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IN A LONG MEMORY MODEL OF THE US GASOLINE RETAIL MA  RKET

Yuiya Lovchd*, Alejandro Perez-Laborda

& Universitat Rovira-i-Virgili and CREIP

Abstract: A structural multivariate long memory model of tb& gasoline market is
employed to disentangle structural shocks and tionate the own-price elasticity of
gasoline demand. Our main empirical findings adeth&re is strong evidence of non-
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1. Introduction

Since the work of Kilian (2009), it is now well umdtood that energy prices are
determined by both demand and supply conditiong different demand and supply
shocks have distinct effects on energy prices amohat be treated alike. Thus,
disentangling these shocks is crucial to understgnthe relation between energy
prices and the economy (see e.g. Kilian (2009, POK@ian and Park (2009), or
Edelstein and Kilian (2009)). A common feature lostempirical literature is that it
relies on vector autoregressive models (VAR), ingaenergy prices as stationary.
Implicitly, it is assumed that real prices have rshnmemory (so-called I(0) processes)
and thus the effect of shocks on prices vanishssifathe short run. However, still
there is little consensus about the stochasticvehaf real energy prices. On the basis
of unit-root testing results, some other authoiggest that real energy prices are better
characterized by unit root behavior (also knownl(a¥ processes). Some references
include Serletis (1992), Carruth et al. (1999)Narayan and Smyth (2007).

In this work, we base our analysis on Kilian (2046 consider a structural model
to separately identify demand and supply shockihienUS gasoline retail market, but
unlike previous studies, we employ for that a fi@awlly integrated VAR (FIVAR).
Our analysis incorporates several innovationsixgdb the existent literature. First, the
FIVAR nests the traditional 1(0)-I(1) alternativbat also accounts for situations where
this dichotomy appears too restrictive, allowing tiesponses of variables to shocks to
decay to zero at a slower rate than 1(0) procedseMoreover, the (possibly fractional)
different orders of integration of all the serigge @ot assumed but rather estimated
together with the other parameters. Fractional gmatiion (FI) models are widely
employed to describe the dynamics of many econana financial time series and
have also been used to model energy variables lyrinstinivariate contexts (see e.g.
Gil-Alana (2001), Elder and Serletis (2008), Leard &myth (2009), or Choi and
Hammoudeh (2009). A notable multivariate excepttan be found in Haldrup et al.
(2010)). Our results show that long memory is silprsupported by the data. In
particular, both the real price of gasoline andojas consumption exhibit non-
stationary but mean-reverting behavior. Thus, tfiects of the different shocks on



these two variables eventually disappear, but #grek of persistence is compatible
with the results that emerge from unit-root tesfing

Our second innovation is to evaluate the influeoicthe different shocks to energy
market fluctuations in the frequency domain. Prasiditerature has focused the
analysis in the time domain only. However, intarggtrelationships may appear at
different frequencie$.In order to address this issue, we apply a vaeidrequency
decomposition of the FIVAR model. We document tinat relative importance of the
different shocks for the fluctuations of gasolinearket outcomes varies across
frequency ranges. Thus, for instance, oil-markehated shocks explain the largest
share of the gasoline price and gasoline consumptiw-frequency movements, but
this share declines rapidly with frequency in fagbgasoline market shocks.

Finally, we study the implications of fractionaltegration for the analysis of the
gasoline demand own-price elasticity. This elastiplays a central role in many policy
issues, including national security, optimal taxatior recently, climate change. As a
result, hundreds of gasoline studies employingedifit models have provided a battery
of short-run and long-run estimates (see the suofdyahl and Sterner (1991), or the
meta-analyses of Espey (1998), Brons et al. (20@8Havranek et al. (2011)). In the
standard 1(0)/1(1) framework, the response of gasallemand to a change in prices can
only converge to a bounded nonzero value wheneves pnd demand are assumed to
have exactly the same order of integration. Ififistance, demand is assumed to be 1(1)
and the real price is 1(0), as in Kilian (2010) tlong-run elasticity of gasoline demand
is infinite. However, the inclusion of fractionahteégration opens a wide range of
convergence possibilities that are studied in dapt8ection 6. Our estimates indicate
that gasoline demand is quite inelastic to gasgdimee movements, which is consistent
with the results from recent studies covering aurgata (Small and van Dender (2007)
or Hughes et al. (2008)). Moreover, the elastigtgsents a rather flat profile, with
medium- and long-run values that do not differ muthus, our findings suggest that

consumers undertake just a few measures aimedit@eeconsumption after a rise in

' Throughout this paper, we measure persistence ®@yspeed of mean reversion, as in Diebold and
Rudebush (1989). Note that if persistence is measilny the traditional infinite sum of impulse
responses, two Fl processes cannot be compared, @émsistence would be either 0 for negative srder
of fractional integration, or infinity for positivesee e.g. Hauser et al. (1999))

2 In fact, the importance of frequency domain comeep the relation between energy prices and the
economy was already emphasized by Granger (1966)e Mecent studies include Granger and Lin
(1995), Gronwald (2009), or Aguiar-Conraira and 188g2011).



prices in the short and medium run, but are rehicta make significant changes in
their behavior.

