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Abstract 
 

This paper examines the implications of the seasonal adjustment by an ARIMA 
model based (AMB) approach in the context of seasonal fractional integration. 
According to the AMB approach, if the model identified from the data contains seasonal 
unit roots, the adjusted series will not be invertible that has serious implications for the 
posterior analysis. We show that even if the ARIMA model identified from the data 
contains seasonal unit roots, if the true data generating process is stationary seasonally 
fractionally integrated (as it is often found in economic data), the AMB seasonal 
adjustment produces dips in the periodogram at seasonal frequencies, but the adjusted 
series still can be approximated by an invertible process. We also perform a small 
Monte Carlo study of the log-periodogram regression with tapered data for negative 
seasonal fractional integration. An empirical application for the Spanish economy that 
illustrates our results is also carried out at the end of the article. 
 
JEL Classification: C15 
 
Keywords: seasonality; invertibility; fractional integration; TRAMO-Seats; tapering; 
 

                                                 
* Corresponding autor.  
 
Luis Gil-Alana acknowledges financial support from the Spanish Ministry of Education grant ECO2011-
2014 ECON Y FINANZAS. 
 
   



 1 

 

1.  Introduction 

Given the seasonal nature of many macroeconomic time series, seasonal 

adjustment is a widespread practice and millions of series are routinely adjusted, some 

of them are not even publicly available in the nonadjusted version. Seasonal adjustment 

is believed to remove undesirable fluctuations at seasonal frequencies without 

producing significant changes at other frequencies (especially at the low part of the 

spectrum) making the data easily tractable thereby simplifying posterior modeling and 

analysis. However, the properties of the adjusted series crucially depend on the method 

used for the adjustment and the initial properties of the series, and they may result just 

as unattractive for analysts as seasonality itself. 

In this paper we examine one of the important features of the adjusted data: dips 

in the periodogram at seasonal frequencies and the resulting noninvertibility of the 

adjusted series. The spectral dips (or zeros) are produced by all seasonal adjustment 

methods used in practice, regardless of whether it is a naive adjustment by seasonal 

dummies or a sophisticated ARIMA-model based (AMB) signal extraction produced by 

specialized programs. Ooms and Hassler (1997) point out that the regression on 

seasonal dummies generates zeros in the periodogram at seasonal frequencies that can 

lead to the singularities in the log-periodogram regression. Nerlove (1965) applies 

Census X-11 and the modified ‘Hannan’ method and concludes that both methods 

remove more than just the seasonal component. Grether and Nerlove (1970) show that 

the phenomenon observed in Nerlove (1965), namely dips created near the seasonal 

frequencies after adjustment, is obtained as a result of ‘optimal’ adjustment procedure 

as well. The consequent seasonal adjustment routines of Census, X-11-ARIMA and X-

12, produce the same result by construction. Gomez and Maravall (2001) call attention 
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to the fact that TRAMO-Seats generates dips at seasonal frequencies whenever the 

model identified for the data contains seasonal unit roots. According to Gomez and 

Maravall (2001), the spectral zeros are the frequency counterpart of the unit MA roots 

and therefore the adjusted series is not invertible and does not accept autoregressive AR 

(or VAR) approximations to its Wold representation. Although often ignored, this is 

perhaps the most important practical implication of AMB adjustment, since AR (and 

VAR) approximations to seasonally adjusted data are typically carried out in the applied 

econometric work. 

In this work we analyze in detail the dips at the seasonal frequencies and the 

apparent noninvertibility produced by the AMB approach, within the fractional 

integration (FI) framework, which admits a wider representation of the invertibility 

condition than the one applied by Gomez and Maravall (2001). In particular, a 

fractionally integrated (FI) process is (seasonally) invertible whenever the FI 

coefficients at seasonal frequencies are higher than -0.5. In addition, notice that the 

negative seasonal FI parameters correspond to the spectral zeros at seasonal frequencies. 

Thus, the process can have spectral zeros at seasonal frequencies, but still remain 

invertible. 

We choose TRAMO-Seats for Windows (TSW) as the representative AMB 

seasonal adjustment program. TSW is a pair of the data adjustment programs developed 

by the Bank of Spain that have been intensively employed by Eurostat since 1994, and 

nowadays their use has been extended to various European countries (Gomez and 

Maravall (2001), ESS Guidelines on Seasonal Adjustment (2009)) 1. 

