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Moral Hazard in Repeated Procurement of Services∗

Patricia Esteve-González†

Abstract
This paper analyzes repeated procurement of services as a four-stage game divided into two periods. In

each period there is (1) a contest stage à la Tullock in which the principal selects an agent and (2) a

service stage in which the selected agent provides a service. Since this service effort is non-verifiable,

the principal faces a moral hazard problem at the service stages. This work considers how the principal

should design the period-two contest to mitigate the moral hazard problem in the period-one service

stage and to maximize total service and contest efforts. It is shown that the principal must take account

of the agent’s past service effort in the period-two contest success function. The results indicate that

the optimal way to introduce this ‘bias’ is to choose a certain degree of complementarity between past

service and current contest efforts. This result shows that contests with ‘additive bias’ (‘multiplicative

bias’) are optimal in incentive problems when effort cost is low (high). Furthermore, it is shown that

the severity of the moral hazard problem increases with the cost of service effort (compared to the cost

of contest effort) and the number of agents. Finally, the results are extended to more general contest

success functions.
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Key words: Biased contests; Moral Hazard; Repeated Game; Incentives.

∗I am indebted to Matthias Dahm and Bernd Theilen for reading this paper and providing detailed comments.
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mura, René Kirkegaard, Inés Macho-Stadler, Carolina Manzano, Jordi Massó, Juan de Dios Moreno-Ternero,
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1 Introduction

The literature on contests analyzes competitive situations in which agents compete by exert-

ing sunk effort in order to maximize their probability of winning a prize. The models in this

literature enable explanations of the results observed in many situations such as, for example,

rent-seeking, promotional competition, labor market tournaments, sports competitions and so-

cial conflicts.1 These models focus on agents’ incentives to choose effort in the contest stage(s)

but do not analyze what happens once the winner is determined. In many situations, the contest

winner and the contest designer enter into a principal-agent relationship in which the former

provides goods or services to the latter (in a service stage) the quality of which is not perfectly

observable or verifiable. In fact, many authors illustrate their analysis with examples that in-

volve a principal-agent relationship after the contest stage without explicitly modeling such a

conflict of interest in the service stage (Che and Gale 2003; Corchón and Dahm 2011; Fullerton

and McAfee 1999; Taylor 1995).2 However, this has been studied by Siegel (2010) who considers

that the winner of a contest must exert effort not only during the contest stage (unconditional

effort) but also after the contest stage (conditional effort to winning). He labels these kinds

of contest simple contests and assumes that the winner commits to exerting a certain effort

after the contest which is determined ex ante. This paper extends such simple contests in two

directions. Firstly, the commitment assumption is relaxed to allow an analysis of situations in

which effort is non-verifiable and, therefore, an ex ante commitment is not possible. Secondly,

repeated simple contests are considered to model repeated procurement of services as a repeated

game with two periods and a contest stage and a service stage in each period. This allows an

analysis of how past performance should be used in future contest design to solve moral hazard

problems at the service stages in the procurement of services.

This paper focuses on a repeated contest with two symmetric agents and a designer to

model a situation with repeated procurement of services. There are two periods, 1 and 2,

with a contest stage and a service stage in each period (contest 1, service 1, contest 2 and

service 2). As a consequence, the relationship between the contest 1 winner and the designer

is potentially repeated in the second period. Effort at both contest and service stages is non-

verifiable. This paper analyzes how contest 2 should be designed to mitigate the moral hazard

1See Konrad (2009) for an overview of this literature.
2For example, Corchon and Dahm (2011) illustrate their model with the Olympic Games. Although they

only consider the sunk efforts undertaken at the contest stage, they recognize that, once the Games are assigned,
the quality of such Games is related to the effort that the host city exerts at the service stage. Then, there is
a positive relationship between effort and service quality, and there may be a moral hazard problem when such
effort is not contractible.

2



problem in service 1. This is achieved by introducing a ‘bias’ that takes account of service 1

effort in the second period Contest Success Function (CSF). With such a biased contest, the

designer can give an advantage (the bias) to the contest 1 winner if he did not shirk at service

1.3 The relationship between the bias (the service 1 effort) and the contest 2 effort is modeled

by a Constant Elasticity of Substitution (CES) function. This allows the designer to establish

several types of bias, including additive and multiplicative biases which are the most used in

the literature. The designer has lexicographic preferences and values service efforts more than

contest efforts. The main objective of the analysis is to determine how the designer should

choose the weight of the service 1 effort (compared to the contest 2 effort) and the degree of

complementarity between efforts to maximize, firstly, the total effort exerted by all agents in

the service stages and, secondly, total contest effort.

When efforts are perfect substitutes and effort cost is low, it is shown that the designer’s

optimal strategy is to weight the service 1 and contest 2 efforts equally. This is because an

increase in the weight of service 1 effort in the second period CSF has two effects. Firstly,

it increases the contest 1 winner’s returns of exerting high effort at service 1 and contest 2.

Secondly, it decreases the contest 1 loser’s returns of exerting high effort at contest 2. When

service 1 and contest 2 efforts have similar weights (in the second period CSF), the designer

achieves the highest service and contest efforts from both agents because the advantage of the

service 1 provider is neither too high (to discourage the contest 1 loser to compete at contest

2) nor too low (such that shirking in service 1 is advantageous for the contest 1 winner). For

higher effort cost, the designer should give a higher weight to the service 1 effort. Though this

will not allow her to achieve maximum contest effort, it allows her to resolve the moral hazard

problem at the service 1 stage. Moreover, the results show that it will be more difficult for the

designer to solve the moral hazard problem when agents are impatient and value the present

(period 1) more than the future (period 2).

If a more general relationship between service 1 and contest 2 efforts (the CES function) is

considered in the second period CSF when efforts have the same weight, it is shown that the

designer should choose the degree of complementarity between efforts according to the cost of

such efforts. When effort cost is low, the degree of substitutability should be high because both

agents are more willing to exert high effort in all periods. For medium effort cost, the degree

of substitutability should be neither too low nor too high. On the one hand, if the degree of

substitutability is too high, this reduces the contest 1 winner’s return from service 1 effort in

3Notice that this paper refers to any agent as he and to the designer as she.
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contest 2 and, therefore, his incentive to shirk increases. On the other hand, if the degree of

substitutability is too low, both agents have lower incentives to choose high effort at contest

2. Therefore, a medium degree of substitutability allows the designer to achieve the maximum

contest and service efforts. Finally, for higher effort cost, the designer should choose a low

degree of substitutability as a result of preferring service effort over contest effort. However, it

will never be optimal for the designer to consider service 1 effort and contest 2 effort as perfect

complements. Again, it is shown that the moral hazard problem will be more severe when

agents are impatient.

Analyzing service procurement procedures is relevant for many public and private situations

because of the economic importance of the services sector. In 2010, the services sector repre-

sented 70% of the world’s GDP (World Bank 2013). Repeated service provision after contests,

the situation studied in this paper, is commonly used in public procurement which represents

around 20% of the GDP in OECD countries and around 14% in that of non-OECD countries

(Audet 2002). Thus, in 2012, the US government allocated 516.6 billion dollars to public pro-

curement contracts (US Government Spending 2013), and, in 2009, European countries allocated

more than 420 billion euros to public procurement contracts (European Commission 2011). The

European Union’s contracting rules establish three kinds of procedures (open, restricted and

negotiated procedures) in which the contracting authority selects an economic operator who is

then contracted to provide a service. Past performance is one of the criteria that the contracting

authority can take into account in addition to the cost bidder, the number of services included,

the candidate’s curriculum vitae, the corporate social responsibility, etc. However, past perfor-

mance usually has a low weighting in future contests and, especially when Treasury is pressured,

it is not taken into account and contracts are assigned to the lowest cost bidder.4 The results

from this paper show that this is not always the optimal policy because past performance should

be considered together with current contest bids to mitigate possible moral hazard problems

at the service stages. As an example, consider a fireworks contest organized every July by the

town council of Tarragona, Spain. The winner of this contest is hired to provide the fireworks

in the town festival in September but is not allowed to participate in the next year’s fireworks

contest. However, as a consequence of this, it has been commonly recognized that contest win-

ners perform higher quality fireworks during the contests than during the festival. Modifying

the selection mechanism by introducing a biased contest that takes account of past performance

4Operators, however, can be excluded from future contests because they have not paid their social security
contributions, have been found guilty of grave professional misconduct, etc.
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could resolve this problem.5

This paper is closely related to two strands in the literature on contests. As noted above,

while most contests are implicitly based on a principal-agent relationship after the contest stage,

this has not been explicitly modeled until the contribution of Siegel (2010). In his model, agents

compete in an all-pay auction and there is ex-ante commitment to exert a certain ex-post service

effort. He finds that increasing the importance of the service effort (relative to the contest effort)

in the all-pay auction increases agents’ total equilibrium effort (contest and service). While this

increases the win probability of the agent who values the prize highest and reduces the win

probability of the agent who values the prize lowest, he finds that, in equilibrium, all agents will

increase their efforts to win the prize. This paper extends Siegel’s analysis to a repeated contest-

service situation which allows examination of contexts in which an ex ante commitment is not

possible and an incentive mechanism is required to avoid moral hazard problems. Increasing

the importance of service effort in this context has a completely different objective. Firstly, it

is past service effort that is used in the CSF and not future service effort. Secondly, the optimal

level of service effort is determined by the trade-off between solving the incentive problem at

the service stage and providing a high degree of competition at the contest stage. This paper

shows that this trade-off is not trivial and depends on the degree of substitutability of contest

2 and service 1 efforts in the second period CSF, the expense of the effort and the agents’

time preferences. Melkonyan (2013) considers a variation of Siegel’s model in which the CSF

is a Tullock lottery, and contest and service efforts are related through a CES function. While

he also analyses contest and service stages and assumes that agents commit to future service

effort (thus, as in Siegel 2010, there is no incentive problem in the service provision), his results

highlight the role of the degree of substitutability between service and contest effort in providing

competition at the contest stage, an effect that is also present in this paper.

The literature on repeated biased contests is the second strand of the literature the paper

is related to.6 Meyer (1992) analyzes promotions as incentive mechanisms through a model

with two Lazear and Rosen (1981) contests and ‘additive’ biases. The first contest is an interim

evaluation and the second contest is a promotion. She finds that, with homogeneous agents,

the principal’s optimal choice to maximize total effort is to add an advantage at the promotion

in favor of the winner of the interim evaluation. This additive bias enhances competition in the

5There are many other applications of the results in this paper which include research tournaments, electoral
campaigns or promotion tournaments in firms.