This paper proceeds as follows. Section 2 provities econometric framework;
Section 3 describes the data and the set of igergifassumptions for the structural
model. Section 4 presents the estimation resuliscanducts robustness checking. In
Section 5, we evaluate the dynamic effects of stratshocks on the gasoline price and
gasoline consumption. The relative contributiorthef shocks at different frequencies is
considered at the end of the section. We studyg#seline demand price elasticity in
Section 6. Finally, Section 7 offers some conclgdemarks. Details about the variance
decomposition in the frequency domain and the déom of the dynamic reaction

function for gasoline demand may be found in the appendices.

2. Methodology
2.1 The FIVAR Model and its Estimation Procedure

Vector autoregressive models with fractional inédgn (FIVAR) are the
multivariate version of the well-known autoregressARFIMA model (see e.g. Baillie
(1996)). Recent contributions in economics havenlmveloped mainly in the context
of fractional cointegration, which imposes a paite long-run equilibrium relationship
among the variables (see e.g. Jghansen (2008) arahsen and Jrregaard (2012)).
Given the observed different degree of persistemicéhe variables employed, we
consider a simple unrestricted specification thiats for a (possibly) different order of
integration of all the variables, as in Abrittiat (2015), Golinski and Zaffaroni (2015),
or Lovcha and Perez-Laborda (20£5yhis makes available an interesting range of
possibilities for the pattern of the dynamic owicerelasticities of gasoline demand
(discussed in Section 6) and eases comparisorpwathous VAR studies.

More specifically, the model can be written as:

D(L)X, =V, )
(1=F,(L))v =w )
where X, is an N x1 vector of variables fot =1,...,T ; L is the lag operatort is an

N x N identity matrix; andw, is an N x1 vector of i.i.d errors with 0 mean amdx N

variance-covariance matri® . The VAR(p) process in (2) is assumed to be statin

% Fractional cointegrated models, as Johansen (2008)phansen and Nielsen (2011), require equal
coefficients of fractional integration for all vahles.



D(L) is a diagonaN x N matrix with fractional integration polynomials d¢ime main
diagonal given by:

D™ (L)=(1-L)",n=1,..N 3)
The scalar parameter, 0[0,1]is the order of (fractional) integration of theiserx in
the model. In this context, this parameter playsracial role as an indicator of
persistence. The higher ttie the more persisterj. If d, =0 or d, =1, the seriesx/
exhibits standard 1(0) or I(1) properties, respeadti. Instead, if0<d, < 0.5, the series
Is covariance stationary, but the response of gr@able to a shock takes more time to
disappear than id, =0* Finally, if 0.5< d, <1, the series is no longer covariance
stationary but still mean-reverting, with the etfe€the shocks dissipating slowly in the
long run. These parameteds, n =1..N are not assumed but estimated jointly with the
other parameters of the model.

The MA( ) representation of the reduced form model (1) is:

X, =D(L)"[1-F(L)] " w 4)
This last expression can be found by arranging geafter substitution of equation (1)
into 2.

To estimate the model, we employ the approximagguiency domain maximum
likelihood estimator proposed by Boes et al. (198Bje discussion of the multivariate
version of the procedure can be found in Hosoy861L9An advantage of this method is
that it is relatively simple and allows circumvenfithe problems associated with the
complicated likelihood function arising in the tintmmain. Moreover, the method
estimates the orders of integration of all theesejointly with the other parameters,
which is a clear advantage over two-step procedimagssuffer from lack of efficiency
and do not yield standar¢h-asymptotics. See e.g. Lovcha and Perez-Labo@E5)2

for further details about the estimation procedure.

* The autocorrelation function of 1(0) processes glegaan exponential rate but that of FI processes
presents slow hyperbolic decay.

> Given that we expect large orders of integraticntfeey are indeed), we difference the series poior
estimation and we subsequently transform them bgckdding 1 to the estimated FI orders. Computing
the periodogram, we taper the data with the cobmlé taper. See Velasco and Robinson (2000) for
details.



2.2 The Structural Model
The FIVAR model given by (1) and (2) is a reduceidrf model. The structural form

of the model incorporates the contemporaneousioekdtips between variables. The
structural model is given by:

AD(L) X, =u, ()

(1-G(L))u =¢ (6)
where A is an N x N matrix of contemporaneous relationshig3(L) is the diagonal
matrix containing the orders of integration of #ié series in the model as in (3); the
matrix G(L) contains the short memory autoregressive polynsméld e, is a vector
of uncorrelated structural errors with 0 mean aragj@hal variance-covariance matrix
V . Substitution of (5) into (6) and pre-multiplicati of both sides byAleads, after
arranging, to thd\/IA(OO) infinite representation of the structural model:

X, =D(L)"[1 -A'G(L)A] A7, (7)
It follows from (4) and (7) that the equations telg the autoregressive polynomials
and the reduced and structural shocks are given by:

F(L)=A"G(L)A (8)

w = A'g, )

To identify the structural parameters, we apply Si(989) short—run identification
scheme (SR) We further assume that the matdxof contemporaneous relationships is
lower triangular with ones in the main diagonal.afhs, a variabley, is not
contemporaneously influenced by any shock to ab&iy,,,, k>0 situated down in

the vector, but it may be influenced contemporasgoby shocks to the variables
Y;» ] Si situated before. Once the variance-covarianceixnatrthe reduced form

model errorsQ has been estimated, the entries of the contemgouanresponses

can be easily found from (9).