To check for the invertibility of the series adjusted by TSW, we produce 

simulations for a set of processes. We do not restrict the analysis to processes with 

                                                 
1 Recently, Eurostat has harmonised seasonal adjustment practices with the development of Demetra+ 
which currently includes both X-12-ARIMA and TRAMO-SEATS. 
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integer orders of integration at zero and the seasonal frequencies since it has been 

shown by many authors that FI at seasonal frequencies is also a widespread 

phenomenon in economics (Porter-Hudak, 1990; Gil-Alana and Robinson, 2001; etc.). 

However, we also make simulations for a set of Airline models, which are the default 

models in TSW. For each model, we simulated 500 series, we adjust them by TSW and 

then, we estimate the fractional differencing parameters at the seasonal frequencies in 

the adjusted series with the log-periodogram regression with tapered data.  

We find that if the data generating process (DGP) follows the default Airline 

model, TSW always identifies seasonally nonstationary ARIMA models for the data, 

and the adjusted series produced by TSW are indeed noninvertible, which is in line with 

the results of Gomez and Maravall (2001). However, if the original series is fractionally 

integrated at the seasonal frequencies, which is less restrictive and very plausible in 

many cases according to the empirical evidence, the adjusted series may be 

approximated by an invertible process depending on the stationarity of the original 

series.  If the DGP is a seasonally stationary FI model, TSW is less prone to identifying 

a seasonally nonstationary model.  Moreover, even if the model chosen by the program 

was a seasonally nonstationary, the resulting series does contain dips at the seasonal 

frequencies but these dips correspond to negative seasonal FI with coefficients greater 

than -0.5.  Hence the adjusted series still can be approximated by an invertible process. 

On the contrary, the adjustment of a series generated from a model with nonstationary 

FI seasonality results in noninvertible negative FI coefficients. Note that this last result 

is not straightforward since overdifferencing is expected to be larger for data generated 

from seasonal stationary models when a nonstationary model is employed for 

seasonality.  
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The paper is organized as follows. Section 2 describes the problem. Section 3 

briefly introduces the ideas behind the concept of seasonal FI. The simulation set-up 

and the results are presented in Section 4. Section 5 contains a small empirical 

application illustrating the results reported in Section 4. Section 6 concludes the paper. 

2. The Problem 

SEATS is an "ARIMA-model-based" (AMB) seasonal adjustment routine. 

Within the AMB approach, the program TSW starts by identifying the ARIMA model 

to the observed data  

 ( ) ( ) ,t tB x B aΦ = Θ  (1) 

where B is backward shift operator, i t t iB x x−= , ta  is an iid ( )20,N σ innovation, the 

polynomial ( ) ( )( ) ( )1 1
DD

B F B B B
ττΦ = − −  contains nonseasonal and seasonal roots 

respectively, τ is the number of observations per year, D is the (integer) order of 

integration at frequency zero, while Dτ  is the (integer) seasonal order of differentiation. 

The polynomials ( )F B  and ( )BΘ  are finite in B, the first one includes stationary 

seasonal and nonseasonal AR roots and the second is an invertible MA polynomial.  

If the aim of the application of the TSW is the seasonal adjustment, the observed 

series tx  is decomposed into the mutually orthogonal seasonally adjusted (SA) 

component tn  and seasonal component ts : 

 t t tx n s= +  

The processes for the seasonal and the SA components will follow ARIMA 

specifications: 

 2( ) ( ) , ~ (0, )n t n nt nt nB n B a a niid σΦ = Θ  (2) 

 2( ) ( ) , ~ (0, )s t s st st sB s B a a niid σΦ = Θ  (3) 
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such that ( ) ( )BBB sn ΦΦ=Φ )(  and ( ) ( ) ( ) ( ) ntnsstsnt aBBaBBaB ΘΦ+ΘΦ=Θ )( . In 

this way the seasonal component captures the peaks around the seasonal frequencies, 

which may be subtracted by the filter. 

 For the seasonal adjustment, the purpose is, given tX , to obtain the estimator of 

t̂n  such that ( )2ˆ |t t tE n n X −
 

 is minimized, i.e. the MMSE estimator of tn . 