6Regarding repeated service provision with moral hazard, a related paper is Cesi and Albano (2008). However,
in their paper the authors focus on service effort and do not consider repeated contests with sunk efforts.
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interim evaluation because agents compete for having an advantage in the promotion. Then, at

the promotion, the winner of the interim evaluation can use his advantage to reduce his effort

(and costs). However, when the advantage is large enough, the loser of the interim evaluation is

discouraged in the promotion and competition for the promotion decreases. Therefore, a biased

contest creates a trade-off between interim evaluation and promotion efforts. This trade-off is

also found in repeated contests with ‘multiplicative’ bias.7 For example, Beviá and Corchón

(2013) consider conflict situations with two contests where the probability of winning the first

contest is introduced as a bias that multiplies agents’ efforts in the second contest. As a result,

agents compete in the first contest for winning an advantage in the second contest, and agents

compete in the second contest for keeping their strengths. These authors show the existence of a

discouragement effect in the second contest which increases with the size of the bias. Therefore,

to maximize total contest efforts, the size of the bias is limited from below and above.8 Another

example of a multiplicative bias in repeated contests is Ridlon and Shin (2013). These authors

show that higher competition in contest 1 (which allows the winner to obtain an advantage in

contest 2) compensates lower competition in contest 2 when the size of the bias is low enough.9

In this paper, there is also a trade-off between service 1 and contest 2 efforts. However, the bias

introduced in contest 2 is used to solve the moral hazard problem at the previous service stage

and not to increase competition at previous contest stage.

The literature has studied different forms of introducing biases into contests. Dahm and

Porteiro (2008) analyze a Tullock CSF with a general function that relates the bias with the

contest effort. Special cases of this general function are the two most commonly used biases:

the additive bias and the multiplicative bias. They find that the additive bias decreases the

stronger agent’s incentives to exert high effort while the multiplicative bias discourages the

weaker agent. This paper considers a CES function to relate the bias (service 1 effort) with

the contest 2 effort. Although this function is less general than the one used by Dahm and

Porteiro (2008), it highlights the importance of the degree of substitution between efforts for

the results that are obtained. A multiplicative bias implies that efforts are more complementary

7The multiplicative bias in the Tullock CSF was introduced by Clark and Riis (1998).
8Möller (2012) and Clark and Nilssen (2013) also find a similar trade-off considering learning effects in repeated

contests that allow agents to increase their efficiency in future contests. Jofre-Bonet and Pesendorfer (2000)
support empirically the existence of such learning effects for the case of highway paving contracts in California.
Similar to learning effects, other authors consider pre-contest investment that allows agents to increase their
efficiency in contests (see Fu and Lu 2009 and Munster 2007).

9Ridlon and Shin (2013) also show that total contest effort is maximized with a multiplicative bias favouring
(handicapping) the contest 1 winner when agents are homogeneous (heterogeneous). Alternatively, Moldovanu
et al. (2012) introduce awards and punishments in the prize structure instead of biasing contests to maximize
total contest effort.
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than under an additive bias. This paper analyzes how agents’ incentives change when the degree

of substitutability is reduced and to what extent introducing a bias in the CSF under repeated

procurement can mitigate the moral hazard problem at the service stage.10

The rest of this paper is organized as follows. The next section describes the model and

the main results are provided in Section 3. In Section 4, the model is extended and additional

results are given. Finally, concluding remarks are found in Section 5.

2 The model

Consider three players, a designer and two identical agents, and two periods, t = 1 and t = 2.

In each period, the designer selects one of the agents through a contest (contest stage) and this

winning agent is then hired to provide a service (service stage). In each period, once the service

is executed, all players observe the winner’s effort at the service stage and the designer pays the

winner 1 monetary unit. Previously, in t = 0, the designer decides the general setting of the

second contest. Figure 1 summarizes the timing of the model.

The strategies of agents are their efforts, which are binary: high or low effort.11 At the

t-period contest stage (contest t), agents simultaneously choose their efforts; ; an agent i’s effort

is ei,t ∈ {0, 1}.The winner and the loser of contest t are denoted by w and l respectively. Then,

at service t, the winner chooses his effort sw,t ∈ {0, 1}. The same cost function is assumed for all

stages and all periods with ci,t(ei,t = 1) = cw,t(sw,t = 1) = c > 0 and ci,t(ei,t = 0) = cw,t(sw,t =

0) = 0.12 Given that effort is not contractible, as it is non-verifiable by a third party in court,

the designer commits to pay the winner of the contest stage even when he shirks at the service

stage (chooses low effort).

Contestants are risk neutral and maximize their expected utility,

E(Ui,1) = Pi,1 (1− cw,1(sw,1) + δ [Pw,2[1− cw,2(sw,2)]− cw,2(ew,2)]) +

+ (1− Pi,1)δ [Pl,2[1− cw,2(sw,2)]− cl,2(el,2)]− ci,1(ei,1). (1)

10Hölmstrom (1979) is the first work suggesting that reputation can be used to mitigate moral hazard. Moral
hazard problems have been studied extensively in the contract theory literature (see Bolton and Dewatripont
2005 and Laffont and Tirole 1993). Contests and biased contests appear in this literature as a way to provide
incentives to agents when their outputs are unobservable or non-verifiable. See also Gibbons and Waldman (1999)
for a review on incentive provision by contracts and tournaments.

11Agents’ effort can be interpreted as the quality of their activity. For example, Corchon and Dahm (2011)
observe that the quality of Olympic Games increases with the investment of the hosting city. This example
clarifies the positive relationship between quality and effort.

12The cost function is a positive constant c that multiplies effort at any stage. This assumption and other
aspects of the model will be generalized later.
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At contest 1, the representative agent i exerts effort ei,1 and wins the contest with probability

Pi,1. If he wins the contest, he is hired at service 1 and exerts the effort sw,1. Given this effort,

he wins contest 2 with probability Pw,2. On the other hand, if agent i loses contest 1, he is not

hired at service 1 and wins contest 2 with probability Pl,2. The winner of contest 2 will be hired

at service 2 and exert effort sw,2. The profits of the second period are discounted by δ ≤ 1.

The probability of winning any contest is the simple logistic CSF first introduced by Tullock

(1980),13

Pi,t(ê1,t, ê2,t) =


êi,t

êi,t+êj,t
if êi,t + êj,t > 0 and i 6= j

1
2 if êi,t + êj,t = 0 and i 6= j

, (2)

where êi,t is the effective effort of agent i at contest t.14 At contest 1, this effective effort is equal

to the current effort for any agent, êi,1 = ei,1, because agents do not have a past. At contest 2,

the effective effort of the loser of contest 1 is his current effort because he is not involved in the

provision of service 1. However, at contest 2, the designer can take into account the service 1

effort of the service 1 provider. Equation (3) defines agent w’s effective effort at contest 2 which

is a CES function,

êw,2 =
(
γsρw,1 + eρw,2

)1/ρ
, where γ ≥ 0 and 0 < ρ ≤ 1. (3)

On the one hand, γ represents the weight that the designer gives to the past effort (sw,1). Past

effort can be more important (γ ≥ 1) or less important (γ ≤ 1) than current effort (ew,2).

On the other hand, ρ determines the elasticity of substitution between efforts, which is equal

to 1/(1 − ρ). When ρ → 1, efforts sw,1 and ew,2 are perfect substitutes and the elasticity of

substitution is infinite. At the other extreme, when ρ → −∞, efforts are perfect complements

and the elasticity of substitution is zero. In general, when ρ decreases, the complementarity

between efforts increases. We focus on ρ ∈ (0, 1] because equation (3) is not well defined when

an effort is zero (low) and ρ ≤ 0. Notice also that efforts in equation (3) are additive when

ρ→ 1 and multiplicative when ρ→ 0.15 As figure 1 shows, the designer determines the contest

setting in t = 0 by choosing γ and ρ.

13The Tullock CSF is axiomatized by Skaperdas (1996), and Corchon and Dahm (2010) give a microfoundation
for this CSF. Contestants are uncertain about a characteristic of the decider (the designer) that is relevant for
her decision in addition to effort. This fits our model because evaluating services of the same quality (effort)
is rather subjective. Then, agents might win the contest probabilistically, and the Tullock CSF relates agents’
efforts with their win probabilities.

14Under the alternative assumption that the win probability is zero when no agent exerts effort, analogous
results to Lemma 1 (below) hold.

15Notice that êw,2 → γsw,1ew,2 when ρ→ 0. Clark and Riis (1998) axiomatize this class of CSF.
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The designer’s objective is to choose the pair (ρ, γ) that maximizes total effort in all peri-

ods.16 Her preferences on agents’ effort are lexicographic: she prefers high effort in services (first

priority) over high effort in contests (secondary priority). The model is solved by backwards

induction to find the Subgame Perfect Equilibria (SPE) in behavior strategies.

The case where δ = 0 can be interpreted as a non-repeated game with just one period

(t = 1). Then, the winner of the contest stage always shirks at the service stage because his

relationship with the designer ends. However, at the contest stage both agents would like to

compete as long as effort is cheap enough. This result is formalized in Lemma 1 (a proof can

be found in Appendix 6.1).17

Lemma 1 Consider δ = 0. There is always moral hazard because the winner of the contest

always shirks at the service stage. Behaviors at the contest stage depend on the cost of effort,

more precisely:

• When effort cost is low, c < 1/2, the unique SPE has both agents exerting high effort at

the contest stage (maximum contest effort).

• When effort cost is high, c > 1/2, the unique SPE has both agents exerting low effort at

the contest stage (minimum contest effort).

It should be noted that, apart from the functional form specified in equation (2), the studied

situation is a special case of a Siegel (2010) simple contest in which commitment is not assumed.

First, agents exert effort at the contest stage (the unconditional or sunk cost) and, then, the

winner has to exert effort at the service stage (the conditional cost to winning).18

The next section focuses on the potential repeated relationship between the designer and

the provider of service 1 in period 2 and the setting with repeated procurement of services is

analyzed. In such a context, the designer can avoid the moral hazard problem at service 1

16Note that there are situations where efforts at contest stages, in addition to efforts at service stages, are
useful for the designer. For example, in public procurement, contests give a sign of transparency and information
from the public agencies to citizens. In the fireworks example, contests are performances that increase social
welfare. In promotion tournaments, agents’ activity can be profitable for the firm. There are further comments
on other designer’s preferences in the concluding section.

17When c = 1/2, agents are completely indifferent about their effort choice at the contest stage. There is,
hence, a multiplicity of equilibria in behavior strategies. Since the situation is symmetric, focusing on symmetric
behavior strategies opens the door for agents choosing any probability of entering the contest “in between” the
two pure strategies described in Lemma 1.