® The effects of long memory on other identificatimocedures have been discussed in Tschering et al.
(2013) and Lovcha and Perez-Laborda (2015).



3. Data Description and Identification Assumptions

To construct a small structural model of the USolae retail market, we follow
Kilian (2010) and employ monthly data for five kegriables. These five variables are

defined as a vector:

XI =[0$1reatlrpot’rpgt’gdt]-r (10)

where os, is the world oil supplyrea, is the real economic activity index developed by
Kilian (2009), rpo, is the real imported price of crude oilpg,is the real regular
gasoline retail prices, angd,is the US regular gasoline consumptiobata span from

1978:01 to 2015:06. The initial date is dictated thg availability of the monthly
gasoline price. All series, except the activityeardwere downloaded from the E.I.A.
Monthly Energy Review and are expressed in natiogarithm$. The activity index
can be obtained directly from Kilian’s site, andsitexpressed in percentage deviations
from the trend as provided by the authdFo transform nominal prices to real, we
employ the US Consumer Price Index (CPI) from tHREP databas& Also, we
employ the X12 Census to seasonally adjust the mhogasoline consumption.

The structural FIVAR model in (5) and (6) is themef driven by five structural
disturbances, which are defined as unanticipateangds in supply or demand:
aggregate oil supply shocks; global demand shamksarket specific demand shocks;
gasoline supply shocks; and gasoline demand shddigregate oil supply shocks
capture changes in the global oil production thaynoccur, for example, as a
consequence of political events such as the cisdrder events in Venezuela in 2002.
Global demand shocks are mostly related to cyclfaators, but may also reflect
unexpected shifts in the demand of commodities frmw emerging economies. Oil-
specific demand shocks capture variations in trexairtionary demand for oil. An
example of this shock is the sudden increase inaddmthat can be observed
immediately before the Irag War in 2003. Gasolingpply shocks are unexpected
disruptions in the supply of gasoline as a consecgiefor instance, of shutting down
operations of US refiners after Hurricanes Rit&atrina in 2005. Finally, US gasoline

" The gasoline demand is the sum of gasoline consomin industrial, commercial, and transportation
sectors.

8 http://www.eia.gov/totalenergy/data/monthly/

® http://www-personal.umich.edu/~lkilian/reaupdate.t

19 http://research.stlouisfed.org/fred2/



demand shocks come as a result of unanticipatenigelsain consumer preferences or
demographic structure.

As noted in Section 2, the SR identification implia set of restrictions on the
contemporaneous responses to shocks: a variahl& isontemporaneously influenced
by shocks to variables situated down in the vediat,it may be contemporaneously
influenced by shocks to variables situated aboweisTthe ordering in (10) restricts the
global oil production to be contemporaneously ieflaed by its own shock only,
implicitly assuming that oil producers set theiogction based on the expected trend
in the demand and not based on unexpected highdrey movements. Also,
aggregate oil supply and global demand shocks raag B contemporaneous effect on
the US gasoline market, but not vice-versa. Theawedor this assumption is to place
fewer restrictions on smaller and thus more agiekets. Finally, the gasoline demand
shock does not percolate through the gasoline pritdee given month, which implicitly
assumes that gasoline distributors have sufficieiotage to supply the required
quantities in the given month. Refer to Kilian (80@010) for further details about the
definition of the shocks and the identificatiorasgy.

As a preliminary stage, we apply standard ADF upoibt tests. The unit root
hypothesis cannot be rejected for any of the sénghe activity index. Kilian (2010)
assumes that both the oil supply and the gasoleameadd contain a unit root and,
consequently, he includes these variables in th& WAfirst differences. However, he
leaves the two real price series and the actividex in levels. It is important to note
that the strong persistence of the price serigsisignored by Kilian. As the author
states, it is not clear whether the real priceesehave a unit root since unit root tests
have very minimal power against persistent statippaocesses in short datasets, and
falsely imposing a unit root will render the estte® inconsistent. As noted in the
introduction, the main advantage of our framewakhat it allows us to identify the
structural disturbances without imposing any addai assumptions on the order of

integration of any of the variables included in thedel.



4. Estimation Results

Selected results are presented in Table 1. The taplorts the estimated orders of
fractional integration, which measure the persistenf the variables to the system
shocks. For the autoregressive part, we have sélecte lag according to the Schwarz
Information Criterion (SIC). The standard errors tleese coefficients are computed by
numerical evaluation of the Hessian matrix andpaesented in parentheses.

