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A note on the Lorenz-maximal allocations in the
imputation set

Francesc Llerena and Llúcia Mauri∗

Abstract

In this note we introduce the Lorenz stable set and provide an axiomatic
characterization in terms of constrained egalitarianism and projection con-
sistency. On the domain of all coalitional games, we find that this solution
connects the weak constrained egalitarian solution (Dutta and Ray, 1989)
with their strong counterpart (Dutta and Ray, 1991).

1 Introduction
One of the objectives of coalitional game theory is to define solutions (or rules)
for allocating the joint profit arising from cooperation between a group of agents.
In this framework, the first solution concept was introduced by von Neumann and
Morgenstern (1944). There, a stable set is defined to be a subset of imputations
satisfying internal stability and external stability, where the notion of stability is
defined by means of a domination relation that uses the standard order in R. Unfor-
tunately, finding stable sets is a difficult task and neither existence nor uniqueness
are guaranteed. In this note, we propose to combine the idea of internal and exter-
nal stability with the Lorenz order. In this way, a set of imputations V is said to
be Lorenz stable if it satisfies internal Lorenz stability (no element in V is Lorenz
dominated by other element in V) and external Lorenz stability (every element
outside V is Lorenz dominated by some element in V). Clearly, this definition
leads to select the Lorenz-maximal allocations in the imputation set. Other set
solution concepts, like the core (Gillies, 1959) or the equal division core (Selten,
1972), play a role in defining egalitarian solutions (see, for instance, Dutta and
Ray, 1989, Dutta and Ray 1991, Hougaard et al., 2001 or Arin and Iñarra, 2001)
but, as far as we know, the imputation set as a whole has not been considered to
make egalitarian comparisons.
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With this objective in mind, the paper is organized as follows. In Section 2
we introduce notation and terminology. Section 3 contains the main results. First
we find that the Lorenz stable set is a singleton and admits an easy formula to
be computed. We also provide an axiomatic characterization similar to the one
given by Dutta (1990) to characterize the weak constrained egalitarian solution of
Dutta and Ray (1989). Finally, in Section 4 we connects the Lorenz stable set with
the weak and the strong constrained egalitarian solutions of Dutta and Ray (1989,
1991).

2 Notation and terminology
The set of natural numbers N denotes the universe of potential players. A coali-
tion is a non-empty finite subset of N and let N denote the set of all non-empty
coalitions of N. A transferable utility coalitional game (a game) is a pair
(N, v) where N ∈ N is the set of players and v : 2N −→ R is the characteris-
tic function that assigns to each coalition S ⊆ N a real number v(S), with the
convention v(∅) = 0. Given S, T ∈ N , we use S ⊂ T to indicate strict inclu-
sion, that is S ⊆ T but S 6= T . By |S| we denote the cardinality of the coalition
S ∈ N . From now on we only consider games with at least two players. Thus,
N := {N | ∅ 6= N ⊆ N, |N | ≥ 2}. By Γ we denote the class of all games with
|N | ≥ 2.

Given N ∈ N , let RN stand for the space of real-valued vectors indexed by N ,
x = (xi)i∈N , and for all S ⊆ N , x(S) = ∑

i∈S xi, with the convention x(∅) = 0. For
each x ∈ RN and T ⊆ N , x|T denotes the restriction of x to T : x|T = (xi)i∈T ∈ RT .
Given two vectors x, y ∈ RN , x ≥ y if xi ≥ yi, for all i ∈ N . We say that x > y
if x ≥ y and for some j ∈ N , xj > yj. Moreover, x � y if xi > yi for all i ∈ N .
A set π = {P1, . . . , Pm}, where Pi ⊆ N for all i ∈ {1, . . . ,m}, with m ≤ |N |,
is a partition of N ∈ N if the following conditions hold: (i) Pi 6= ∅ for all
i ∈ {1, . . . ,m}, (ii) ∪mi=1Pi = N and (iii) Pi ∩ Pj = ∅, for all i, j ∈ {1, . . . ,m},
i 6= j. Given a game (N, v), a non-empty coalition T is an equity coalition if
v(S)
|S| ≤

v(T )
|T | for all ∅ 6= S ⊆ T .