18In Siegel (2010), the parameter 0 ≤ α ≤ 1 represents the part of the cost which is sunk and C is the total
cost of the game for the winner. Then, αC = ci(ei) is the sunk cost at the contest stage and (1 − α)C = ci(si)
is the conditional cost exerted by the winner at the service stage. Given that Siegel does not allow for shirking
at the service stage, our setting reduces to ci(si = 1) = ci(ei = 1) = c. Equation (1), thus, is a special case of
Siegel’s setting in which C = 2c and α = 1/2.

9



by considering the winner’s effort at service 1 when resolving contest 2. The conditions under

which potential repetition of a contract with the same agent is most effective are analyzed. From

Lemma 1 we know that when the effort cost is high (c > 1/2), there is no incentive to compete

at the contest stage and moral hazard at the service stage cannot be avoided. Therefore, in what

follows, we focus on the case c < 1/2 to analyze optimal procurement design under repeated

contracting.

3 Results

3.1 The weight of the past when efforts are perfect substitutes

Consider the designer’s problem of the optimal choice of γ, the bias that allows her to weight

past (service) effort differently from current (contest) effort in the second period CSF. Assuming

that ρ = 1 and δ = 1, equation (3) is

êw,2 = γsw,1 + ew,2. (4)

The game is solved by backward induction. At service 2, the winner of contest 2 shirks

(sw,2 = 0) as high effort is costly but does not produce future returns (see Lemma 1). At

contest 2, an agent’s probability of winning depends on his effective effort. If the designer does

not take into account the agent’s past behavior, i.e. sets γ = 0, the effective effort is equal

to the current effort for both agents. Therefore, the winner of the previous contest has no

advantage over the loser of that contest. This situation corresponds to the case in Lemma 1.

On the contrary, if the designer considers also the agent’s past behavior, i.e. chooses γ > 0,

the previous winner has an advantage over the loser in winning contest 2 when he chose high

effort at service 1 as shown in equation (4). For example, consider that the designer weights

present and past effort in contest 2 equally (γ = 1). Then, the winner of contest 1 has twice the

probability of also winning contest 2 if he does not shirk in service 1 and if both agents choose

high effort in contest 2. Thus, by considering past effort in contest 2, the designer creates

incentives for the winner of contest 1 not to shirk at service 1. Whether the moral hazard

problem at service 1 can be avoided depends on effort cost c. It turns out that when the past

is less important than the present (γ ≤ 1), the moral hazard problem is avoided only when

effort is cheap enough. However, when the past is more important than the present (γ > 1),

the moral hazard problem in service 1 is avoided for any c < 1/2. Proposition 1 states these

10



results formally (all calculations are in Appendix 6.2).

Proposition 1 When γ > 0, potential repetition can avoid moral hazard at service 1. At

service 2, the winner of contest 2 always shirks. Four different types of SPE exist:

SPE I When c < min {γ/(2γ + 4), 1/((γ + 2)(γ + 1))}, moral hazard is mitigated and contests

effort is maximum. The unique SPE has both agents exerting high effort in both contests,

and the winner of contest 1 also chooses high effort at service 1.

SPE II When γ ≤ 1 and γ/(2γ + 4) < c < 1/2, moral hazard cannot be avoided but contests

effort is maximum. The unique SPE has both agents exerting high effort in both contests,

but the winner of contest 1 shirks in service 1.

SPE III When γ > 1 and 1/((γ + 2)(γ + 1)) < c < 1/(γ + 1), moral hazard is mitigated but

contests effort is not maximum. The unique SPE has both agents exerting high effort in

contest 1. The winner of contest 1 exerts high effort at service 1 and no effort at contest

2. The loser of contest 1 exerts high effort at contest 2.

SPE IV When γ > 1 and c > 1/(γ + 1), moral hazard is mitigated but contest 2 effort is

minimum. The unique SPE has both agents exerting high effort at contest 1 and no effort

at contest 2. The winner of contest 1 exerts high effort at service 1.

Figure 2 displays the SPE of Proposition 1.19 In order to develop an intuition for the results,

consider first the left area of Figure 2 in which the weight of the past is lower than 1. The lower

the parameter γ, the more severe the moral hazard problem. The concave part of the solid

thick line separates the area in which the winner of contest 1 shirks (Region II) from the area

in which he exerts high effort (Region I).

Now, consider the right area of Figure 2 in which the weight of the past is larger than 1.

When γ and effort cost increase, the returns of high effort at contest 2 decrease while the returns

of exerting high effort at service 1 increase. Consequently, moral hazard is always avoided in

period 1 (sw,1 = 1). Taking advantage of his high effort in service 1, the winner of contest 1

exerts no effort in contest 2 when effort is expensive enough (Region III). The convex part of

the solid thick line separates the area in which the winner of contest 1 exerts high effort in

contest 2 (Region I) from the area in which he shirks in contest 2 (Region III). In Region IV,

the loser of contest 1 is completely discouraged from competing in contest 2 because effort is

19The name of regions in Figure 2 corresponds to the name of SPE in Proposition 1.
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rather expensive and his rival, the winner in contest 1, has an advantage because of his past

service effort. In this case, at contest 2, the loser of contest 1 is pre-empted by the winner of

contest 1. The dashed thick line separates the area where the loser of contest 1 exerts high

effort in contest 2 (Region III) from the area in which he shirks in contest 2 (Region IV).

Given that the designer’s utility is lexicographic (high service effort has priority over high

contest effort), she has the following preference relationship over the SPE: SPEI � SPEIII �

SPEIV � SPEII. Figure 2 shows that the designer can achieve her most preferred outcome

most easily by choosing γ = 1. In other words, when γ = 1, SPE I is possible for higher effort

cost (c < 1/6) than for other values of γ different from 1. However, SPE I is not achievable for

larger values of effort cost. The designer can then always avoid her least preferred outcome SPE

II with low effort at service 1 by choosing γ > 1. In this case, she should choose γ not too high

as she prefers SPE III over SPE IV. Summarizing these results, it is found that the designer’s

optimal choice of γ is weighting past service and present contest effort almost equally (γ = 1)

in the second period CSF.

To assess the importance of the discount factor for the results in Proposition 1, Figure 3

considers two alternative scenarios with discount factors lower than 1 (δ = 0.8 and δ = 0.2).

In these cases, it is shown that γ = 1 is no longer the optimal choice for the designer. This is

because more impatient agents must be compensated by a higher weight of past service effort

in contest 2. As δ decreases, the optimal value of γ must increase to maintain the incentive of

the winner of contest 1 to exert high effort in service 1. When agents give no value to the future

(δ = 0), agents play a one period game and the results of Lemma 1 apply: SPE II is the only

equilibrium outcome. Focusing on the case with δ = 1, in the next subsection it is assumed

that γ = 1 and the effect of changing the degree of substitution between efforts in equation (3)

on agents’ incentives to exert effort is analyzed.

3.2 The role of complementarities between equally weighted efforts

Consider the designer’s optimal choice of ρ which determines the elasticity of substitution be-

tween past effort (sw,1) and current effort (ew,2) in the second period CSF. Assuming γ = 1 and

δ = 1,20 the provider of service 1 has the following effective effort at contest 2,

êw,2 = (sρw,1 + eρw,2)
1
ρ . (5)

20Note that γ = 1 is the optimal choice for the designer in the previous subsection only when δ = 1. Note also
that for γ = 0, stating any ρ has no effect on agents’ incentives.

12



The game is solved by backward induction. Again, the winner of contest 2 shirks at service

2. At contest 2, the agent’s win probability depends on the effective efforts. If the designer

states ρ = 1, both efforts are perfect substitutes as in equation (4). However, when ρ < 1, some

complementarity between efforts is introduced, and the winner of contest 1 has more incentives

to exert high effort at both service 1 and contest 2. For example, consider that the loser of

contest 1 exerts high effort at contest 2 and the winner of contest 1 exerts high effort at both

service 1 and contest 2. Then, the winner of contest 1 has at least twice the probability of also

winning contest 2 as his opponent since the gap between both probabilities increases when ρ

decreases.21 In equilibrium, whether the moral hazard problem at service 1 is avoided depends

again on effort cost. It turns out that when the complementarity is high enough, the moral

hazard is avoided for any c < 1/2. However, this implies a reduction of competition in contest

2. Proposition 2 states these results formally (all calculations are in Appendix 6.3).22

Proposition 2 For any 0 < ρ ≤ 1, potential repetition can avoid moral hazard at service 1. At

service 2, the winner of contest 2 always shirks. Three different types of SPE exist:

SPE I When c < min
{

1/(21/ρ + 1), (21/ρ − 1)/(2(21/ρ + 1))
}

, moral hazard is mitigated and

contests effort is maximum. The unique SPE has both agents exerting high effort in

contests 1 and 2, and the winner of contest 1 also chooses high effort at service 1.

SPE II When (21/ρ − 1)/(2(21/ρ + 1)) < c < 1/2, moral hazard cannot be avoided but contests

effort is maximum. The unique SPE has both agents exerting high effort in contests 1 and

2, but the winner of contest 1 shirks in service 1.

SPE V When 0 < ρ < ln(2)/ln(3) and 1/(21/ρ + 1) < c < (21/ρ − 1)/(2(21/ρ + 1)), moral

hazard is mitigated but contests effort is not maximum. The unique SPE has both agents

exerting high effort at contest 1 and the winner of contest 1 also exerts high effort at

service 1. However, at contest 2, the winner of contest 1 exerts high effort with probability

rw,2 = (21/ρ + 1)/(21/ρ− 1)− 2c(21/ρ + 1)/(21/ρ− 1), and the loser of contest 1 exerts high

effort with probability ql,2 = 2c(21/ρ + 1)/(21/ρ − 1).

Figure 4 illustrates the Regions for each SPE in Proposition 2. Consider first the right

area of Figure 4 in which efforts sw,1 and ew,2 are better substitutes (ρ → 1). The lower the

21The cause of this implication is that sρw,1 + eρw,2 is larger than one when both efforts are high. Given that

the effective effort (sρw,1 + eρw,2)
1
ρ is convex for ρ ∈ (0, 1], it increases when ρ decreases.

22To be precise, when δ = 1 and the cost of effort is (21/ρ−1)/(2(21/ρ+1)) < c < 1/2, the winner of contest 1 is
indifferent whether to shirk or not at service 1. Therefore, there is SPE III in addition to SPE II (see Proposition
1). Since the contest 1 winner’s indifference disappears when δ < 1, we focus here on SPE II.
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parameter ρ, the less severe the moral hazard problem because the returns of exerting high

effort twice (at service 1 and contest 2) increase and the winner of contest 1 is more willing

to exert high effort at higher cost. The thick solid line separates the area in which the winner

of contest 1 shirks (Region II) from the area in which he exerts high effort (Region I). Note

that when the designer decreases ρ, the winner of contest 1’s probability of winning contest 2

increases exponentially if he exerted high effort at service 1 while the opposite effect is found

for the loser of contest 1. The thick solid line represents the first effect while the dashed thick

line represents the latter one.