As can be seen in the table, there is evidenceormj Imemory in the data. The
estimated orders of integration of the real prigksil and gasoline are 0.860 and 0.602
respectively, and they are statistically differ&mm O and 1. Thus, both the I(0) and
(1) assumptions are rejected by the data. Note dltaough our results sustain the
mean reversion hypothesis, the two series are ssfent that stationarity (d < 0.5)
cannot be supported at usual significance levetsvd¥er, evidence suggests that the
US consumption of retail gasoline is not 1(1), asuemed in Kilian (2010), but also a
non-stationary mean reverting process. This lastiltds in line with the evidence
provided by Lean and Smith (2009) on US petroleomsamption.

We test the VAR specification against the FIVAResittive by bootstrapping the
empirical distribution of the likelihood ratio testatistic'* The VAR null is rejected at

usual significance levels. Finally, we also test blypothesis of equal order of Fl in all
of the series that were also rejected at 5%.

4.1 Robustness Analysis

It has been argued that fractional integration mpgear as a spurious phenomenon
caused by the presence of breaks in the data (ge€leeung (1993) or Diebold and
Inoue (2001)). Nevertheless, the opposite effeatss well documented (see e.g. Nunes
et al. (1995) or Hsu (2001)). An important advgetaf the multivariate model over
univariate approaches is that we explicitly accofantthe key demand and supply
factors driving the dynamics of the series. Thedaa as the parameter variation present

in some univariate studies is caused by changakeincomposition of demand and

1 For testing this hypothesis, we assume one autssiye lag in the VAR, ensuring that the two medel
are nested. As in previous VAR literature, thedrsd 5th variables are assumed to be I(1) and enmtke
model in differences while the other variables emdevels. Given that we pre-difference data ptm
FIVAR estimation (see footnote (5)), to make thedele comparable, we transform back to levels only
the 2nd, 3rd, and 4th variables, leaving the 1dt5th in differences (with negative orders of imegpn).

For the LR statistic, we estimate both models i ftequency domain and compute the values of the
likelihood function. We bootstrap the empiricaltdisution of this statistic using both residual-edsand
frequency-domain bootstrap methods. We generatd86ttrap replications in each case.



supply shocks, this is not a concern in our muttatea model. Although, in principle,

other factors might cause parameters to changejrieaipevidence shows that their
contribution is rather small at the monthly freqeetior the sample period considered
here, as noted by Edelstein and Kilian (2009).

Nevertheless, in order to assess if the presené@cifonal integration is robust to
the existence of breaks, we perform the estimatbrthe FIVAR in a subsample
characterized by its stabiliyy This subsample runs from 1986:04 to 20040Zhe
starting date is motivated by Baumeister and Peamnsfp013) who find a break on the
oil demand curve in the first quarter of 1986 irtime-varying SVAR framework
showing that parameters remained stable afterwditte date also coincides with the
collapse of the OPEC cartel and the beginning ef‘@reat Moderation’, and is often
selected for sample splits in the oil literaturee tend is February 2004. This date
coincides with a period of violent oil price fluetiions prior to the global economic
crises™

The second row of Table 1 presents the estimatet®of integration of the FIVAR
model in the selected subsample. As can be obselaegl memory is also present in
the data. The estimated orders of fractional iraegn of the two real prices and the
demand of gasoline are very similar to the oneainbt with the whole sample and are
again statistically different from 1 and 0.5, comiing the non-stationary but mean
reverting behavior of these series. However, wd &nstatistically significant increase
of the persistence of the global activity index thee selected subsample, with an
estimated order of integration not statisticallyfedent from 1. This last result is
consistent with evidence on unit root provided tandard ADF testing procedure in the

selected subsample.

12 Although there are some techniques to distingbistween fractional integration and short memory
processes containing trends and/or breaks, motttemh deal with a single series and have not been
extended to the multivariate case.

13 We have also taken April 1991 as the initial dust after the oil price shock and the end ofeghey

90s recession) and November 2007 as the final (Bafere the beginning of the Great Recession). The
main conclusions are robust.

% Yet, most of the literature finds those movemengsiained by fundamental factors. We thank a refere
for pointing this out.



5. The Effect of Demand and Supply Shocks

5.1 Impulse-Response Analysis

Once the reduced FIVAR model is estimated, we campl@y the structural
representation defined in (5) and (6) to trackrésponses of gasoline market prices and
quantities to system shocks. Figure 1 plots theulsgpresponses (IRFs) of these two
variables to one-standard-deviation shocks upytea8s horizon. The figure also reports
two-standard-deviation confidence bands computedmuyjtivariate non-parametric
bootstrap in the frequency domain (Berkowitz anétdid (1998)°. As in Kilian
(2010), we have normalized the supply shocks toessmt supply disruptions, and the
demand shocks to represent demand expansions.