 Define ( )t n ntn B a= Ψ , with ( ) ( ) ( )n n nB B BΨ = Θ Φ ; tx and ts are defined in the 

same way. As shown in Whittle (1963), t̂n  is obtained by means of the Wiener-

Kolmogorov (WK) filter as the MMSE estimator of the signal given the observed series: 

 
2

2

( ) ( )
ˆ ( , )

( ) ( )
n n n

t t t

B F
n x B F x

B F

σ ν
σ

 Ψ Ψ= = Ψ Ψ 
 (4) 

where F is a forward-shift operator (i.e. i t t iF x x+= ). Estimator given by (4) is called 

historical estimator. The WK filter can be expressed after simplification as 

 
2

2

( ) ( ) ( ) ( )
( , )

( ) ( )
n n s n sB B F F

B F
B F

σν
σ

Θ Φ Θ Φ=
Θ Θ

 (5) 

 
From (1), (4) , and (5) it can be obtained that 

 
2

2

( ) ( )
ˆ( ) ( )

( )
n s n

n t n t

F F
B n B a

F

σ
σ

Θ ΦΦ = Θ
Θ

 (6) 

It is clear that the process for the SA component (2) is different from the process 

for its historical estimator (6). If the process (1) is seasonally stationary, the seasonal 

component (3) will not contain the seasonal unit roots and, as a result, the polynomial 

( )s FΦ  will be stationary. In this case t̂n  given by (6) is going to be invertible. If the 

seasonal component is nonstationary I(1) (i.e. it contains unit roots at seasonal 

frequencies) ( ) ( )2 11 ... r
s F F F F S F−Φ = + + + + = , these unit roots will show up as 
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MA in the model generating ̂tn  and will produce spectral values of zeros for the 

associated seasonal frequencies. 

If the seasonal component identified within AMB approach is nonstationary the 

historical estimator of the series will not be invertible. An important implication of this 

result according to Gomez and Maravall (2001) is that the estimator of the SA series " ... 

will not accept, in general, an AR (or VAR) approximation to its Wold representation"2. 

3.   Seasonal fractional integration 

The AMB approach assumes that the data follows an ARIMA-type process. This 

assumption restricts the DGP to be either stationary I(0) or, alternatively integrated of 

order one, I(1), at zero and/or the seasonal frequencies. In this article we extend the 

seasonal I(1)/I(0)
  

approach to the fractional case, and examine cases where the original 

series have noninteger orders of integration at seasonal frequencies. In such a case, the 

process is said to be seasonally fractionally integrated or seasonal I(d). 

For the purpose of the present work, we first define an I(0) process as a 

covariance stationary process with a positive and bounded spectral density at all 

frequencies in the spectrum. Then, we say that a process xt is seasonal I(d) if it can be 

represented as: 

 (1 ) ,d
t tB x aτ− =  (7) 

where Bτ is the seasonal lag operator (i.e., Bτxt = xt-τ) and τ represents the number 

of periods per year (e.g., τ = 4 with quarterly data, τ = 12 in case of monthly data, etc.), 

d is a real value and at is an I(0) process that may include seasonal and nonseasonal 

                                                 
2 The Note 1 is applied to the historical or final estimator of the SA series. However, only the 

central observations of the SA series are produced by the historical estimator. For the periods close to the 
beginning or the end, the filter cannot be completed and some preliminary estimator has to be used. The 
filters for preliminary estimator are different from each other, generating different models for each period 
they are applied, and all of them are different from the final estimator (6) and from the model of the SA 
component (2). If the series is long its properties are dominated by the final estimator. However, if it is 
short it will have a highly nonlinear structure. 
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weakly  autocorrelated (e.g., ARMA) terms. If d > 0 in (1), xt is said to be a seasonal 

long memory process, so-named because of the strong degree of association between 

observations widely (seasonally) separated in time. It may be shown that for this 

process, the spectral density function is unbounded at the zero and the seasonal 

frequencies, which is a characteristic of seasonal long memory processes. However, the 

specification in (9) is rather restrictive in the sense that it imposes the same degree of 

integration at all frequencies, noting that (1 - Bτ) can be decomposed into (1 – B)S(B) 

where S(B) = 1 + B + B2 + … + Bτ-1 refers exclusively to the seasonal frequencies. 

Thus, for example, in case of the polynomial (1 – B4)d, it can be expressed as (1 – B)d(1 

+ B + B2 + B3)d =  (1 – B)d (1 + B)d (1 + B2)d  implying the same degree of integration, 

d, at zero and the seasonal frequencies π, π/2 (3π/2) (of a 2π cycle). Extending this 

model, we may consider a more general specification that permits different degrees of 

integration at each of the frequencies. In particular, for the case of quarterly data, in the 

paper we will examine models of the form: 

 0 2 12(1 ) (1 ) (1 ) ,d d d
t tB B B x a− + + =  (8) 

where d0 refers to the order of integration at the long run or zero frequency; d2 is 

the order of integration at the semiannual frequency π, and d1 corresponds to the annual 

frequencies π/2 and 3π/2. Applications using the flexible model (10) can be found in 

Arteche and Robinson (2000), Gil-Alana and Robinson (2001), Arteche (2003) and 

Hassler, Rodrigues and Rubia (2009). 