Now consider the left of Figure 4 in which efforts are more complementary (0 < ρ < ln2/ln3).

Between the solid thick line and the dashed thick line there is Region V which corresponds to

SPE V. Here, moral hazard in period 1 is avoided and agents play behavior strategies at contest

2. When c = 1/4, both agents have the same probability of exerting high effort. If effort

cost increases, the winner of contest 1 has fewer incentives to exert high effort because of his

advantage from not shirking, and, consequently, the loser of contest 1 has more incentives to

exert high effort. If, however, effort cost is lower than 1/4, the winner of contest 1 has more

incentives to exert high effort and this discourages the loser of contest 1.23

The designer has the following preference relationship over the SPE: SPEI � SPEV �

SPEII. Figure 4 shows that the designer can achieve her preferred outcome most easily by

choosing ρ = ln2/ln3 (SPE I is possible for c < 1/4). However, when effort is too expensive and

SPE I is not achievable, the designer can avoid her least preferred outcome with moral hazard

at service 1, SPE II, by choosing ρ < ln2/ln3. By increasing complementarity, she has a high

effort in service 1 at the expense of decreasing competition in contest 2. In this situation, it

seems that the designer should increase complementarity as much as possible in order to obtain

SPE V, which is the unique alternative to SPE II.

Consider the limit case ρ→ 0 with the effective effort

êw,2 = sw,1ew,2. (6)

Note that equation (6) gives the minimum effort between sw,1 and ew,2 because of the assumed

values for the binary effort. Therefore, this effective effort considers past and current efforts as

perfect complements. On the one hand, when any of both efforts is equal to zero, such effective

effort is equal to zero. On the other hand, when the winner of contest 1 exerts high service 1

23These behaviors are consistent with the other SPE. When c = 1/(21/ρ + 1), (rw,2, ql,2) = (1, 2/(21/ρ − 1))
and when c = (21/ρ − 1)/2(21/ρ + 1), (rw,2, ql,2) = (2/(21/ρ − 1), 1).
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and contest 2 efforts, his effective effort at contest 2 is never higher than 1 and he then has no

advantage in exerting high effort at service 1. The results show that SPE I is achievable for

cheaper effort but moral hazard cannot be avoided for higher values of effort cost. Proposition

3 states these results formally (all calculations are in Appendix 6.4).

Proposition 3 When ρ→ 0, potential repetition can avoid moral hazard at the period 1 service

stage. At service 2, the winner of contest 2 always shirks. Two different types of SPE exist:

SPE I When c < 1/4, moral hazard is mitigated and contests effort is maximum. The unique

SPE has both agents exerting high effort in both contests, and the winner of contest 1 also

chooses high effort at service 1.

SPE VI When 1/4 < c < 1/2, there is moral hazard and contests effort is not maximum. The

unique SPE has both agents exerting high effort at contest 1, the winner shirks at both

service 1 and contest 2, and only the loser of contest 1 exerts high effort at contest 2.

In equilibrium, the winner of contest 1 always chooses sw,1 = ew,2. Then, when effort

is cheap enough, he still has incentives to choose high effort in both service 1 and contest 2

(sw,1 = ew,2 = 1) although he has no advantage in contest 2. However, when effort cost is

higher, his incentives to exert high effort twice decrease because it is too expensive and he has

no advantage in contest 2. That is, the win probability of the service 1 provider at contest 2

is much the same as his opponent’s win probability. Therefore, when complementarity is too

high, the bias of the second period CSF stops being an advantage and the winner of contest

1 has incentives to shirk not only at service 1, but also at contest 2. Then, only the loser of

contest 1 has incentives to exert high effort at contest 2.

The designer has the following preference relationship over the SPE: SPEI � SPEV I. Note

that the designer’s most preferred equilibrium is achievable for c < 1/4, as in Proposition 2.

However, for higher effort costs in Proposition 3, moral hazard at service 1 cannot be avoided and

contests effort cannot be maximized. In other words, SPEII � SPEV I. The discontinuity

between the results of Propositions 2 and 3 is due to the assumption of binary effort. This

model cannot analyze the negative interval ρ ∈ (−∞, 0] but the results of both propositions are

explanatory enough to conclude that increasing complementarities between efforts avoids moral

hazard as long as such level of complementarity is not too high.

The CES function from equation (5) can be analyzed as the level of linearity of such a

function in addition to the degree of complementarity between efforts. The level of linearity
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between the past and the present, determined by ρ, changes the relationship between efforts sw,1

and ew,2 going from perfect complements to perfect substitutes. In these two extreme points,

equation (5) is linear. In the first case, when ρ = 1, the bias is additive and an increase from

a low to a high effort ew,2 increases the effective effort in one unit. In the second case, when

ρ → 0, the bias is multiplicative and an increase in ew,2 increases the effective effort in sw,1.

However, when ρ ∈ (0, 1), an increase in ew,2 increases the effective effort in (sρw,1+1)
1
ρ
−1

, which

is higher than one if the contest 1 winner exerted high effort at service 1.24 Therefore, reducing

the linearity of the relationship between efforts from both extremes increases the contest 1

winner’s returns of exerting high effort twice, mitigating the studied moral hazard problem.

The designer’s optimal choice of the degree of complementarity between efforts depends on how

expensive the effort is: the higher the cost, the higher the complementarity between efforts, so

long as they are not perfect complements.

In relation to the importance of the discount factor in the results of Proposition 2, Figure

5 considers two alternative scenarios with the discount factors δ = 0.8 and δ = 0.2. When

the discount factor decreases, the optimal ρ is lower than ln2/ln3. Then, similar to Subsection

3.1, when agents are more impatient, the designer must increase the degree of complementarity

between efforts in the second period CSF to increase the dependence between efforts from

different periods, i.e. sw,1 and ew,2. As δ decreases, the optimal value of ρ also decreases in

order to give enough incentives to the winner of contest 1 to exert high effort at service 1.

However, when agents give no value to the future (δ → 0), results of Lemma 1 apply and SPE

II is the only equilibrium.

Summing up, the studied moral hazard problem is mitigated when the second period CSF

takes account of past and current efforts as more substitute efforts, so long as effort cost is

not too high and agents are not too impatient. In such cases, the designer’s optimal choice

is considering a bit of complementarity between efforts sw,1 and ew,2, around ρ = ln2/ln3,

depending on c and δ. This increases the service 1 provider’s returns of exerting high effort at

both service 1 and contest 2. However, when efforts are too complementary, the bias in the

second period CSF (service 1 effort) is more a condition to participate in contest 2 than an

advantage for the service 1 provider. Therefore, the moral hazard problem is less (more) severe

when the degree of substitution (complementarity) of both efforts is high enough.

Regarding only the two most common biases used by the literature (the multiplicative and

24Consider the effective effort of the contest 1 winner from equation (5) when ρ ∈ (0, 1). If the winner of contest
1 did shirk at service 1, exerting high effort at contest 1 increases his effective effort in one unit. However, if he

exerted high effort at service 1, exerting high effort at contest 1 increases his effective effort in 2
1
ρ
−1

.
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additive ones), the designer should consider an additive bias in the second period CSF instead

of a multiplicative bias. In this model, the multiplicative bias corresponds to considering efforts

as perfect complements and does not provide the correct incentives to avoid moral hazard in

service stages and to enhance competition in contest stages. However, the additive bias provides

an advantage to the previous service provider that increases the probability of avoiding moral

hazard at service 1, although it may dampen the competition at contest 2.

In this model, introducing an additive bias is more optimal than introducing a multiplicative

bias. Then, the next section focuses on the additive bias to generalize some assumptions of the

model in Section 2. Consider a base model where the service 1 provider’s effective effort in

contest 2 has perfect substitutes efforts (ρ = 1) with the same weight (γ = 1),

êw,2 = sw,1 + ew,2. (7)

The results with this effective effort (base model) are a special case of Propositions 1 and 2 for

ρ = γ = 1 which are summarized in Corollary 1.25

Corollary 1 When γ = ρ = 1, potential repetition can avoid moral hazard at service 1. At

service 2, agent w always shirks. Two different types of SPE exist:

SPE I When c < δ/6, moral hazard is mitigated and contests effort is maximum. The unique

SPE has both players exert high effort in both contests, and the winner of contest 1 also

chooses high effort at service 1.

SPE II When δ/6 < c < 1/2, moral hazard cannot be avoided but contests effort is maximum.

The unique SPE has both agents exert high effort in both contests, but the winner of contest

1 shirks in service 1.

Subsection 4.1 considers a larger pool of potential providers, and Subsection 4.2 relax the

assumption that the cost of effort in both contest stage and service stage are equal. Then, Sub-

section 4.3 turn to the all-pay auction CSF and, finally, the last subsection considers continuous

efforts with a generalization of the Tullock’s CSF.

25Notice that there is continuity when effort cost is c = δ/6. There are multiple equilibria, in all of which both
agents compete in contest stages and the winner of contest 2 shirks at service 2. However, the winner of contest 1
is indifferent between exerting effort or not at service 1. Notice also that agent w is indifferent between shirking
or not when δ/6 < c < 1/2 and δ = 1, see footnote 22.
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4 Extensions

4.1 Large pool of providers

This subsection extends the base model to several agents (two or more) as in many procurement

of services situations.26 Consider the base model but now there are n agents where n is any

positive natural number equal or higher than 2. Then, the CSF is

Pi,t(ê1,t, ê2,t, . . . , êi,t, . . . , ên,t) =


êi,t∑N
j=1 êj,t

if
∑N

j=1 êj,t > 0

1
N otherwise

, (8)

where the effective effort is given by equation (7).

When c > 1/N , agents do not exert effort either at the contest stages or at the service

stages. Then, the results focus on c < 1/N . It is found that the moral hazard problem can

be avoided when effort is cheap enough. Nevertheless, this problem is more severe when either

agents are more impatient (the discount factor δ decreases) or the number of agents increases.

Proposition 4 states these results more formally (all calculations are in Appendix 6.5).27

Proposition 4 Potential repetition can avoid moral hazard at service 1. At service 2, the

winner of contest 2 always shirks. Two different types of SPE exist:

SPE I When c < δ(N−1)/(N2+N), moral hazard is mitigated and contests effort is maximum.