As can be seen in the figure, demand expansionsapply disruptions cause the
real price of gasoline to increase. Thus, the nesg® of this variable to the five
disturbances computed from the FIVAR model evolveoading to economic theory. In
line with recent studies, the response of gasgimees to an oil supply contraction is
positive but not statistically significant, whichalls into question the quantitative
importance of this shock (see e.g. Kilian (2008))e magnitudes of the global and the
oil-market-specific demand shocks are greater, aslhe the latter, which has a
persistent effect that remains significant for mibran eight years. Unexpected gasoline
supply disruptions cause the gasoline price toinsie very short run, with an effect
that also remains significant for a long periodndflly, gasoline consumption
expansions peak around the sixth month, but in \Wit@ preceding studies, are not
significant at any horizon.

To compare our results with the existent litergtuve also recover the IRFs from a
standard VAR model. As in previous literature,saipply and gasoline demand are both
assumed to be I(1) in the VAR and are includedifierences, while the two real prices
and the activity index enter in levels. Followirgetsame lag-length criterion as for the
FIVAR case (SIC), we select two lags in the autmsgive part for the VAR. VAR
impulse responses with recursive wild bootstraprebands are depicted in Figure 1
together with FIVAR responses. Interesting reswdtaerge from the comparison
between the two models. Consistent with the es@charder of fractional integration

!> To compute confidence intervals, we produce 508tdimap replications, treating the estimated model
as the true data generating process. Conditiorthespectral density of the VARFIMA process for the
application of the bootstrap are satisfied for fediquencies except for frequency 0. Consistent with
standard practice, the 0 frequency is excluded fetimation and bootstrap.



for the gasoline price (0.683), the response ismatewerting in both models, but the
responses computed with the FIVAR converge to meuch more slowly, remaining
significant for a considerably longer peritid.
The second column of Figure 1 depicts the FIVAR &R responses of gasoline
demand. FIVAR responses conform once more with @mon theory. Consistent with
the increase in prices, the (normalized) structdisturbances lower the demand of
gasoline on impact, except the response to its skatk, which raises demand by
assumption. With the exception of the first two ct®) all of the responses are
significant. Note than in this case, the patterrF&fAR and VAR impulse-responses
are not at all similar. Recall that gasoline demanaissumed to be I(1) in the VAR and
enters to this model in differences, as in Kilia2010). Therefore, shocks have
permanent effects on its level, and impulse-resgom® not necessarily converge to
zero.

5.2 Variance Decomposition in the Frequency Domain

Impulse responses demonstrate the reaction of iablarto a shock over time,
according to the behavior described by a statistiwadel. However, IRFs are not an
appropriate instrument to study the contributiorthef different shocks to the variation
of the variables (or driving forces of this varat). A standard instrument to pursue this
type of analysis is the forecast error varianceodwgiosition. This decomposition,
however, requires stationarity of all variablestie model and lacks a one-to-one
mapping between forecast errors at different hosz@and the different cyclical
components. In this paper, we decompose the varianthe frequency domain. This
decomposition is an easy way to analyze a contabuif shocks at different frequency
ranges (as business cycle), and it does not regtateonarity of the variables in the
system if one is interested in business cycle ghdri frequency ranges. Details about
this decomposition can be found in Appendix A.

Figure 2 depicts shock percentage contributioribeovolatility of gasoline price and

gasoline demand across frequentielote that for a given frequency, the contribution

6 Kilian (2010) selects 14 lags for the VAR (withousing a formal criterion) to yield sufficient

persistence in the responses of real prices tokshdote that this model requires the estimatio36&5
parameters. As a robustness check, we also red®Fs from a VAR(14). It turns out that price
responses to shocks from the FIVAR(1) model alsovemge to O more slowly than those of a VAR(14).
This is because FIVAR models exhibit hyperbolicaleof the autocorrelations, while autocorrelations
VARs decay at a faster exponential rate. In fda, IRFs of the VAR(14) and the VAR(2) do not differ
much, especially if one is guided by their statatisignificance. In this sense, parsimony is agoth
justification of the FIVAR model. We thank a referfr pointing this last issue out.



of the different shocks sums to 100%. Thus, a peake figure implies an important
contribution of the given shock to the volatilityf dhe particular series in a
neighborhood of the corresponding frequency. Tadlifake interpretation, we have
shaded the area corresponding to the standardititefiof the business cycle rar§e
Figure 2 clarifies two points: first, not all sheckave the same contribution to the
variance; second, the relative contribution of dipalar shock is not constant across
frequencies. For gasoline prices, the variabilityoav frequencies is mostly explained
by oil-market demand shocks, with a rather smalfitgoution of the other shocks.
However, the importance of oil market shocks dedias frequency increases in favor
of gasoline supply disruptions. The variability ghsoline consumption at low
frequencies is mostly explained by both oil-mar&etl gasoline demand shocks. Once
more, the importance of the former shock vanislsefsegjuency increases.