The set of feasible payoff vectors of a game (N, v), with N ∈ N , is defined
by X∗(N, v) := {x ∈ RN |x(N) ≤ v(N)}. A solution on a class of games Γ′ ⊆ Γ,
is a mapping σ which associates with every N ∈ N and every game (N, v) ∈ Γ′
a subset σ(N, v) of X∗(N, v). Notice that σ is allowed to be empty. A solution σ
is single-valued if for all N ∈ N and all (N, v) ∈ Γ′, |σ(N, v)| = 1. Then, we
write x = σ(N, v) instead of {x} = σ(N, v). The pre-imputation set of (N, v)
is defined by X(N, v) := {x ∈ RN |x(N) = v(N)}, and the set of imputations
by I(N, v) := {x ∈ X(N, v) |x(i) ≥ v(i), for all i ∈ N}. A game is essential
if it has a non-empty imputation set. The core of (N, v) is the set of those
imputations where each coalition gets at least its worth, that is C(N, v) = {x ∈
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X(N, v) | x(S) ≥ v(S) for all S ⊆ N}. A game is balanced if it has a non-
empty core. A game (N, v) is superadditive if v(S) + v(T ) ≤ v(S ∪ T ) for all
S, T ⊆ N with S ∩ T = ∅, and convex (Shapley, 1971) if, for every S, T ⊆ N ,
v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

Given N ∈ N , for any x ∈ RN , denote by x̂ = (x̂1, . . . , x̂n) the vector obtained
from x by rearranging its coordinates in a non-increasing order, that is, x̂1 ≥
x̂2 ≥ . . . ≥ x̂n. For any two vectors y, x ∈ RN with y(N) = x(N), we say that y
weakly Lorenz dominates x, denoted by y �L x, if

∑k
j=1 ŷj ≤

∑k
j=1 x̂j, for all

k ∈ {1, . . . , |N |}. We say that y Lorenz dominates x, denoted by y �L x, if at
least one of the above inequalities is strict. Given a coalition S ∈ N and a set
A ⊆ RS, EA denotes the set of allocations that are Lorenz undominated within
A. That is, EA := {x ∈ A | there is no y ∈ A such that y �L x}.

Given a game (N, v), the weak Lorenz core (Dutta and Ray, 1989) is de-
fined in a recursive way as follows: the weak Lorenz core of a singleton coalition
is L({i}, v) = {v(i)}. Now suppose that the weak Lorenz core for all coalitions
of cardinality k or less have been defined, where 1 < k < |N |. The weak Lorenz
core of a coalition S ⊂ N of size (k + 1) is defined by L(S, v) = {x ∈ RS | x(S) =
v(S), and there is no T ⊂ S and y ∈ EL(T, v) such that y > x|T}. The weak
constrained egalitarian solution, denoted by EL, selects the vectors Lorenz-
undominated within the weak Lorenz core. For (N, v) ∈ Γ, |EL(N, v)| ≤ 1 (Dutta
and Ray, 1989). The strong Lorenz core (Dutta and Ray, 1991) is defined in a
similar way, but replacing > by �. Dutta and Ray (1991) show that the strong
Lorenz core, denoted by L∗, coincides with the equal division core when the
coalition structure is N and there are no restrictions on coalition formation (see
Selten, 1972 for details). That is, given an essential game (N, v), L∗(N, v) = {x ∈
I(N, v) | for all ∅ 6= S ⊂ N, there is i ∈ S with xi ≥ v(S)

|S| }. The strong con-
strained egalitarian solution chooses the vectors Lorenz-undominated within
the strong Lorenz core. The constrained egalitarian solution, denoted by CE,
is a single-valued solution defined for two person essential games as follows: let
(N, v) be an essential game with N = {i, j} and suppose, w.l.o.g., v(i) ≤ v(j),
then

CEj(N, v) = max
{
v(N)

2 , v(j)
}

and CEi(N, v) = v(N)− CEj(N, v). (1)

On the domain of convex games, the weak constrained egalitarian solution
of Dutta and Ray (1989) selects the core allocation which Lorenz dominates every
other point in the core. Moreover, it picks the payoff vector that is obtained by
the following algorithm: Let (N, v) be a convex game and EL(N, v) = {z}.
• Step 1: Define v1 = v. Then find the unique coalition T1 ⊆ N such that

for all T ⊆ N , (i) v1(T1)
|T1| ≥

v1(T )
|T | , and (ii) if v1(T1)

|T1| = v1(T )
|T | and T 6= T1,

then |T1| > |T |. Uniqueness of such a coalition is guaranteed by convexity of
(N, v). For all i ∈ T1, zi = v1(T1)

|T1| .
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• Step k: Suppose that T1, . . . , Tk−1 have been defined.