The SPE has all agents exerting high effort in both contests, and the winner of contest 1

also chooses high effort at service 1.

SPE II When δ(N − 1)/(N2 + N) < c < 1/N , moral hazard cannot be avoided but contests

effort is maximum. The SPE has all agents exerting high effort in both contests, but the

winner of contest 1 shirks in service 1.

Notice that the severity of the moral hazard problem increases with the number of agents

because, then, the contest 1 winner competes against more competitors and there is more

uncertainty about the repetition of his contractual relationship with the designer. In other

words, the larger the pool of providers, the lower the contest 1 winner’s probability of winning

contest 2. Consequently, the designer should consider a few number of competitors in order

26For instance, the public procurement negotiated procedures in the European Union states that public agencies
must invite to three candidates at least.

27Note that the winner of contest 1 is indifferent between shirking or not at service 1 when c = δ(N−1)/(N2 +
N).

18



to reduce the uncertainty about the future repetition of the contract while keeping the level of

competition.28

4.2 The cost of the effort depends on the stage

Now it is analyzed the base model with two agents but considering that the effort cost at contest

stages can differ from the effort cost at service stages. Then, the service effort cost function is

cs(sw,t) = cssw,t and the contest effort cost function is cc(ei,t) = ccei,t. In this case, the results

depend on which stage has a more expensive effort.

Firstly, consider that service effort is more expensive than contest effort (cs ≥ cc). The

results, which are analogous to Corollary 1, are explained formally in Proposition 5 (all calcu-

lations are in Appendix 6.6).

Proposition 5 When cs ≥ cc or both cs ≤ cc and 0 < δcc < δ/6, potential repetition can avoid

moral hazard at service 1. At service 2, agent w always shirks. Two different types of SPE

exist:

SPE I When cs < δ/6, moral hazard is mitigated and contests effort is maximum. The unique

SPE has both agents exerting high effort in both contests, and the winner of contest 1 also

chooses high effort at service 1.

SPE II When δ/6 < cs < 1/2, moral hazard cannot be avoided but contests effort is maximum.

The unique SPE has both agents exerting high effort in both contests, but the winner of

contest 1 shirks at service 1.

Consider now that contest effort is more expensive than service effort (cc ≥ cs). It turns out

that a trade-off between high service 1 effort and high contest 2 efforts may appear. Proposition

6 explains the results formally (all calculations are in Appendix 6.6).

Proposition 6 When both cc ≥ cs and δ/6 < δcc < δ1/2, potential repetition can avoid moral

hazard at service 2. At service 2, the winner of contest 2 always shirks. Three different types

of SPE exist:

SPE I When cs < δ/6, moral hazard is mitigated and contests effort is maximum. The unique

SPE has both agents exerting high effort in both contests, and the winner of contest 1 also

chooses high effort at service 1.

28This conclusion is consistent with Che and Gale (2003) and Fullerton and McAfee (1999).
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SPE II When δ/6 < δcc < cs < 1/2, moral hazard cannot be avoided but contests effort is

maximum. The SPE has both agents exerting high effort in both contests, but the winner

of contest 1 shirks in service 1.

SPE III When δ/6 < cs < δcc < 1/2, moral hazard is mitigated but contest effort is not

maximum. The SPE has both atents exerting high effort in contest 1. The winner of

contest 1 exerts high effort at service 1 and no effort at contest 2. The loser of contest 1

exerts high effort at contest 2.

In Propositions 5 and 6, SPE I is achieved when both kinds of effort cost are low enough.

However, the moral hazard problem is less severe when the service effort cost is lower than the

contest effort cost. In this case, when the service effort cost is still lower than the discounted

contest effort cost but effort costs are too high to achieve SPE I, the designer can achieve SPE

III as an alternative to SPE II.29 Then, the moral hazard problem is solved to the detriment of

competition at contest 2.

4.3 All Pay Auction CSF

In order to check the robustness of the base case result, this subsection analyzes the base model

with all-pay auctions. This CSF is a deterministic function which is used commonly in the

contest literature (see, for example, Corchón and Dahm 2011; Epstein et al. 2011; Konrad

2009; Siegel 2010),

Pi,t(êi,t, êj,t) =


1 if êi,t > êj,t and i 6= j

1/2 if êi,t = êj,t and i 6= j

0 if êj,t > êi,t and i 6= j

. (9)

The effective effort is given by equation (7). When effort cost is low enough, moral hazard is

avoided but the designer’s most preferred equilibrium (SPE I) does not exist for any effort cost.

Proposition 7 states the results more formally (all calculations are in Appendix 6.7),

Proposition 7 With all-pay auctions at contest stages, potential repetition can avoid moral

hazard at service 1. At service 2, the winner of contest 2 always shirks. Two different types of

SPE exist:

29As in Section 3.1, the designer’s preferences on the SPE are SPEI � SPEIII � SPEII.
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SPE VII When c < δ/2, moral hazard is mitigated but contests effort is not maximum. The

SPE has both agents exerting high effort at contest 1, and the winner of contest 1 also

chooses high effort at service 1. However, in contest 2, the winner of contest 1 exerts

high effort with probability rw,2 = 1− 2c, and the loser of contest 1 exerts high effort with

probability ql,2 = 2c.

SPE II When δ/2 < c < 1/2, moral hazard cannot be avoided but contests effort is maximum.

The SPE has both agents exerting high effort in both contests, but the winner of contest 1

shirks in service 1.

Notice that the alternative SPE VII to SPE I avoids moral hazard at service 1 for a large

interval of effort cost (c < δ/2), but competition at contest 2 is lower. In SPE VII both

agents have the same probability of competing at contest 2 when c = 1/4. When the effort

cost increases, the winner of contest 1 has lower incentives to exert high effort because of his

advantage and this increases the incentives of the loser of contest 1 to exert high effort at contest

2. When the effort cost decreases from c = 1/4, the winner of contest 1 has higher incentives

to exert high effort and this desincentives the loser of contest 1. Notice that SPE VII is very

similar to SPE V (Section 3.2) but with lower probabilities of exerting high effort at contest 2

for both agents.

Notice also that the interval for SPE II with all-pay auctions is smaller than with the Tullock

CSF. Comparing Proposition 7 with Corollary 1, we can see that the designer should choose

Tullock contests when effort cost is quite low because she can obtain SPE I which is preferred

to SPE VII. On the other hand, when effort cost is higher and SPE I is not achievable in the

Tullock contests (δ/6 < c < δ/2), the designer should state all-pay auctions because she can

obtain SPE VII as an alternative to SPE II. Finally, for high effort cost (δ/2 < c < 1/2), the

designer is indifferent between choosing any of both CSF because any of them cannot avoid

moral hazard in service 1. However, if agents are not impatient (δ → 1), the designer should

organize all-pay auctions in contest stages for higher effort costs.

4.4 Continuous efforts and a generalized CSF

In order to check the robustness of the base case result, this subsection analyzes the base model

with continuous efforts ei,t, sw,t ∈ <+, as in many literature on contests (Beviá and Corchón

2012; Che and Gale 2003; Epstein et al. 2011).30 This allow us to generalize the Tullock CSF

30Assuming continuous efforts means assuming not only that agents can choose between infinite number of
strategies, but also that the designer can observe these strategies.
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in Section 2,

Pi,t(êi,t, êj,t) =


êri,t

êri,t+ê
r
j,t

if êri,t + êrj,t > 0

1
2 otherwise

, (10)

where the exponent can be interpreted as the degree of noise in the selection process and

satisfies r ∈ (0, 2].31 Here, the effective effort is equation (4) instead of equation (7) because

moral hazard is not avoided with the last.

The results show that both agents exert the same effective effort el,2 = êw,2 = r/4c at contest

2.32 This interior solution implies that there is a trade-off between the contest 2 effort of the

provider of service 1 and the size of the weight of service 1 effort at the second period CSF.

Proposition 8 states this result more formally (all calculations are in Appendix 6.8),

Proposition 8 When efforts are continuous, potential repetition can avoid moral hazard at

service 1. At service 2, the winner of contest 2 always shirks. Two different types of SPE exist:

• When δγ ≤ 1, moral hazard cannot be avoided. The SPE has both agents exerting effort

ei,t = r/4c at contest stages, and the winner of contest 1 shirks sw,t = 0 at service 1.33

• When δγ ≥ 1, moral hazard is mitigated but efforts decrease in contest 2. The SPE has

both players exerting the same effort at contest 1 ei,1 = (r/4c)[1+(δr/4)−(r/4γ)], and the

winner of contest 1 exerts the effort sw,1 = r/(4cγ) at service 1. However, this agent does

not compete at the period 2 contest stage ew,2 = 0 while his opponent does el,2 = r/4c.

Notice that efforts at contest stages decrease when the effort cost increases and when r

decreases (noise increases).34 On the one hand, when the past is not important (δγ ≤ 1), moral

hazard is not avoided at service 1. This result is analogous to SPE II in the discrete game.

On the other hand, when the past is important enough (δγ ≥ 1), the moral hazard problem is

mitigated but competition at contest 2 decreases.35 Given these results, the designer’s optimal

choice is γ = 1/δ because while moral hazard in service 1 is avoided with a sufficiently high

31At contest 2, when the second order condition of agent l’s expected utility is considered, the usual condition
of concavity is found, r < 2. However, agent w’s condition of concavity is r < 2 + 4cγsw,1. Since 2 ≤ 2 + 4cγsw,1,
the level of noise must be r < 2 to maximize both agents’ expected utilities. See Pérez-Castrillo and Verdier
(1992).

32The fact that el,2 = êw,2 comes from the addition of effective effort. See Dahm and Porteiro (2008) for a
related result in a different context and other function forms.

33Note that the equilibrium efforts when the past is not important (δγ ≤ 1) coincide with the well known result
of the Tullock contest with homogeneous contestants, see Konrad (2009).

34A very high noise is analogous to ignoring the past: the probability of winning contest 2 is one half regardless
the effort at service 1.

35The winner of contest 1 prefers not to shirk at service 1 and not compete at contest 2 because costs are
lower ((r/4)[1 + (δr/4) − (r/4γ)] + (r/4γ) + 0) than when he shirks at service 1 but competes at contest 2
((r/4) + 0 + (δr/4)).
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weight of the past (δγ ≥ 1), such effort at service 1 decreases with γ.36 This result supports

the results of the base model.