Yet, these numbers can be misleading if one igasted in fluctuations across an
entire frequency range because this variability matybe distributed evenly within its
component frequencies. Figure 4 depicts the estunapectral densities of gasoline
price and gasoline demand. Consistent with thejreke of persistence, the estimated
densities decline sharply with frequency. Thusstthations around the first frequencies
of a given range contribute more to the variabilitythe range than the fluctuations
around the remaining frequencies. In order to @tiyreaccount for this fact, we
compute the relative contribution of a given shatla particular range as the ratio of
the total variance attributable to this shock ia thnge to the total variability in the
range. Table 2 reports the variance decompositionva selected frequency ranges:
business cycle and fluctuations inside a year. ¥®eted from Figure 2, we find that
the share attributable to the oil market demandlsli®clines when moving from the
business cycle to the higher frequency range. Hewesince the contribution of oil-
market shocks is higher precisely in frequenciestrdauting more to variability, the
decline is much smaller than the one expected folely inspecting the figure.

Table 2 also reports the decomposition for a st@ahddAR. Again, the
contribution changes from one shock to another stmates are not constant across

frequency ranges. The variance decomposition ferghasoline real price is similar

7 If the order integration is strictly positive at flequency, the spectrum tends to infinity at this
frequency. Consistent with standard procedure, awe lexcluded the 0 frequency for the estimation and
also for posterior analysis.

18 Business cycle corresponds to a range of frequencies with pefrimah 1.5 to 8 yearshigh frequencies
with a period smaller than or equal to 1 year.



between the two models. However, VAR tends to wtdér the contribution of oil
market-specific shocks to the variability of gaseliconsumption. Overall, results show
the importance of frequency domain tools to study tontribution of the different

shocks.

6. The own-price elasticity of gasoline demand

In this section, we use the structural model tcawmbgasoline price elasticities of
gasoline demand. Using the structural model, we caercome the well-known
problem of estimating demand equations, that &t pnices and quantities are jointly
determined. This results in biased estimates wlmstructural models are employed
unless valid instruments are found. A similar gggtis followed by Baumaister and
Peersman (2012) as well as Kilian and Murphy (201ah) oil demand. More
specifically, dynamic price elasticities of demacah be derived from the reaction
function of the demand of gasoline to the othenaldes in the system. The reaction
function of gasoline demand for the structural FR/&an be written as (see Appendix
B):

d,, ~dgg —d,
gd, =Y Co(L)(-L) " "Xy +Co (L) (1-L)™ ™ rpg, +G(L)*  (12)

where the termx,,; refers to the variables other than gasolineeps, rea;, andrpo).
Since all variables, except the real economic dgtimdex, are expressed in natural
logarithms, the resulting coefficients in (11) d@minterpreted as dynamic elasticitfes
The short-run price elasticity of gasoline demasdthe first coefficient of the

polynomiald(L) =C_ (L)(1- L)d”’g'dgd , and measures the contemporaneous % change
in gasoline consumption as a result of a 1% iner@agasoline prices. To compute the
dynamic reaction to germanent change in prices, the coefficients of the polyradmi

@ (L) should be summed to the lag of interest. In thig/,vthe total cumulative %
change (long-run elasticity) can be obtained asnd.|While the short-run elasticity
reflex initial measures adopted by consumers aftelnange in price (an increase in the

efficiency of driving, for example), the long-rufasticity is also linked to fundamental
changes of consumption patterns that usually regoiore time to be adopted (for

1 The coefficients of real economic activity indeancbe interpreted in the following way: if the
economic activity index increases 1 unit (1% sitleis index is expressed in %), gasoline demand
increases00ox C, (|_) %.



instance, a change of residence to reduce commauting switch to an alternative
energy source). As noted in the introduction, tkerdture has provided a battery of
different estimates of these values. The averaget-sand long-run elasticities across
studies found by most recent meta-analyses of itamture were —0.26 and —0.58
(Espey (1998)), —0.34 and-0.84 (Brons et al. (20G8)-0.09 and -0.31 (Havranek et
al. (2012)). Yet, there is a lot of variation froome study to another. Interestingly,
studies covering more recent data tend to repodhnower estimates (see e.g. Small
and van Dender (2007) or Hughes et al. (2688))

As can be deduced from equation (11), the inclusioftactional integration has
strong implications for the pattern of dynamic msties. If, as found in the data, the

gasoline real price is less persistent than denfabed, , —d, <0), the dynamic price

elasticities will converge to some nonzero valllge speed of convergence depends on
the magnitude of the difference between the twcersrdf integration, being more

slowly the larger the difference. Conversely, ié tteal price is more persistent than

demand 0<d _, —d, <1), the elasticity is going to be 0 in the long rum.this case,

larger differences boost convergence. Note thahentraditional 1(0)/1(1) framework,
the own-price elasticity of gasoline demand canveoge to a nonzero bounded value
only if demand an prices have exactly the samerasfiéntegration. If, for instance,
demand is I(1) while prices 1(0), as assumed inaii(2010), dynamic elasticities will
explode because the two processes are unbalanced.

Figure 3 plots FIVAR dynamic elasticities up to@ikon of fifteen years. The short-
run elasticity is estimated to be -0.06, reachindQ during the first month. Consistent
with the estimated orders of integration, the dyitaresponse converges very quickly
to a long-run value of -0.16, somewhat smaller thalues usually reported in the
literature but in line with those reported by stslcovering recent data.