If the true process for  (quarterly) data is fractionally integrated and is given by 

(10), then TSW will find the best possible integer framework approximation to model 

seasonality, which can be stationary or not.  Theoretically, the process for the signal will 

have the following form: 
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 ( ) ( ) 120

2
2

2

( ) ( )ˆ ( ) ( ) 1 1
( ) ( )

ddd n s s
t n n t

B F
N B F B B a

B F

σ
σ

−−Φ Φ∇ = Θ Θ + +
Θ Θ

  (9) 

where the terms 
( )

( )
s B

B

Φ
Θ

 and 
( )

( )
s F

F

Φ
Θ

 are parts of two-sided WK filter (with 

backward and forward operators correspondingly) aimed to subtract the seasonal 

component given by ( ) ( ) 12 21 1
dd

B B+ + . In other words, 
( )

( )s

B

B

Θ
Φ

 is the TSW integer 

framework approximation to the fractionally ingenerated seasonal component. 

Note that the spectrum of the process in (9) is the same as that of  

 ( ) ( ) 120

22
2 2

2

( )ˆ ( ) 1 1
( )

ddd n s
t n t

B
N B B B a

B

σ
σ

−− Φ∇ = Θ + + Θ 
 

If TSW choose a nonstationary SARIMA to fit the data, then 

( )( )2( ) 1 1s B B BΦ = + +   and therefore: 

 
( ) ( ) 12

0

22 22
2

2 2

1 1
ˆ ( )

( )

dd

d n
t n t

B B
N B a

B

σ
σ

−−+ +
∇ = Θ

Θ
  (10) 

Therefore, if 1 2, 1d d < , the adjusted series should have a seasonal fractional 

integrated MA polynomial with coefficients larger than 1 being, hypothetically, not 

invertible. In the following section we investigate this issue in practice by means of 

simulations.  

4. Simulation study 

4.1.  Simulation set-up 

To study invertibility of the time series adjusted by TSW, we generate quarterly 

data from different specifications of SARFIMA models. The parameters for the 

simulated SARFIMA processes of the form as in (2) are d0 = {0.3, 0.7, 1, 1.5}, di = 
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{0.1, 0.3, 0.5, 0.7}, i = {1, 2}, i = {1, 2}  and σ2 = 1. For d0 = 1 we simulate additionally 

di = 1. 

The choice of the values is justified by the empirical evidence. The number of 

observations for each series is set T = 500.  

To generate the data, the long memory polynomials in (2) have to be expanded. 

We choose the lag truncation 1000 for each polynomial. Thereafter, we multiply 

expanded long memory polynomials (the resulting polynomial has 3000 lags) and 

following Bhardwaj and Swanson (2006), we truncate the resulting polynomial when 

the coefficients become smaller than 1.0e-004 (the truncation lag is always smaller than 

1000). All observations are generated using standard normal errors. For each process 

and each replication, we generate 3000 observations and we use just the last T 

observations to avoid the initial values problem, especially important when taking into 

account long-memory properties of the DGP. 

To each simulated series we apply TSW. If TSW chooses a seasonally 

nonstationary ARIMA model for this series, we collect it for the future analysis. If the 

model chosen by TSW contains stationary seasonality we discard the simulated series. 

We proceed until we have I = 500 simulated series for each specification identified by 

TSW as seasonally nonstationary. 

In addition to SARFIMA, we produce simulations for a set of quarterly Airline 

models of Box and Jenkins (1970) that are believed to approximate reasonably well the 

stochastic properties of many series 

 1(1 ) (1 ) (1 ) (1 )t tB B x Q B Q B aτ τ
τ− − = + +  
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 with  and negative values for Q1 and Q4: { }0.8, 0.6, 0.3iQ = − − − , 1, 4i =  

and [ ] [ ] [ ] [ ]{ }1 4, 1, 0.8 , 1, 0.6 , 1, 0.3Q Q = − − − − − − 2. In the same way as for SARFIMA, we 

collect I = 500 series for each specification identified by TSW as seasonally 

nonstationary. 