5 Conclusions

This paper studies a moral hazard problem in repeated procurement of services by a repeated

model. There are two periods and two homogeneous and risk-neutral agents who compete each

period in a contest stage for being hired and provide a service in a service stage. The designer

wants to maximize, in the first place, the total service effort and, in the second place, the total

contest effort. In order to mitigate the moral hazard problem and maximize service efforts,

the designer chooses how to bias the second contest to reward (punish) the first provider who

exerted a high (low) effort in the first service. In the second contest, the past service effort is

considered as a bias and a CES function to relate past service effort with current contest effort

in the second period CSF. The results show that the designer’s optimal choice is to consider

these efforts more (less) substitutes when effort cost is low (high). This model differs from other

repeated contest models in considering a principal-agent relationship between the winner and

the designer after the contest in a service stage and, moreover, analyzing the incentive effects

of repeating the model on the studied moral hazard problem.

The results of this paper provide some valuable insights into how to improve procedures

commonly applied in the repeated procurement of services. Past performance should be taken

into account in the design of future contests to mitigate moral hazard problems in the provision

of services. However, it can disincentivize competition in future contests. Therefore, it becomes

particularly important to determine the optimal degree to which contests should be biased

towards past performance. It is shown that when effort cost for the agents is high, the designer

should penalize a former service provider for low performance in future contests (i.e., allow for

a high degree of complementarity between service and contest effort in the CSF, as for example

with a multiplicative bias). On the other hand, when effort cost is low, the designer should allow

a former service provider to compensate low performance in past services by higher competition

effort in future contests (i.e., allow for a low degree of complementarity between service and

contest effort in the CSF, as for example with an additive bias). Furthermore, the optimal

degree of complementarity between past service effort and future contests effort increases when

agents become more impatient or the future repetition of the procurement procedure is more

36When δγ = 1, the winner of contest 1 is indifferent between shirking or not at service 1. Then, he mus state
a δγ slightly higher than one. However, the sum of both efforts sw,1 and ew,2 will be never larger than r/4c.
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uncertain.

Another feature of the results is the assessment between additive and multiplicative biases

in contests. While the models in the literature have commonly used additive biases and multi-

plicative biases without evaluating whether these biases are optimal from the designer’s point of

view (if there is a designer), this paper provides an analysis of the conditions under which either

additive biases or multiplicative biases are indeed the designer’s best choice. The theoretical

results of this paper might also be valuable for a designer with different preferences from those

assumed here.37 Some interesting extensions of the model are left for future research, such as

the role of risk aversion, heterogeneous agents and different CSF in the determination of the

optimal bias.

6 Appendix

6.1 Proof of Lemma 1

In the service stage, the winner of the contest will shirk because the relationship with the

designer ends here and his payoffs are higher 1 − c < 1.38 Anticipating this, both agents

maximize the following expected utility for the reperesentative agent i,

E(Ui(r, q)) = r

[
q

(
1

2
− c
)

+ (1− q)(1− c)
]

+ (1− r)
[
(1− q)1

2

]
, (11)

where r (q) is the probability that agent i (j) exerts high effort. Taking the derivative, we

obtain
∂E(Ui(r, q))

∂r
=

1

2
− c. (12)

The agents’ behaviour strategy at the contest stage depends on how expensive the effort

is. When it is higher than 1/2, the first derivative is negative and no agent exerts high effort

in the competition. If the cost of effort is lower than 1/2, the first derivative is positive and,

then, both agents exert high effort at the contest stage. Finally, when the cost of effort is equal

to 1/2, both agents are indifferent between exerting high effort or not. Given the symmetric

situation, we expect symmetric behaviour strategies with q = r.

37For example, consider a designer who wants to mitigate moral hazard at service stages but consider contest
efforts wasteful. In this case, her optimal choice is considering efforts as more complements even when effort
cost is low. See Epstein et al. (2011) for a general model in which the designer can have different preferences on
contests efforts.

38This result is repeated in all service 2 of the repeated model.
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6.2 Proof of Proposition 1

The winner of contest 2 shirks in providing service 2. At contest 2, the effective effort of contest

1 winner (agent w) depends on his effort at service 1. If he shirked, his effective effort is his

current effort and Lemma 1 describes the period 2 outcome. If, however, agent w exerted high

effort at service 1, his expected utility is

E(Uw,2(rw,2, ql,2|sw,1 = 1)) = rw,2

[
ql,2

(
1 + γ

2 + γ
− c
)

+ (1− ql,2)(1− c)
]

+

+ (1− rw,2)
[
ql,2

(
γ

1 + γ

)
+ (1− ql,2)(1)

]
. (13)

r (q) is the probability that agent w (l) exerts high effort. The derivative is

∂E(Uw,2(rw,2, ql,2|xw,1 = 1))

∂rw,2
=

ql,2
(1 + γ)(2 + γ)

− c. (14)

Agent l maximizes

E(Ul,2(rw,2, ql,2|sw,1 = 1)) = ql,2

[
rw,2

(
1

(γ + 2)
− c
)

+ (1− rw,2)
(

1

(γ + 1)
− c
)]

. (15)

The derivative is

∂E(Ul,2(rw,2, ql,2|sw,1 = 1))

∂ql,2
= (γ + 2)− c(1 + γ)(2 + γ)− rw,2. (16)

When γ ≤ 1, both agents’ reaction functions imply

{rw,2, ql,2} =


{0, 1} if 1/((1 + γ)(2 + γ)) < c < 1/2

{rw,2, 1} if c = 1/((1 + γ)(2 + γ)), where rw,2 ∈ [0, 1]

{1, 1} if 0 < c < 1/((1 + γ)(2 + γ))

. (17)

When γ > 1, both agents’ reaction functions imply

{rw,2, ql,2} =



{0, 0} if 1/(1 + γ) < c < 1/2

{0, ql,2} if c = 1/(1 + γ), where ql,2 ∈ [0, 1]

{0, 1} if 1/((1 + γ)(2 + γ)) < c < 1/(1 + γ)

{rw,2, 1} if c = 1/((1 + γ)(2 + γ)), where rw,2 ∈ [0, 1]

{1, 1} if 0 < c < 1/((1 + γ)(2 + γ))

. (18)
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At service 1, agent w maximizes his expected utility,

E(Uw,1(xw,1)) = xw,1[1− c+ δE(Uw,2(rw,2, ql,2)|sw,1 = 1)]+

+ (1− xw,1)[1 + δE(Uw,2(rw,2, ql,2)|sw,1 = 0)], (19)

were xw,1 is the probability that agent w exerts high effort. Taking the derivative, we obtain

∂E(Uw,1(xw,1))

∂xw,1
= δ [E(Uw,2(rw,2, ql,2)|sw,1 = 1)− E(Uw,2(rw,2, ql,2)|sw,1 = 0)]− c. (20)

His behaviour strategy when γ > 1 is not to shirk. When γ ≤ 1, his behaviour strategy is

summarized in the following equation,

xw,1(c) =


0 if γ/(2γ + 4) < c < 1/2

[0, 1] if c = γ/(2γ + 4)

1 if 0 < c < γ/(2γ + 4)

. (21)

At contest 1, both agents have no past and their effective efforts are their current efforts

by definition. Given that results of each agent are symmetric, we solve this stage for the

representative agent i who maximizes his expected utility

E(Ui,1(ri,1, qj,1)) = ri,1qj,1

(
1

2
E(Uw,1(xw,1)) +

δ

2
E(Ul,2(rw,2, ql,2)|xw,1)− c

)
+

+ ri,1(1− qj,1) (E(Uw,1(xw,1))− c) +

+ (1− rw,2)qj,1 (δE(Ul,2(rw,2, ql,2)|xw,1)) +

+ (1− rw,2)(1− qj,1)
(

1

2
E(Uw,1(xw,1)) +

δ

2
E(Ul,2(rw,2, ql,2)|xw,1)

)
.

(22)

ri,1 (qj,1) denotes agent i’s (j’s) probability of exerting high effort at contest 1. The derivative

is
∂E(Ui,1(ri,1, qj,1))

∂ri,1
=

1

2
E(Uw,1(xw,1))−

δ

2
E(Ul,2(rw,2, ql,2)|xw,1)− c. (23)

Focussing on δ = 1, we obtain that the agent i’s response function for any γ > 0 is exerting

high effort.
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The SPE sequence of efforts on the path {(ri,1, qj,1), (xw,1), (rw,2, ql,2), (xw,2)} when γ ≤ 1 is


{(1, 1), (0), (1, 1), (0)} if γ

(2γ+4) < c < 1
2

{(1, 1), (xw,1), (1, 1), (0)} if c = γ
(2γ+4) , where xw,1 ∈ [0, 1]

{(1, 1), (1), (1, 1), (0)} if 0 < c < γ
(2γ+4)

. (24)

And the obtained SPE sequence of efforts on the path when γ > 1 can be described as



{(1, 1), (1), (0, 0), (0)} if 1
(1+γ) < c < 1

2

{(1, 1), (1), (0, ql,2), (0)} if c = 1
(1+γ) , where ql,2 ∈ [0, 1]

{(1, 1), (1), (0, 1), (0)} if 1
(1+γ)(2+γ) < c < 1

(1+γ)

{(1, 1), (1), (rw,2, 1), (0)} if c = 1
(1+γ)(2+γ) , where rw,2 ∈ [0, 1]

{(1, 1), (1), (1, 1), (0)} if 0 < c < 1
(1+γ)(2+γ)

. (25)

6.3 Proof of Proposition 2

The winner of contest 2 shirks in providing service 2. At contest 2, Lemma 1 describes the

period 2 outcome if agent w shirked at service 1. Otherwise, his expected utility is

E(Uw,2(rw,2, ql,2|sw,1 = 1)) = rw,2

[
ql,2

(
21/ρ

21/ρ + 1
− c

)
+ (1− ql,2)(1− c)

]
+

+ (1− rw,2)
[
ql,2

(
1

2

)
+ (1− ql,2)(1)

]
. (26)

The derivative is

∂E(Uw,2(rw,2, ql,2|xw,1 = 1))

∂rw,2
= ql,2(2

1/ρ − 1)− 2c(21/ρ + 1). (27)

Agent l maximizes

E(Ul,2(rw,2, ql,2|sw,1 = 1)) = ql,2

[
rw,2

(
1

21/ρ + 1
− c
)

+ (1− rw,2)
(

1

2
− c
)]

. (28)

The derivative is

∂E(Ul,2(rw,2, ql,2|sw,1 = 1))

∂ql,2
=

21/ρ + 1

21/ρ − 1
(1− 2c)− rw,2. (29)
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When ln(2)/ln(3) ≤ ρ ≤ 1, both agents’ reaction functions imply

{rw,2, ql,2} =


{0, 1} if (21/ρ − 1)/(2(21/ρ + 1)) < c < 1/2

{rw,2, 1} if c = (21/ρ − 1)/(2(21/ρ + 1)), where rw,2 ∈ [0, 1]

{1, 1} if 0 < c < (21/ρ − 1)/(2(21/ρ + 1))

. (30)

When 0 ≤ ρ ≤ ln(2)/ln(3), both agents’ reaction functions imply

{rw,2, ql,2} =



{0, 1} if (21/ρ − 1)/(2(21/ρ + 1)) < c < 1/2

{rw,2, 1} if c = (21/ρ − 1)/(2(21/ρ + 1)){
(21/ρ+1)(1−2c)

(21/ρ−1) , 2c(2
1/ρ+1)

(21/ρ−1)

}
if 1/(21/ρ + 1) < c < (21/ρ − 1)/(2(21/ρ + 1))

{1, ql,2} if c = 1/(21/ρ + 1)

{1, 1} if 0 < c < 1/(21/ρ + 1)

.