As a matter of comparison, the figure also plgtsagnic elasticities computed from
two competing VAR models, each one with a differassumption on the order of
integration of gasoline demand (either I(0) or J(As can be seen in the figure, the
estimated short-run elasticities are similar thha EIVAR estimate, albeit slightly

%0 Using data over the period 1966-2001, Small and Dander (2007) find short-run and long-run
elasticities of 0.04 and -0.22, respectively. Theambers fall to -0.02 and -0.10 for the period 7-99
2001. Hughes et al. (2008) also document a decirdle short-run elasticity. For the period 197230,
they find estimates ranging from -0.21 to -0.34atepng on the model, but these values fall to 9.3
-0.077 for the period 2001-2006.



smaller in magnitude (-0.04 and -0.02, respectjvéipwever, the dynamic patterns are
completely different in the three models. Note thaasoline demand is assumed 1(0),
the elasticity converges to a very large long-ratug (close to -1). As noted above, if
demand is I(1) while prices 1(0), the elasticityedanot even converge.

In summary, fractional integration provides an liegting range of convergence
possibilities to long-run elasticities with meaneging prices. We find that the demand
for gasoline is highly inelastic, showing a relati flat pattern, with no large
differences between medium-run and long-run valu@sr results indicate that
consumers undertake a few measures to reduce masansumption in the short and
middle-run, but they are reluctant to adopt stromgasures that significantly change
their consumption habits. In this sense, our reseithphasize the importance of short-

run estimates for policy analysis.

7. Concluding Remarks

In this paper, we model the US gasoline retail maks a structural fractional
integrated VAR. We find strong evidence of nonistary mean-reverting behavior in
the real prices and in the demand for gasolineckwvheconciles previous VAR analyses
with evidence from unit root testing. The estimald¥AR model produces impulse-
responses to structural shocks that are consisiémeconomic theory, but much more
persistent than previously predicted. We also gl®wiew findings on the asymmetric
effect of the different demand and supply shockeiiTcontribution to the volatility of
gasoline market outcomes is different, and theeshé#tributable to each shock changes
with the different frequencies of the spectra. Fjnave show that fractional integration
has interesting implications for the convergencepa of dynamic price elasticities of
gasoline demand.

Like all empirical work, our approach suffers fr@saveral shortcomings, many of
which have been discussed in the main body of #peip The most important, in our
opinion, is that a long memory model is not welitesd for the analysis of short data
samples. Thus, we cannot answer the question ahehthe price elasticity of gasoline
demand has fallen in recent years, or how gasaorsumption will respond to the
sudden decline in prices recently observed in #a.dAlso, our study maintains the
assumption that consumption equals production,radigtg from the possibility that
gasoline distributors may run out of gasoline. lteey movements have proved useful

in the analysis of oil demand (Kilian and Murphy0{2)). Therefore, it would be



interesting to determine whether considering gasoinventories changes our results.
Yet, the importance of long memory for the conveage pattern of demand elasticity
calls for an adequate treatment of persistenceddets intended to estimate long-run
values. Finally, it would also be interesting teess the influence of long memory on
the relationship between the gasoline market aaddht of the economy. We consider
these issues interesting avenues for future researc
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Tables and Figures

Table 1 — FIVAR: Estimated Long Memory Coefficients

Sample: 0s rea rpo rpg gd
01 - . 0.747 0.657 0.860 0.683 0.753
1978:01 - 2015:06 (0.079) (0.080) (0.065) (0.057) (0.032)
04 - . 0.794 0.981 0.765 0.642 0.674
1986:04 - 2004:02 (0.105) (0.091) (0.109) (0.094) (0.052)

Notes: Estimation results of the FIVAR parameters withnstard errors in parentheses. A value jof d
between [0.5, 1) implies that process is non-gtatip but still mean reverting. The lag order of the
autoregressive part has been chosen by SIC criterio

Table 2 — Variance Decomposition at Frequency RangeFIVAR and VAR

REAL PRICE OF OIL GASOLINE DEMAND
Shock BC HF BC HF
Fl VAR Fl VAR FI VAR Fl VAR

Oil supply shock 0.64 149 046 0.33 0.22 0.27 031 047
Aggregate demand shock 401 879 109 1.03 041 1162 0.69 0.14
Oil-market demand shock 88.92 84.12 70.02 49.50 51.01 15,57 10.53 0.88
Gasoline supply shock 6.42 558 28.43 48.97 364 106 318 1.15
Gasoline demand shock 0.00 0.02 0.00 0.17 4472 71.48 85.30 97.36

Notes: The statistics are from the spectral analysis giuise responses in the structural FIVAR and
VAR models. The sum of contributions by all typefsshocks to the volatility of a variable over a

frequency range equals 100%. BC - Business Cyctet(l8 years period) and HF - High Frequencies
(period smaller than 1 year).