Thereafter, each selected series for each specification is adjusted by TSW and 

coefficients of FI at seasonal frequencies are estimated3.  It is important to remark that, 

even if several series are simulated from the same SARFIMA specification, the TSW 

can choose distinct ARIMA models for each of the simulated series. Moreover, even if 

the model chosen is the same the estimated ARIMA parameters under misspecification 

may be very different. Since seasonal filters applied to the data are based on the 

identified ARIMA models, different filters may be applied to each of the series 

simulated from the same SARFIMA process. In this way, the mean of the estimated 

parameters of FI at seasonal frequencies of the adjusted series does not have statistical 

meaning4. Therefore, to build conclusions on the invertibility of the adjusted series we 

propose the following testing procedure. After estimating the FI parameters at seasonal 

frequencies we test if the adjusted series is statistically noninvertible, i.e. whether we 

can reject the null hypothesis 0.5id = −  in favor of the alternative 0.5id < −  at least for 

one of the parameters of seasonal FI. If it is not the case, we test if the series is 

statistically invertible: i.e. we can reject the null hypothesis 0.5id = −  in favor of the 

                                                 
2 For example, in Maravall (2009) 50% of the 500 monthly exports and imports series of 15 European 
Union countries analyzed accept the Airline model as appropriate.  
3 We exclude 40 observations from the beginning and from the end of series to eliminate nonlinearities 
produced by preliminary estimator of SA. 
4 Even if we restrict TSW to choose always the default Airline model, the estimated coefficients of the 
model will differ at each replication and the seasonal filters will be distinct. Obviously, we could fix an 
ARIMA model with a given set of parameters to use for the adjustment, but this would produce results 
not interesting from a practical point of view. 

4τ =
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alternative 0.5id > −  for both estimated parameters of seasonal FI5. As a result, for each 

Airline and SARFIMA specification, we can compute both the percentage of 

statistically noninvertible and the percentage of statistically invertible series (in the 

adjusted I = 500 series chosen by TSW to be seasonally nonstationary before 

adjustment). 

To estimate the coefficients of FI at the seasonal frequencies we use the log-

periodogram regression with a complex-valued taper proposed by Hurvich and Chen 

(2000):  

 
( )2 0.5

0.5 1 exp , 1,...,t

i t
h t T

T

π − 
= − =  

   
. 

The choice of the log-periodogram regression is justified by several reasons. 

Since we do not know what the correct specification after adjustment is, we avoid the 

parameterization of the whole spectrum by choosing a local estimation method. 

Tapering is particularly suitable when the estimated coefficients of FI are expected to be 

negative, possibly smaller than -0.5. In these circumstances, the estimation results based 

on the nontapered data will have a strong positive bias, making the method not 

appropriate for the purposes of this work. As Hurvich and Ray (1995) and Velasco 

(1999) point out, the use of a taper can alleviate the negative effects of overdifferencing, 

reducing the bias in FI estimates. Finally, tapering also reduces the bias that appears due 

to contamination of the periodogram from the short memory component of the spectral 

density and allows for a less restrictive trimming of frequencies in presence of 

asymmetries as it happens at frequency / 2π . A comprehensive discussion of the 

performance of the method for seasonal and cyclical time series with asymmetric long 

memory properties is presented in Arteche and Velasco (2005).  

                                                 
5 We use 10% significance level. Note also that our procedure is very conservative.  
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Nevertheless, we also perform a small Monte Carlo study to check the 

performance of the estimation method in the presence of negative seasonal fractional 

integration at seasonal frequencies in the following way.  For each specification, after 

simulating the data and before applying the TSW (i.e. when we still know the true 

DGP), we take yearly differences, making sure that the resulting series are over-

differenced at seasonal frequencies having negative FI coefficients. We estimate these 

coefficients computing the mean for each specification to assess the estimation bias. 

 All the simulations and estimations were produced in Matlab. The programs are 

available from the authors upon request. For seasonal adjustment we use the last release 

of the TSW for Matlab developed by the Bank of Spain. The programs with instructions 

can be downloaded from the web-site of the Bank of Spain6. 

4.2.  Simulation Results 

The results of the simulation study for the different Airline and SARFIMA 

specifications are presented in Tables 1 and 2 respectively. In both tables, the particular 

specification from which the data is simulated appears in the first column (i.e., the 

values for the MA parameters Q1 and Q4 for the Airline model and the parameters of FI 

at seasonal frequencies d1 and d2 for SARFIMA). 

4.2.1 Monte Carlo results for the tapered log-periodogram regression for seasonal 

frequencies with negative FI 

The results of the Monte Carlo study are presented in the following two 

columns. The coefficients in the table are *ˆ ˆ1i id d= + , 1, 2i =  in columns two and three 

                                                 
6 http://www.bde.es/servicio/software/interfacese.htm. 
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respectively, where *ˆ
id  is the mean of the estimates of the coefficient with yearly 

differenced data7.  