(31)

At service 1, agent w maximizes his expected utility given equation (19). His behaviour

strategy for any parameter 0 ≤ ρ ≤ 1 is summarized in the following equation,

xw,1(c) =

 [0, 1] if (21/ρ − 1)/(2(21/ρ + 1)) ≤ c < 1/2

1 if 0 < c < (21/ρ − 1)/(2(21/ρ + 1))
. (32)

At contest 1, both agents maximize their expected utility which is equation (22) when δ = 1.

We obtain again that both agents always exert high effort at contest 1. To sum up, the obtained

SPE can be described by the sequence of efforts on the path {(ri,1, qj,1), (xw,1), (rw,2, ql,2), (xw,2)}

when ln(2)/ln(3) ≤ ρ ≤ 1,


{(1, 1), (0), (1, 1), (0)} if (21/ρ−1)

2(21/ρ+1)
< c < 1

2 and δ < 1

{(1, 1), (xw,1), (1, 1), (0)} if c = 21/ρ−1
2(21/ρ+1)

, where xw,1 = [0, 1]

{(1, 1), (1), (1, 1), (0)} if 0 < c < 21/ρ−1
2(21/ρ+1)

. (33)

The obtained SPE through the sequence of efforts on the path when 0 < ρ < ln(2)/ln(3) can

be described as

{(1, 1), (0), (1, 1), (0)} if 21/ρ−1

2(21/ρ+1)
< c < 1

2
and δ < 1

{(1, 1), (xw,1), (rw,2, 1), (0)} if c = 21/ρ−1

2(21/ρ+1)
, where xw,1 = [0, 1], rw,2 = [ 1−2c

2c
, 1]{

(1, 1), (1), ( (21/ρ+1)(1−2c)

21/ρ−1
, 2c(21/ρ+1)

21/ρ−1
), (0)

}
if 1

21/ρ+1
< c < 21/ρ−1

2(21/ρ+1)

{(1, 1), (1), (1, ql,2), (0)} if c = 1

21/ρ+1
, where ql,2 ∈ [ 2

21/ρ−1
, 1]

{(1, 1), (1), (1, 1), (0)} if 0 < c < 1

21/ρ+1

(34)
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.

6.4 Proof of Proposition 3

The winner of contest 2 shirks in providing service 2. At contest 2, the agent w’s effective effort

depends on his effort at service 1. If he shirked, his effective effort is zero, his expected utility

is equation (35) and agent l’s expected utility is equation (36).

E(Uw,2(rw,2, ql,2|sw,1 = 0)) = rw,2

[
ql,2 (−c) + (1− ql,2)(

1

2
− c)

]
+

(1− rw,2)(1− ql,2)
2

(35)

E(Ul,2(rw,2, ql,2|sw,1 = 0)) = ql,2 [1− c] + (1− ql,2)
[

1

2

]
(36)

Taking derivatives, it turns out that only agent l competes with high effort. If, however, agent

w exerted high effort at service 1, their expected utilities are symmetric,

E(Uw,2(rw,2, ql,2|sw,1 = 1)) = rw,2

[
ql,2

(
1

2
− c
)

+ (1− ql,2)(1− c)
]

+
(1− rw,2)(1− ql,2)

2
(37)

E(Ul,2(rw,2, ql,2|sw,1 = 1)) = ql,2

[
rw,2

(
1

2
− c
)

+ (1− rw,2)(1− c)
]

+

+
(1− ql,2)(1− rw,2)

2
. (38)

Taking derivatives, it is obtained that both agents compete.

At service 1, agent w maximizes his expected utility given equation (19). His behaviour

strategy is summarized in the following equation,

xw,1(c) =


1if 0 < c < 1/4

[0, 1] if c = 1/4

0if 1/4 < c < 1/2

. (39)

At contest 1, both agents maximize equation equation (22) when δ = 1. We obtain that

both agents exert high effort at contest 1 only when c < 1/4. Otherwise, no agent exerts high

effort. To sum up, the obtained SPE can be described by the sequence of efforts on the path
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{(ri,1, qj,1), (xw,1), (rw,2, ql,2), (xw,2)},
{(0, 0), (0), (0, 1), (0)} if 1

4 < c < 1
2

{(ri,1, qj,1), (xw,1), (1, 1), (0)} if c = 1
4 , where xw,1 = [0, 1]

{(1, 1), (1), (1, 1), (0)} if 0 < c < 1
4

. (40)

6.5 Proof of Proposition 4

The winner of contest 2 shirks in providing service 2. At contest 2, results depend on the agent

w’s effort at service 1. If he shirked, all agents are equal and they maximize their expected

utility by assuming that the other agents have the same behaviour qj−i,2

E(Ui,2(ri,2, qj−i,2|sw,1 = 0)) = ri,2

[
qj−i,2

(
1

N
− c
)

+ (1− qj−i,2)(1− c)
]

+

+ (1− rw,2)
[
qj−i,2 (0) + (1− qj−i,2)

(
1

N

)]
. (41)

Taking the derivative, we have

∂E(Ui,2(ri,2, qj−i,2|xw,1 = 0))

∂ri,2
= qj−i,2(2−N) +N(1− c)− 1, (42)

where N > 2. Assuming that all agents are equal, agents’ reaction functions imply that they

compete as long as 0 < c < 1/N .39 If, however, agent w exerted high effort at service 1, his

expected utility is

E(Uw,2(rw,2, ql,2|sw,1 = 1)) = rw,2

[
ql,2

(
2

N + 1
− c
)

+ (1− ql,2)(1− c)
]

+

+ (1− rw,2)
[
ql,2

(
1

N

)
+ (1− ql,2)(1)

]
, (43)

where ql,2 brings together all the losers of contest 1 and it is assumed that these agents have

the same behaviour. The derivative is

∂E(Uw,2(rw,2, ql,2|xw,1 = 1))

∂rw,2
= ql,2(N − 1)− cN(N + 1). (44)

Agents l maximize

E(Ul,2(rw,2, ql,2|sw,1 = 1)) = ql,2

[
rw,2

(
1

N + 1
− c
)

+ (1− rw,2)
(

1

N
− c
)]

. (45)

39This assumption is equivalent to the assumption c < 1/2 in the case with two agents.
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The derivative is

∂E(Ul,2(rw,2, ql,2|sw,1 = 1))

∂ql,2
= (N + 1)(1− cN)− rw,2. (46)

The reaction functions of both types of agents imply

{rw,2, ql,2} =


{0, 1} if (N − 1)/(N(N + 1)) < c < 1/N

{rw,2, 1} if c = (N − 1)/(N(N + 1)), where rw,2 ∈ [0, 1]

{1, 1} if 0 < c < (N − 1)/(N(N + 1))

. (47)

At service 1, agent w maximizes his expected utility given equation (19). His behaviour

strategy is summarized in the following equation,

xw,1(c) =


0 if δ(N − 1)/(N(N + 1)) < c < 1/N

[0, 1] if c = δ(N − 1)/(N(N + 1))

1 if 0 < c < δ(N − 1)/(N(N + 1))

. (48)

At contest 1, all agents maximize their expected utility, which is equation (22), and, again,

it turns out that all agents always exert high effort at contest 1. To sum up, the obtained SPE

can be described by the sequence of efforts on the path {(ri,1, qj,1), (xw,1), (rw,2, ql,2), (xw,2)}
{(1, 1), (0), (1, 1), (0)} if δ(N − 1)/(N(N + 1)) < c < 1/N

{(1, 1), (xw,1), (1, 1), (0)} if c = δ(N − 1)/(N(N + 1)), where xw,1 = [0, 1]

{(1, 1), (1), (1, 1), (0)} if 0 < c < δ(N − 1)/(N(N + 1))

. (49)

6.6 Proof of Propositions 5 and 6

The winner of contest 2 shirks in providing service 2. At contest 2, the agent w’s effective effort

depends on his effort at the period 1 service stage. If he shirked, both agents exert high effort

at contest 2 when cc < 1/2. If, however, agent w exerted high effort at service 1, his expected

utility is

E(Uw,2(rw,2, ql,2|sw,1 = 1)) = rw,2

[
ql,2

(
2

3
− cc

)
+ (1− ql,2)(1− cc)

]
+

(1− rw,2)
[
ql,2

(
1

2

)
+ (1− ql,2)(1)

]
. (50)
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The derivative is
∂E(Uw,2(rw,2, ql,2|xw,1 = 1))

∂rw,2
= ql,2 − 6cc. (51)

Agent l maximizes

E(Ul,2(rw,2, ql,2|sw,1 = 1)) = ql,2

[
rw,2

(
1

3
− cc

)
+ (1− rw,2)

(
1

(2)
− cc

)]
. (52)

The derivative is
∂E(Ul,2(rw,2, ql,2|sw,1 = 1))

∂ql,2
= 3− 6cc − rw,2. (53)

Both agents’ reaction functions imply

(rw,2, ql,2) =


(0, 1) if 1/6 < cc < 1/2

(rw,2, 1) if cc = 1/6, where rw,2 ∈ [0, 1]

(1, 1) if 0 < cc < 1/6

. (54)

At service 1, agent w maximizes his expected utility,

E(Uw,1(xw,1)) = xw,1[1− cs + δE(Uw,2(rw,2, ql,2)|sw,1 = 1)]+

+ (1− xw,1)[1 + δE(Uw,2(rw,2, ql,2)|sw,1 = 0)]. (55)

The derivative is

∂E(Uw,1(xw,1))

∂xw,1
= δ [E(Uw,2(rw,2, ql,2)|sw,1 = 1)− E(Uw,2(rw,2, ql,2)|sw,1 = 0)]− cs. (56)

Results depend on which cost is the highest. When cs ≥ cc, agent w’s behaviour strategy is

xw,1(cs) =


0 if δ/6 < cs < 1/2

[0, 1] if cs = δ/6

1 if 0 < cs < δ/6

. (57)

When cc ≥ cs, agent w’s behaviour strategy is

xw,1(cs, cc) =


0 if both δ/6 < cs < 1/2 and 0 < δcc < cs < 1/2

[0, 1] if either cs = δ/6 < δcc < 1/2 or δ/6 < cs = δcc < 1/2

1 if either 0 < cs < δ/6 or δ/6 ≤ cs < δcc < 1/2

. (58)
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At contest 1, both agents maximize their expected utility,

E(Ui,1(ri,1, qj,1)) = ri,1qj,1

(
1

2
E(Uw,1(xw,1)) +

δ

2
E(Ul,2(rw,2, ql,2)|xw,1)− cc

)
+

+ ri,1(1− qj,1) (E(Uw,1(xw,1))− cc) +

+ (1− rw,2)qj,1 (δE(Ul,2(rw,2, ql,2)|xw,1)) +

+ (1− rw,2)(1− qj,1)
(

1

2
E(Uw,1(xw,1)) +

δ

2
E(Ul,2(rw,2, ql,2)|xw,1)

)
.

