

1−
EH

B1ΓN m
d− j∩M

�

− (m− k)

�

1−
EJ

B1ΓN m−k
d ∩M

�

= k−
mEH

B1ΓN m
d− j∩M

+
(m− k)EJ

B1ΓN m−k
d ∩M

> k−
mEH

B1ΓN m
d− j∩M

+
(m− k)EH

B1ΓN m−k
d ∩M

.

This last expression is strictly larger than zero if and only if

B1

EH
k−

∑

i≤m

1
αi
+
∑

i≤m−k

1
αi
=

B1

EH
k−

m
∑

i=m−k+1

1
αi
> 0.

Since
m
∑

i=m−k+1

1
αi
≤ k

1
αm

,

the last expression is implied by the participation condition of agent m in equilibrium H.

21If both are zero, the sets are the same. By construction of the sets, if j = 0 and k > 0, then, given d∗,

m− k is not the largest index, as m> m− k; and similarly for j > 0 and k = 0.
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Lastly, notice that EJ > EH and ΩJ > ΩH , on one hand, and the participation conditions

of agent d in both equilibria, on the other, imply the following. For k < m,

αd >
EJ

B1

B1ΩJ

B1ΩJ + B2
>

EH

B1

B1ΩH

B1ΩH + B2
≥ αd ,

and for k = m,

αd >
EJ

B1
>

EH

B1

B1ΩH

B1ΩH + B2
≥ αd .

In both cases we reach the desired contradiction. Q.E.D.

Claim 5. There is no mixed strategy equilibrium.

Proof: Given that equation (1) is strictly concave for zi = 1, the assertion can be proved

adapting Claim 3 in Fang (2002). Q.E.D.

The above three claims complete the proof of Proposition 4. Q.E.D.

A.1.7 Proof of Proposition 5

We start proving that EN is continuous on [0,1].

Lemma 5. EN (β) is continuous on [0,1].

Proof: The statement follows from four claims.

Claim 6. For β = 0, equation (7) reduces to equation (6).

Proof: Let β = 0. As in the proof of Claim 1, from equation (16), we have EN = Υ +
p

X 2,

where
p

X 2 is defined in equation (20). Again total effort is given in equation (21). Assume

EN = ΛM∗B1. Equation (17) implies that ED = 0 and thus ΛM∗B1 = ΛN∗B1. Summarizing, for

β = 0 equation (7) reduces to EN = ΛN∗B1, equation (6). Q.E.D.

Claim 7. For β = β , equation (7) reduces to equation (6), which is constant on [β , 1].

Proof: Let β = β−ε, for ε > 0 arbitrarily close to zero. If i ∈ M ∗ then αi = α1. This implies

that ΓM∗ = α1. Moreover, when β goes to β we have that ei = 0 for all i ∈ M and |N ∗|= |D∗|
(and ΓN∗ = ΓD∗). Using these simplifications and the definition of β in equation (16), we

have

Υ 2 −Φ =
�

B
ΛD∗

α1

�2
�

1
4
Λ2

M∗ +
α2

1

|M ∗|
+

1
4
Λ2

D∗ +
1
2
ΛM∗ΛD∗ −

α1

|M ∗|
ΛD∗

�

=
�

B
ΛD∗

α1

�2 1
4

�

(|M ∗|+ 1)
|M ∗|

α1 −ΛD∗

�2

.
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Since (|M ∗|+ 1)α1/ |M ∗|> ΛD∗ ,

EN =
B
2
ΛD∗

α1

�

|M ∗| − 1
|M ∗|

α1 +ΛD∗ +
|M ∗|+ 1
|M ∗|

α1 −ΛD∗

�

=
|D∗| − 1
|D∗|

ΓD∗B.

Q.E.D.

We next show continuity of total effort when, given a set of active agents, the most

inefficient advantaged agent (different from agent 1) ceases to be active.

Claim 8. Let m∗ > 1 and consider EN (β) given by equation (7). When β is such that 1/αm∗ =

B1/EN , EN (β) is continuous.

Proof: From the proof of Lemma 3, we know that equation (7) is the root of equation (18).

We show that at the value for β in question, equation (18) is the same as a similar expression

defined for the case in which agent m∗ has exited. Thus the root must be the same, too.

Using 1/αm∗ = B1/EN in equation (18) we obtain

(EN)2

B1

  

∑

i∈N∗\m∗

1
αi

!

+
B1

EN

!  

∑

i∈M∗\m∗

1
αi

!

+ EN

!

−EN

   

∑

i∈N∗\m∗

1
αi

!

+
B1

EN

!

(|M ∗| − 1) +

  

∑

i∈M∗\m∗

1
αi

!

+
B1

EN

!

(|N ∗| − 1)

!

+(|N ∗| − 1)(|M ∗| − 1)B1 − (|D∗| − 1)B2.

Rearranging yields

(EN)2

B1

 

∑

i∈N∗\m∗

1
αi

! 

∑

i∈M∗\m∗

1
αi

!

−EN

  

∑

i∈N∗\m∗

1
αi

!

(|M ∗| − 2) +

 

∑

i∈M∗\m∗

1
αi

!

(|N ∗| − 2)

!

+(|N ∗| − 2)(|M ∗| − 2)B1 − (|D∗| − 1)B2,

that is, equation (18) for m∗ − 1 active agents. Q.E.D.

We turn now to show continuity of total effort when, given a set of active agents, a

disadvantaged agent becomes active or ceases to be active.