To study the performance of FI estimators it is important to distinguish between 

the actual bias of the estimation procedure and the bias due to the contamination of 

periodogram frequencies by components attributed to other frequencies.  To do so, we 

first analyze simulation results for SARFIMA processes with { 0 1d = , 1 1d = , 

2 0.1,0.3,0.5,0.7d = } and { 0 1d = , 1 0.1,0.3,0.5,0.7d = , 2 1d = }. Note that after taking 

yearly difference these processes will be characterized by negative FI at one seasonal 

frequency only. As can be observed in Table 2, the bias for these processes is very 

small; the mean of the estimated values ˆ
id over the replicas are always very close to the 

values used for simulation.   

If the process contains FI at other frequencies, either seasonal or zero frequency, 

the estimated parameters are slightly positively biased. The bias is higher when the 

negative FI at other frequencies is greater in absolute value. Thus, the highest bias is 

observed for the process {0 0.3d = , 1 0.1d = , 2 0.1d = }. Recall that after taking yearly 

difference it becomes {*
0 0.7d = − , *

1 0.9d = − , *
2 0.9d = − }.  

Simulation results from Airline specifications are useful to study the 

performance of the method in the presence of short memory components. Results are 

presented in the Table 1. The estimation method always detects seasonal unit roots. The 

precision of the estimates depends on the value of the seasonal MA parameter 4Q : the 

greater this value in absolute terms, the greater the bias.  

                                                 
7 Recall that since we expect to have negative seasonal fractional integration after adjustment, the original 
data was yearly differenced in the Monte Carlo analysis to ensure that the resulting series are 
overdifferenced at seasonal frequencies with negative coefficients of fractional integration. For the 

processes with the fractional order of integration at zero 0 1.5d = , we take also a  first difference in 

addition to the yearly difference. The same applies to the Airline model. 
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Finally, note that no matter the specification, the coefficient 1d  tends to be 

estimated less precisely than the coefficient0d  due to the asymmetries presented in the 

periodogram around frequency π/2.  

Overall, the performance of the method at seasonal frequencies is similar to its 

performance at frequency zero, documented in previous studies. The log-periodogram 

regression with tapered data performs well for negative seasonal FI even for coefficients 

from the noninvertible region and also for the estimation of the parameter at frequency 

π/2, where the spectrum is not symmetric. The method works also well in the presence 

of short memory components, as shown in Table 1. On the whole, the results from the 

Monte Carlo study confirm that the log-periodogram regression with tapered data is 

appropriate for the purposes of the present work. 

4.2.2 Results on the invertibility of the adjusted series          

The column four of Tables 1 and 2 presents the percentage of cases for which 

TSW chooses a seasonally nonstationary model to fit the data for each of the simulated 

processes. As can be seen in Table 1, TSW always chooses a nonstationary model when 

the true DGP follows the Airline model. As expected for the SARFIMA specifications 

(Table 2) this percentage increases together with the magnitude of both d1 and  d2 .  

Next three columns of Tables 1 and 2 contain results of the statistical testing as 

described in the simulation set-up. Column five presents the percentage of cases in 

which the seasonal adjusted processes is estimated invertible, i.e., with the two 

estimated coefficients of FI at seasonal frequencies greater than -0.5. Thereafter we 

compute the percentage of replications in which the SA series have at least one 

estimated coefficient of seasonal FI statistically smaller than -0.5 - that is to say, the 

series is statistically noninvertible (column six). If the hypothesis of statistical 

noninvertibility is rejected, we test statistical invertibility: both estimated coefficients 
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are statistically greater than -0.5. The percentage of statistically invertible results is 

given in column seven. When the data are simulated from the Airline model (Table 1), 

the estimated coefficients of FI at frequencies π/2 and π are almost always smaller than -

0.5, which indicates the (possible) noninvertibility of the corresponding SA series. 

Moreover, in a high percentage of cases this noninvertibility is statistically significant. 

This result is not surprising and it is completely in line with the implications of the 

TSW for this class of models (Gomez and Maravall (2001)). For the SARFIMA 

specifications (Table 2), the result of the application of TSW depends on the initial 

properties of the simulated data. Thus, if the two coefficients of the seasonal FI are 

within the stationary region (di < 0.5, i = {1, 2}), even if the TSW identifies a 

nonstationary seasonal model (this occurs in a relatively small percentage of cases), the 

estimated coefficients of seasonal FI of the SA series are greater than -0.5 in most of the 

cases. Only a very small percentage of series are (possibly) statistically noninvertible. 