Figure 1 — IRFs to One Standard Deviation Shocks

REAL GASOLINE PRICE GASOLINE DEMAND

OIL SUPPLY SHOCK

AGGREGATE DEMAND SHOCK
4 -
1 -

fivar — — —var e var confidence band

fivar confidence band
Notes FIVAR and VAR confidence intervals for the IRF®aomputed by multivariate non-parametric
bootstrap in the frequency domain and recursived viibotstrap respectively. The reported bands
correspond to two standard deviations. The orditisecautoregressive parts (one for FIVAR and tao f
VAR) are selected by SIC criterion. Gasoline demiarekasonally adjusted.



Figure 2 — Spectral Decomposition of Volatility acoss Frequencies

REAL GASOLINE PRICE GASOLINE DEMAND

BC frequencies = - = oil supply shock = = —global demand shock
oil specific demand shock— - - refining shock =~ weeeeeees gasoline demand shock

Notes: The sum of contribution by all types of shocks he wolatility of a variable equals 100% at a
given frequency. The shaded area corresponds toutfieess cycle range

Figure 3 — Estimated Spectral Densities; FIVAR
REAL GASOLINE PRICE GASOLINE DEMAND

t(w) t(w)

b3 T
Notes: The spectral densities are computed parametrifiain the estimated FIVARThe shaded area

corresponds to the business cycle range.If ther antiegration is strictly positive at zero frequgnthe
spectrum tends to infinity at this point. As stamtprocedure, we have excluded the zero frequency f

the estimation and also for posterior analysis.

Figure 4 — Own-Price Elasticity of Gasoline Demand

O ==

FIVAR  cceeeeces VAR, 1(0) — — — VAR, I(1)

Notes: The figure plots the dynamic gasoline price eld#ie of US gasoline consumption up to a
horizon of fifteen years. The 1(0)-I(1) in VAR spfcation refer to the assumed order of integration
gasoline demand. As in previous literature, prigesthe two VAR models are assumed 1(0).



Appendix A: Variance Decomposition of the Structura FIVAR in the Frequency
Domain.

Let f (w) denote theN x N spectral density matrix of the structural FIVARpess

at the frequencg. Employing the same notation than in the Sectioth@ multivariate

spectrumf (w) of the FIVAR model is given by the expression:

f(«) = B(e")vB(e™)

B(e*)=D(e*) (1 -F(e°))” A*
where i denotes the imaginary unilB(e‘"")is the complex conjugates (B(ei“’);
D(é”) is a NxN diagonal matrix with termél—e‘“)d" on the main diagonal; anel(e)
is given byre“+..+Fe™. The main diagonal of the matri{w) contains the
univariate spectraf, (w) of all the series of the model.

We can re-write the univariate spectrum of theeseyj as:

2
Vi

1

NS

= b
24

nj

where b, is the (n, j) element of the matrixBand v, is the jh diagonal term of the

variance-covariance matri of the uncorrelated structural disturbances. Egisation

allows us to decompose the spectripfw) at a given frequencyw as the sum of the

1

terms k! (w) = b

nj

2
7 associated to each structural disturbance. Gitah the

spectrum can be interpreted as the decompositidheo¥ariance of the process into a

set of uncorrelated components at each frequeheyqetmj(:2 k! (w)dw represents the

contribution of the j" structural disturbance to the fluctuations of treies y,

attributable to cycles with frequencies in the iwté{ g, ) .



Appendix B: Reaction Functions of US Gasoline Demahfrom the Structural
FIVAR

Reaction functions of gasoline demand can be cosopfrom the MA()infinite
representation of the structural FIVAR model gibgrequation (7) in the text.
Define( | —F(L))_lA:Q(L). The last equation from this system is relatedtte

demand of gasoline:
_dgd gd
gd, =(1-L) Qs (L)E(l:‘h (1-L) ™ Qu(L)&”
where £, is a vector containing the elements from 1 to 4hefvectok;; Qs ., (L)

is a sub-matrix with elements 1 to 4 of the last of the matrixQ(L).

The remaining first four equations from the systsn be grouped together as:

>(( L4}t _D_11414)(L)Q 141.)4( ) (1 )4+D 141)A(L)Q 14£L)£gd

where X.,.is a vector containing elements from 1 to 4 of weetor X, ; Di,,.4(L)
and Qy,.,(L) are sub-matrices of the matricd3(L) and Q(L), respectively,
containing rows from 1 to 4 and columns from #{@Q,, o (L) is a sub-matrix with

elements 1 to 4 of the last column of the ma@ifL).
From these four equations we get first four elemefthe vector of structural shocks:
Enp = Quarg (L) Drany(D X 1y ¥ Qg d L) Q 1gdL) "
that can be substituted in the equation of theashehof gasoline:
gd, =(1-L)™ Q.. (L )le)(L)D(MM(L)x( " +G(L)e¥

Rearranging the last equation we obtain:

9, = Qs 1(L) Qua g (L) Da(L) Xy +G(L) "
where D, (L) is 4x4 diagonal matrix with diagonal elements givey (1— L)dm_dg",
Finally, defining C(L) =Q;,4(L)Qy,14 (L), the reaction function of gasoline demand

is given as:

g9, =Y, G (L) (L-L)" ™ %, +G(L) &,  wherex,, =0s rea, rpo, /pg
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