Claim 9. Let j ∈ D and consider EN(β) given by equation (7). When β is such that 1/α j =

B1/EN + B2/ED, EN (β) is continuous.
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Proof: We proceed as in the proof of Claim 8. Notice that when 1/α j = B1/EN+B2/ED, agent

i’s optimal effort choice is zero. Using the equilibrium values for ED and Ω this condition

can be written as

B2 =
(EN )

2

B1

�

∑

i∈M∗
1
αi

�

α j
− EN

�

∑

i∈M∗

1
αi

�

−
(|M ∗| − 1)EN

α j
+ (|M ∗| − 1)B1.

Suppose agent i ∈ D becomes active. From equation (18) we obtain

(EN )2

B1

�

∑

i∈M∗

1
αi

���

∑

i∈N∗∪ j

1
αi

�

−
1
α j

�

−EN

��

∑

i∈N∗∪ j

1
αi

�

(|M ∗| − 1) +

�

∑

i∈M∗

1
αi

�

|N ∗|

�

+ EN

�

|M ∗| − 1
α j

+

�

∑

i∈M∗

1
αi

��

+|N ∗|(|M ∗| − 1)B1 − (|M ∗| − 1)B1 − |D∗|B2 + B2.

Rearranging and using the above expression for B2 yields

(EN )2

B1

�

∑

i∈M∗

1
αi

��

∑

i∈N∗∪ j

1
αi

�

− EN

��

∑

i∈N∗∪ j

1
αi

�

(|M ∗| − 1) +

�

∑

i∈M∗

1
αi

�

|N ∗|

�

+|N ∗|(|M ∗| − 1)B1 − |D∗|B2.

The proof of the case in which agent i ∈ D ceases to be active proceeds along the same lines.

Q.E.D.

We are now in a position to apply Weierstrass’ extreme value theorem, which guarantees

that for any (α, B), there is β∗ ∈ [0, 1] such that EN (β) attains a maximum at β∗. Moreover,

given that EN (β) is constant on [β , 1] and Proposition 1 in Fang (2002), which says that with

the contest success function assumed the exclusion principle does not apply, we conclude

that β∗ ∈ [0,β). Q.E.D.

A.1.8 Proof of Proposition 6

For simplicity, in this proof we drop the subindex ε. Consider β ∈ (0, β̄] for which total

effort is given by equation (7). In order to compute the derivative with respect to β rewrite

equation (7) as follows

EN = B1

�

1
2
(ΛM∗ +ΛN∗) +

p
Σ

�

.

The derivative of total effort with respect to β can then be expressed as

∂ EN

∂ β
=
∂ B1

∂ β

�

1
2
(ΛM∗ +ΛN∗) +

p
Σ

�

+ B1

∂
�

1
2 (ΛM∗ +ΛN∗) +

p
Σ
�

∂ β
.
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Deriving each term and rearranging, we obtain

∂ EN

∂ β
=

BΓN∗ΓM∗(|D∗| − 1)

2(1− β) |N ∗| |M ∗|
p
Σ
−

B
2
(ΛM∗ +ΛN∗)− B

p
Σ.

This expression is well defined, because |D∗| > 1 implies that
p
Σ > 0. On the other hand

when β goes to zero,
p
Σ goes to






























0 if ΛM∗ = ΛN∗⇔
ΓN∗

ΓM∗
= γ

ΛM∗−ΛN∗

2 if ΛM∗ > ΛN∗⇔
ΓN∗

ΓM∗
< γ

ΛN∗−ΛM∗

2 if ΛM∗ < ΛN∗⇔
ΓN∗

ΓM∗
> γ

.

Hence in the first case ΛM∗ = ΛN∗ , when β goes to zero, ∂ EN/∂ β > 0.

Assume the second case ΛM∗ > ΛN∗ . We have that ∂ EN/∂ β |β=0 > 0 if and only if

ΓN∗ΓM∗

|N ∗| |M ∗|
(|D∗| − 1)> ΛM∗ (ΛM∗ −ΛN∗) .

Because of Proposition 2 and |D∗|> 1, |N ∗|= |M ∗|+ |D∗|> 2,

(|D∗| − 1) + (|M ∗| − 1)(|N ∗| − 1) = |M ∗| (|N ∗| − 2)> 0,

the previous expression can be rewritten as,

γδ <
ΓN∗

ΓM∗
. (22)

Assume the third case ΛM∗ < ΛN∗ . We have that ∂ EN/∂ β |β=0 > 0 if and only if

ΓN∗ΓM∗

|N ∗| |M ∗|
(|D∗| − 1)> ΛN∗ (ΛN∗ −ΛM∗) ,

yielding through a similar transformation

ΓN∗

ΓM∗
< ζ. (23)

Summarizing, we have that β∗ > 0 if one of the following holds:

γδ <
ΓN∗

ΓM∗
< γ;

ΓN∗

ΓM∗
= γ; γ <

ΓN∗

ΓM∗
< ζ. (24)

The fact that γδ ≤ γ < ζ with the first inequality being strict whenever |M ∗|> 1 implies the

statement. Q.E.D.
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A.1.9 Proof of Proposition 7

The fact that condition (15) implies that β∗ > 0 follows from straightforward algebraic

simplification of condition (14).

Suppose β∗ > 0. Notice that EN (β = 0)> EN (β = β) by Proposition 5. Note also that in

between these values for β the function EN (β) is twice differentiable. The fact that when β

goes to zero, ∂ EN/∂ β > 0 follows then from noticing that in between these values for β the

function EN (β) is strictly concave and that the condition on the derivative implies condition

(15).22

The last statement follows from observing that the upper bound of condition (15) is

strictly larger than the lower bound. Q.E.D.

22The second derivative of total effort is negative,

∂ 2EN

∂ β2
= −

B

(1− β)
p
Σ

�

ᾱΓN (|D∗| − 1)

2(1− β)|M∗||N ∗|
p
Σ

�2

.
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