The percentage of statistically invertible results decreases as the seasonal FI coefficients 

of the original series approach the nonstationary region. For example, for d0 = 0.3, if the 

original series have both coefficients of seasonal FI di = 0.1, TSW only selects a 

seasonal nonstationary representation in 31.7% of the cases. In addition, even if this is 

the case and a nonstationary ARIMA is chosen, the estimated coefficients of the SA 

series almost always lie (99.4%) in the invertible region. Moreover, in 91.4% of the 

cases both parameters are statistically greater than -0.5 and the series are statistically 

invertible. The percentage of statistically invertible results decreases to 78.6% if d1 and 

d2 are equal to 0.3. Still, the estimated parameters are greater than -0.5 in 97% of the 

cases and the percentage of statistically noninvertible results is just 0.2%.  

On the contrary, if one of the coefficients of seasonal FI in the DGP is greater 

than 0.5, TSW fits a seasonally nonstationary model in a relatively higher percentage of 
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cases, and for those cases the SA series are often estimated to be noninvertible. Once 

more, the percentage of statistically noninvertible results increases with the parameters 

of seasonal FI of the original series. Thus, (again for d0 = 0.3) if di = 0.7 for the two 

seasonal FI coefficients in the original DGP, TSW selects a nonstationary representation 

in 99.8% of the cases. Only in 13.2% of the cases the SA series are invertible (and only 

in 7.6% the invertibility is statistically significant) whereas in 50.2% of the replicas the 

SA series were found to be statistically noninvertible. It is also interesting to note that, 

although the parameter of fractionally integration at zero is not neutral, the same 

conclusions are obtained for all simulated d0. 

The previous results indicate that invertibility may not be a severe issue in 

many circumstances. However, they contradict the theoretical findings derived in 

Section 3. Recall that the simulations are based on data identified by TSW as seasonally 

nonstationary and according to equation  (10) the adjusted series should always contain 

seasonal unit MA roots. To aid in the explanation of this apparent puzzle, the columns 

eight and nine in Tables 1 and 2 report the median with the 16th and 84th percentiles 

(68% band) of the estimated seasonal FI parameters after adjustment. Several results 

emerge from these columns:  

1. If the DGP contains stationary seasonality with relatively low parameters of 

FI, the adjusted series is not only usually estimated (statistically) invertible, but also the 

estimated parameters of FI are indeed very small in magnitude, with no sign of unit MA 

roots. For example, if the data is generated from an SARFIMA with 0 0.3d = , 1 0.1d =  

and 2 0.1d = , the median estimated values after adjustment are 1 0.116d = −ɶ  and 

1 0.096d = −ɶ . 

2. If the DGP contains seasonal FI with equal parameters ( 1 2d d= ), the medians 

of parameter estimates after adjustment are also close to each other and very similar to 
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the values employed to generate the data but with opposite sign. This can also be 

observed in the former example. 

3. If 1d  and 2d  in the DGP are very different in magnitude, the median values 

after adjustment are negative, but smaller in magnitude than the larger parameter in the 

DGP . For example, if parameters in the DGP are 0 0.3d = , 1 0.7d =  and 2 0.1d = , the 

median estimated values after adjustment are 1 0.476d = −ɶ  and 1 0.465d = −ɶ . 

An extremely (positive) bias of the estimation method for the type of processes 

generated by TSW could probably explain the first finding. However, it is in clear 

contradiction with the Montecarlo analysis and, especially, with the results from Airline 

specifications (Table 1) since the estimation method clearly detects the noninvertible 

unit MA roots in the adjusted data. The alternative explanation is that the integer 

framework approximation for stationary FI seasonal processes employed by TSW is 

good enough to be virtually not distinguishable from FI when the seasonal filter is 

applied.  Note that, if   ( ) ( )1 22( )
1 1

( )

d d

s

B
B B

B

Θ ≈ + +
Φ

, then (10) becomes: 

 ( ) ( ) 120

2
2 2

2
ˆ ( ) 1 1

ddd n
t n tN B B B a

σ
σ

∇ ≈ Θ + +   (11) 

Thus, if 0.5,  1,2id i> − = , the process can be approximated by an invertible process.  