• Let Nk = N \ {T1 ∪ . . . ∪ Tk−1} and let (Nk, vk) be the marginal game
defined as follows: for all S ⊆ Nk,

vk(S) := v(T1 ∪ . . . ∪ Tk−1 ∪ S)− v(T1 ∪ . . . ∪ Tk−1), (2)

It can be shown that (Nk, vk) is convex. Then find the unique coalition Tk ⊆
Nk such that for all T ⊆ Nk, (i) vk(Tk)

|Tk|
≥ vk(T )

|T | , and (ii) if vk(Tk)
|Tk|

= vk(T )
|T | and

T 6= Tk, then |Tk| > |T |. For all i ∈ Tk, zi = vk(Tk)
|Tk|

= v(T1∪...∪Tk)−v(T1∪...∪Tk−1)
|Tk|

.

Given an essential game (N, v), for X ⊆ I(N, v) we denote by Lv(X) the set
of all imputations Lorenz dominated by some imputation of the set X. Formally,
Lv(X) = {y ∈ I(N, v) | ∃x ∈ X, x �L y}. A non-empty set of imputations
V ⊆ I(N, v) is a Lorenz stable set for the game (N, v) if it satisfies the next two
conditions:

1. V is internally Lorenz stable: no imputation in V Lorenz dominates another
imputation in V . Formally, V ∩ Lv(V) = ∅.

2. V is externally Lorenz stable: any imputation outside the set V is dominated
by some imputation in V . Formally, V ∪ Lv(V) = I(N, v).

3 The Lorenz stable set
On the domain of essential games, we find that the Lorenz stable set is a singleton
and admits a formula similar to that of the constrained equal awards rule for
bankruptcy problems.

Definition 1. Let (N, v) be an essential game. The vector Iv ∈ RN is defined as

Ivi := max{v(i), λ}, (3)

for all i ∈ N, where λ is chosen so as to achieve efficiency.

Theorem 1. Let (N, v) be an essential game. Then, there is a unique Lorenz
stable set V. Moreover, V = {Iv}.

Proof. Let (N, v) be an essential game with N = {1, . . . , n}. Define the game
(N, v∗) as follows: v∗(S) = ∑

i∈S v(i) for all S ⊂ N , and v∗(N) = v(N). Notice
that (N, v∗) is convex and C(N, v∗) = I(N, v). Since for convex games the egalitar-
ian solution Lorenz dominates every other point in the core, we only need to check
that EL(N, v∗) = {Iv}. Assume, w.l.o.g, v(1) ≥ . . . ≥ v(n). If v(1) ≤ v∗(N)

n
, then

EL(N, v∗) =
{
Iv =

(
v∗(N)
n
, . . . , v

∗(N)
n

)}
. Otherwise, take k ∈ {1, . . . , n− 1}, n ≥ 2,
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and define the vector yk :=
(
v(1), . . . , v(k), v(N)−(v(1)+...+v(k))

n−k , . . . , v(N)−(v(1)+...+v(k))
n−k

)
.

Observe that Iv = yk
∗
, where k∗ = min{k ∈ {1, . . . , n−1} | yki ≥ v(i) for all i ∈ N}.

Let P = {S1, . . . , Sm} be the partition of N generated by the Dutta and Ray (1989)
algorithm to compute EL(N, v∗). Denote EL(N, v∗) = {z}. Notice that m ≥ 2 be-
cause v(1) > v∗(N)

n
. It can be easily checked that zi = v(i) for all i ∈ Sh and all

h ∈ {1, . . . ,m− 1}, and zi =
v(N)−

∑
i∈N\Sm

v(i)
|Sm| for all i ∈ Sm. Hence, z = yk where

k = |S1∪ . . .∪Sm−1|. Suppose k > k∗. By the minimality of k∗, we have zi ≤ yk
∗
i for

all i ∈ {1, . . . , k∗, . . . , k}. Moreover, for all i > k, since i ∈ Sm and k ∈ Sm−1, we
have zi < zk = v(k) ≤ yk

∗
k = yk

∗
i . Then, z(N) < yk

∗(N) = v(N), a contradiction.
Hence, k = k∗ and EL(N, v∗) = {Iv}.

From Theorem 1 and the characterization of Lorenz domination given by Hardy
et al. (1934),1 it follows that the Lorenz stable solution selects the allocation in the
imputation set that minimize the Euclidean distance to the equal division payoff
vector. Formally, for all essential game (N, v),

Iv = arg min
x∈I(N,v)

∑
i∈N

(
xi −

v(N)
|N |

)2

. (4)

Next we introduce the properties that we will use to characterize axiomatically
the Lorenz stable set. All of them have been used upon several times in the
literature.