(59)

Taking the derivative, we obtain

∂E(Ui,1(ri,1, qj,1))

∂ri,1
=

1

2
E(Uw,1(xw,1))−

δ

2
E(Ul,2(rw,2, ql,2)|xw,1)− cc. (60)

The agents’ response function in both cases (cc ≥ cs and cc ≤ cs) is to compete with high

effort. Therefore, both agents always exert effort at contest 1. To sum up, the obtained SPE

can be described by the sequence of efforts on the path {(ri,1, qj,1), (xw,1), (rw,2, ql,2), (xw,2)}

when cc ≤ cs or when both cc ≥ cs and δcc < δ/6,


{(1, 1), (0), (1, 1), (0)} if δ

6 < cs <
1
2

{(1, 1), (xw,1), (1, 1), (0)} if cs = δ
6 , where xw,1 ∈ [0, 1]

{(1, 1), (1), (1, 1), (0)} if 0 < cs <
δ
6

. (61)

When both cc ≥ cs and δ/6 < δcc < 1/2, the obtained SPE can be described as the sequence of

efforts on the path



{(1, 1), (0), (1, 1), (0)} if δ
6 < δcc < cs <

1
2

{(1, 1), (xw,1), (rw,2, 1), (0)} if δ
6 < cs = δcc <

1
2 , where rw,2, xw,1 ∈ [0, 1]

{(1, 1), (1), (0, 1), (0)} if δ
6 < cs < δcc <

1
2

{(1, 1), (xw,1), (rw,2, 1), (0)} if δ
6 < cs = δcc <

1
2 , where rw,2, xw,1 ∈ [0, 1]

{(1, 1), (1), (1, 1), (0)} if 0 < cs <
δ
6

. (62)

6.7 Proof of Proposition 7

The winner of contest 2 shirks in providing service 2. At contest 2, the agent w’s effective effort

depends on his effort at service 1. If he shirked, his effective effort is his current effort and

Lemma 1 describes the period 2 outcome. If, however, agent w exerted high effort at service 1,
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his expected utility is

E(Uw,2(rw,2, ql,2|sw,1 = 1)) = rw,2(1− c) + (1− rw,2)
[
ql,2

(
1

2

)
+ (1− ql,2)(1)

]
. (63)

Taking the derivative, we have

∂E(Uw,2(rw,2, ql,2|xw,1 = 1))

∂rw,2
= ql,2 − 2c. (64)

Agent l maximizes

E(Ul,2(rw,2, ql,2|sw,1 = 1)) = ql,2

[
rw,2(0− c) + (1− rw,2)

(
1

2
− c
)]

. (65)

The derivative is
∂E(Ul,2(rw,2, ql,2|sw,1 = 1))

∂ql,2
= 1− 2c− rw,2. (66)

When c < 1/2, both agents’ reaction functions imply

(rw,2, ql,2) = (1− 2c, 2c). (67)

At service 1, agent w maximizes his expected utility given equation (19). His behaviour

strategy is summarized in the following equation,

xw,1(c) =


0 if δ/2 < c < 1/2

[0, 1] if c = δ/2

1 if 0 < c < δ/2

. (68)

At contest 1, both agents maximize equation (22) and it turns out that both agents always

exert effort at contest 1. To sum up, the obtained SPE can be described by the sequence of

efforts on the path {(ri,1, qj,1), (xw,1), (rw,2, ql,2), (xw,2)}:



{(1, 1), (0), (1, 1), (0)} if δ
2 < c < 1

2

{(1, 1), (xw,1), (rw,2, ql,2), (0)} if c = δ
2 ,

where xw,1 ∈ [0, 1], rw,2 ∈ [1− 2c, 1], ql,2 ∈ [2c, 1]

{(1, 1), (1), (1− 2c, 2c), (0)} if 0 < c < δ
2

(69)
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6.8 Proof of Proposition 8

The winner of contest 2 shirks in providing service 2. At contest 2, first we find the interior

solution of the problem. Agent w maximizes his expected utility

E(Uw,2(êw,2, el,2)) =
êrw,2

êrw,2 + erl,2
− cew,2. (70)

The derivative is
∂E(Uw,2(êw,2, el,2))

∂ew,2
=
r(êw,2)

r−1ê′w,2e
r
l,2

(êrw,2 + erl,2)
2
− c, (71)

where ê′w,2 = ∂êw,2/∂ew,2. Agent l maximizes

E(Ul,2(êw,2, el,2)) =
erl,2

êrw,2 + erl,2
− cel,2. (72)

The derivative,

∂E(Ul,2(êw,2, el,2))

∂el,2
=

rer−1l,2 êrw,2

(êrw,2 + erl,2)
2
− c, (73)

is equalized to zero. Then, the cost in both reaction function is isolated and, by equalizing both

functions, agent l’s optimal effort must fulfil the condition

el,2 =
êw,2

ê′w,2
. (74)

Taking the first order conditions from equation (72) and replacing equation (74), the following

condition arises
r

4c
= êw,2. (75)

Taking equations (74) and (75), the optimal effort agent l is

r

4c
= e∗l,2. (76)

At service 1, agent w maximizes his expected utility

E(Uw,1(sw,1)) = 1− csw,1 + δ[
êrw,2

êrw,2 + ( r4c)
r
− cew,2], (77)

where êw,2 = γsw,1 + ew,2. Given the result of equation (75), we have

ew,2 =
r

4c
− γsw,1. (78)
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Taking into account the last equation, the derivative of the expected utility is

∂E(Uw,1(sw,1))

∂sw,1
= δγ − 1. (79)

Agent w’s behaviour strategy is summarized by the following equation

sw,1(γ, δ) =

 0 if δγ ≤ 1

r
γ4c if δγ ≥ 1

. (80)

At contest 1, both agents are equal and maximize their expected utility. When δγ ≤ 1, they

maximize

E(Ui,1(ei,1, ej,1)) =
eri,1

eri,1 + erj,1

[
1 + δ(

1

2
− r

4
)

]
+

(
1−

eri,1
eri,1 + erj,1

)
δ

[
1

2
− r

4

]
− cei,1 (81)

Taking the derivative, we obtain

∂E(Ui,1(ei,1, ej,1))

∂ei,1
=

rer−1i,1 erj,1
(eri,1 + erj,1)

2
− c. (82)

Assuming that both agents have symmetric behaviour, the optimal effort at this stage when

δγ ≤ 1

e∗i,1 =
r

4c
. (83)

To sum up, the obtained SPE can be described by the sequence of efforts on the path when

δγ ≤ 1:

{(ei,1, ej,1), (sw,1), (ew,2, el,2), (sw,2)} =
{( r

4c
,
r

4c

)
, (0),

( r
4c
,
r

4c

)
, (0)

}
(84)

When δγ ≥ 1, agents maximize their expected utility at contest 1,

E(Ui,1(ei,1, ej,1)) =
eri,1

eri,1 + erj,1

[
1− r

4γ
+
δ

2

]
+

(
1−

eri,1
eri,1 + erj,1

)
δ

[
1

2
− r

4

]
− cei,1. (85)

The derivative is

∂E(Ui,1(ei,1, ej,1))

∂ei,1
=

rer−1i,1 erj,1
(eri,1 + erj,1)

2

[
1 +

r

4

(
δ − 1

γ

)]
− c. (86)

Assuming that both agents have symmetric behaviour, the optimal effort at this stage when

36



δγ ≤ 1 is

e∗i,1 =
r

4c

[
1 +

r

4

(
δ − 1

γ

)]
. (87)

To sum up, the obtained SPE can be described by the sequence of efforts on the path when

δγ ≤ 1:

{(
r

4c

[
1 +

r

4

(
δ − 1

γ

)]
,
r

4c

[
1 +

r

4

(
δ − 1

γ

)])
,

(
r

4γc

)
,
(

0,
r

4c

)
, (0)

}
(88)
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Figure 1: Timing of the model. First, at t = 0, the designer chooses the setting of contest
2 (the biased contest) by choosing γ and ρ. At period 1, there are two stages: a contest stage
in which the winner is selected, and a service stage in which the winner of contest 1 provides
a service. At period 2, there is also a contest stage and a service stage. Contest 2 is biased
through γ and ρ in order to consider the effort exerted at service 1 by the winner of contest 1
at the second CSF.

Figure 2: Relationship between SPE, γ (gamma) and effort cost for ρ = 1 and δ = 1.
In SPE I, moral hazard is mitigated and contests effort is maximum. In SPE II, moral hazard
cannot be avoided but contests effort is maximum. In SPE III, moral hazard is mitigated but
contests effort is not maximum. In SPE IV, moral hazard is mitigated but contest 2 effort is
minimum. Then, the designer’s preferences over the SPE are I � III � IV � II.
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Figure 3: Relationship between SPE, γ and effort cost for ρ = 1 when δ = 0.8 (left)
and δ = 0.2 (right).

Figure 4: Relationship between SPE, ρ (rho) and effort cost for γ = 1 and δ = 1.
In SPE I, moral hazard is mitigated and contests effort is maximum. In SPE II, moral hazard
cannot be avoided but contests effort is maximum. In SPE V, moral hazard is mitigated but
contests effort is not maximum. At the limit, when ρ → 0, there is SPE I for cost effort lower
than 1/4 and SPE VI for higher cost efforts. In SPE VI, there is moral hazard and contests
effort is not maximum. Then, the designer’s preferences over the SPE are I � V � II � V I.
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Figure 5: Relationship between SPE, ρ and effort cost for γ = 1 when δ = 0.8 (left)
and δ = 0.2 (right).
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