Let us denote by Γes the set of all essential games. Let σ be a solution on Γes,
we say that σ satisfies:

• Efficiency (EFF) if for all N ∈ N , all (N, v) ∈ Γes and all x ∈ σ(N, v), it
holds x(N) = v(N).

• Constrained egalitarianism (CE) if for all N ∈ N with |N | = 2, and all
(N, v) ∈ Γes, it holds σ(N, v) = CE(N, v).

• Projection consistency (PCONS) if for all N ∈ N , all (N, v) ∈ Γes,
all x ∈ σ(N, v) and all ∅ 6= T ⊂ N , it holds (T, rx(v)) ∈ Γes and x|T ∈
σ(T, rx(v)), where (T, rx(v)) is the projected reduced game of (N, v) relative
to x and T defined as follows:

rx(v)(S) :=
{
v(S) if S ⊂ T,
v(N)− x(N \ T ) if S = T.

(5)

On the domain of convex games, Dutta (1990) characterizes the weak con-
strained egalitarian solution (Dutta and Ray, 1989) by means of constrained egal-
itarianism and max-consistency, that is, consistency with respect to the Davis and

1If x and y are two vectors in Rn with
∑n
i1
xi =

∑n
i1
yi, the following statements are equiv-

alent: (a) x Lorenz dominates y; (b) for any strictly concave function U : R −→ R, we have∑n
i=1 U(xi) >

∑n
i=1 U(yi).
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Maschler (1965) reduced game. On the domain of essential games, by replacing
max-consistency by projection consistency we characterize the Lorenz stable set.2

Theorem 2. On the domain of essential games, the only single-valued solution
satisfying CE and PCONS is the Lorenz stable set.

Proof. CE is obvious. Next we prove PCONS. Let N ∈ N , (N, v) ∈ Γes, x = Iv
and (T, rx(v)) be the projected reduced game associated to ∅ 6= S ⊂ N and x.
Since x|T ∈ I(T, rx(v)), we have (T, rx(v)) ∈ Γes. Let y = Irx(v) be the Lorenz
stable set of (T, rx(v)) and suppose y 6= x|T . Then, y �L x|T . Now consider the
vector z = (x|N\T , y) ∈ RN . Since z ∈ I(N, v), x �L z, which implies x|T �L y,
a contradiction.3 Hence, x|T = y. To prove uniqueness, let σ be a single-valued
solution on Γes satisfying CE and PCONS. For |N | = 2, uniqueness follows from
CE. Let (N, v) ∈ Γes with N = {1, 2, . . . , n}, n ≥ 3, and x = σ(N, v). First observe
that CE and PCONS imply EFF, that is, x(N) = v(N). Let T = {i, j} ⊂ N . By
CE and PCONS, x|T = σ(T, rx(v)) = CE(T, rx(v)). Thus, x ∈ I(N, v). If x1 =
. . . = xn, then x = Iv. Otherwise, suppose, w.l.o.g., x1 > . . . > xk+1 = . . . = xn,
for some k ∈ {1, . . . , n − 1}. For i ∈ {1, . . . , k}, let T = {i, i + 1}. By PCONS,
x|T = CE(T, rx(v)). Since xi > xi+1, xi = v(i) for all i ∈ {1, . . . , k}. Now, by EFF
we obtain xi = v(N)−(v(1)+...+v(k))

n−k for all i ∈ {k + 1, . . . , n}. Thus, for all i ∈ N,

xi = max{v(i), λ} being λ = v(N)−(v(1)+...+v(k))
n−k , and x = Iv.

The axioms in Theorem 2 are independent. For instance, the solution σ1 de-
fined, for all N ∈ N and all (N, v) ∈ Γes, as σ1(N, v) =

(
v(N)
|N | , . . . ,

v(N)
|N |

)
, satisfies

PCONS but not CE. The solution σ2 defined, for all N ∈ N and all (N, v) ∈ Γes,
as σ2(N, v) = CE(N, v) if |N | = 2, and σ2(N, v) = (v(i))i∈N otherwise, satisfies
CE but not PCONS.

4 Connecting the egalitarian solutions of Dutta
and Ray (1989, 1991)

Dutta and Ray (1991) characterize the class of superadditive games in which the
weak constrained egalitarian allocation (Dutta and Ray, 1989) and their strong
counterpart (Dutta and Ray, 1991) coincide. Here we show that, on the domain
of all games, the unique weak constrained egalitarian allocation happens to be a
strong if and only if the two set of allocations are singleton containing the Lorenz

2Projection consistency has been used to characterize, among others, the equal division core
(Bhattacharya, 2004) or the undominated core (Llerena and Rafels, 2007).

3Let N be a finite set of players, and let S ⊆ N , S 6= ∅. If xS , yS ∈ RS , xS(S) = yS(S),
and zN\S ∈ RN\S , then xS Lorenz dominates yS if and only if

(
xS , zN\S

)
Lorenz dominates(

yS , zN\S
)
. This remark is stated in Hougaard et al. (2001) page 153, and it is based on

Theorem 108 of Hardy et al. (1934).
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stable allocation. Consequently, for superadditive games we find an easy way to
check when coincidence occurs.

Theorem 3. Let (N, v) be an game. Then, the following statements are equivalent:

(i) EL(N, v) ∩ EL∗(N, v) 6= ∅.

(ii) EL(N, v) = {Iv}.

(iii) EL(N, v) = EL∗(N, v) 6= ∅.

Proof. (i) ⇒ (ii): Let EL(N, v) ∩ EL∗(N, v) = {y} and let us assume, w.l.o.g.,
that y1 ≥ y2 ≥ . . . ≥ yn. If y1 = yn, then y =

(
v(N)
|N | , . . . ,

v(N)
|N |

)
and so y = Iv.

If y1 > yn, then T = {i ∈ N | yi > yn} 6= ∅. Let j∗ ∈ T , by Lemma 2 of Dutta
and Ray (1991)4 there exists an equity coalition R containing j∗ and such that
v(R)
|R| = yj∗ and R ⊂ {i ∈ N | yi < yj∗} ∪ {j∗}. If |R| = 1, then yj∗ = v(j∗).
Otherwise, if |R| ≥ 2, then EL(R, v) =

{(
v(R)
|R| , . . . ,

v(R)
|R|

)}
. Since y ∈ EL(N, v)

there exists i∗ ∈ R such that yi∗ > v(R)
|R| = yj∗ , getting a contradiction. Then

R = {j∗}. Thus, yi = v(i) for all i ∈ T and, by efficiency, yi = v(N)−
∑
j∈T v(j)

|N |−|T | , for

all i ∈ N \T . We know that Iv =
(
v(1), . . . , v(k), v(N)−

∑k

i=1 v(i)
n−k , . . . ,

v(N)−
∑k

i=1 v(i)
n−k

)
where k = min

{
j ∈ N | v(N)−

∑j

i=1 v(i)
n−j ≥ v(j + 1)

}
. Since y ∈ I(N, v), |T | = t ≥ k.

Suppose t > k. For all i ∈ {1, . . . , k}, Ivi = yi = v(i), for all i ∈ {k + 1, . . . , t},
Ivi ≥ v(i) = yi, and for all i ∈ {t+ 1, . . . , n}, Ivi = Ivt ≥ v(t) = y(t) > yi. But
then, v(N) = Iv(N) > y(N) in contradiction with y(N) = v(N). Hence, k = t and
y = Iv.

The implication (ii) ⇒ (iii) follows from L(N, v) ⊆ L∗(N, v) ⊆ I(N, v) and the
fact that Iv Lorenz dominates every other point in the imputation set. Obviously
(iii) ⇒ (i).

As a consequence of Theorem 3 we obtain the following corollary for superad-
ditive games.

Corollary 1. Let (N, v) be a superadditive game. Then, the following statement
are equivalent:

(i) EL(N, v) = EL∗(N, v).

(ii) Iv ∈ C(N, v).
4Lemma 2 in Dutta and Ray (1991) states the following: For some S ⊆ N , let y ∈ EL∗(S, v).

For any i ∈ S, if yi > min
j∈S
yj, then there exists an equity coalition T containing i and satisfying:

(i) v(T )
|T | = yi and (ii) T ⊂ {k ∈ S | yk < yi} ∪ {i}.
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Proof. Notice first that for superadditive games, EL∗(N, v) 6= ∅. From Theorem
3, EL(N, v) = EL∗(N, v) 6= ∅ implies EL(N, v) = EL∗(N, v) = {Iv}. On this
domain, both solution coincide when the unique strong constrained egalitarian al-
location belongs to the core (Dutta and Ray, 1991), thus Iv ∈ C(N, v). Conversely,
since C(N, v) ⊆ L(N, v) ⊆ L∗(N, v) and Iv Lorenz dominates every other point in
the imputation set, we have EL(N, v) = EL∗(N, v) = {Iv}.
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