This last explanation can also accommodate the second and third findings. The integer 

SARIMA framework where TSW operates is not flexible enough to fit seasonality with 

different level of persistence at seasonal frequencies. Therefore, TSW finds an 

approximation where ( ) ( )2( )
1 1

( )

d d

s

B
B B

B

Θ ≈ + +
Φ

, { } { }1 2 1 2min , max ,d d d d d< < . In 

this case: ( ) ( ) 120

2
222 2

2
ˆ ( ) 1 1

d dd dd n
t n tN B B B a

σ
σ

−−∇ ≈ Θ + +  which is trivial if 1 2d d= . 
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Overall, simulation results are in line with Gomez and Maravall (2001), but 

using a more flexible definition of invertibility: if the process contains strong 

nonstationary seasonality (including FI) then the SA series estimated by TSW will be in 

general noninvertible. However, if the original series were stationary fractionally 

integrated at seasonal frequencies, TSW will choose a nonstationary representation in a 

smaller percentage of cases and, even if a nonstationary seasonal model is chosen, the 

resulting SA series is likely not distinguishable from an invertible process. This result is 

important because an econometrician never knows what the DGP for the real data is, 

and always works with approximations which fit the data reasonably well according to 

the results of statistical testing. We illustrate our results with real data in the following 

section. 

5. Empirical examples 

To illustrate the simulation results, we consider several quarterly series of the 

Spanish economy: Industrial Production Index (IPI), airline passengers (AIR), 

employment (EMP) and three quarterly cyclical economic indicators, namely: cement 

consumption (CC), car registrations (CR) and housing starts (HS). IPI and these three 

indicators are considered to be the cycle drivers for an economy in Leamer (2009) and 

have been recently used by Bujosa et al. (2012) to construct a composite leading 

indicator for the Spanish economy. All series are strongly seasonal, and cover a span 

starting from the beginning of the 70s.  Monthly data for IPI, CC, CR, HS and AIR can 

be obtained from the Bank of Spain. To convert the IPI to quarterly, we use the simple 

average of the observations inside each quarter. Other series are converted to quarterly 

by adding the observations inside the quarter. Employment has been obtained from the 
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OECD stats database. We exclude the last years of observations to avoid the influence 

of the current crisis8.  

Figure 1 (left panels) plots the original series (not seasonally adjusted) and the 

series after adjustment by TSW. Nonstationary in the mean and a strong seasonal 

pattern is observed in all the original series.  

[Insert Figure 1 about here] 

The right panel in Figure 1 depicts the periodograma of both differenced series: 

original and adjusted by TSW. As expected, the periodograma of the differenced 

original series have strong peaks at the two seasonal frequencies, while those of the 

differenced adjusted series present dips at the same frequencies.  

TSW identifies the following models for the original series: 

Variable ARIMA model chosen by TSW 

ln(IPI) 

( ) ( )4 41 0.2275 1 0.7146t tB y B ε− ∇∇ = −  

changed by Seats to:  

( ) ( )4 41 0.2275 1 0.7146t ty B B ε∇∇ = − −  

CC ( )4 41 0.7054t ty B ε∇∇ = −  

CR ( )4 41 0.6775t ty B ε∇∇ = −  

HS ( ) ( )41 0.4836 1 0.5360t tB y B ε+ ∇ = −  

ln(AIR) ( )( )4 41 0.1686 1 0.6158t ty B B ε∇∇ = − −  

EMP ( ) ( )4 41 0.7923 1 0.6320t tB y B e+ ∇∇ = −  

 

As can be seen from the above, all the series except IPI, HS and EMP follow a 

standard Airline model. For CC and CR the trend is very strong and Q1 is equal to zero. 

The model identified for the IPI does not accept the admissible decomposition and is 

modified by SEATS. Given that AR(1) polynomials with Φ1 in the interval (-0.2, -0.4) 

are practically indistinguishable from the MA(1) with Q1 = - Φ1, SEATS replaces the 

                                                 
8 For IPI, CC, and CR we exclude the last years of data. For the case of housing starts (HS) an additional 
year had to be taken into account since the effects of the crisis manifest earlier for this indicator. On the 
other hand, an additional year was able to be added for airline passengers (AIR) and employment (EMP).  
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NA model with the corresponding Airline model (Maravall (2009)). TSW chooses a 

stationary seasonal model for HS and SARIMA for EMP.  

We estimate the coefficients of FI at seasonal frequencies before and after the 

adjustment by TSW. The results are presented in Table 3.  

[Insert Table 3 about here] 

It is interesting to note that the examined series follow neither the Airline nor the 

SARIMA model, since the estimated coefficients of FI at the seasonal frequencies 

before the adjustment (columns four and five) are all statistically different from one. As 

can be seen in the table CC, CR and EMP seem to be seasonally stationary before 

adjustment, especially CC, for which the null hypothesis 0 : 0.5iH d =  is rejected in 

favor to the alternative 1 : 0.5iH d <  at conventional significance levels for both 

parameters of seasonal FI. For the other two series, we can reject the null in favor of the 

alternative at 15% significance level which seems to be appropriate give the short length 

of the data. In line with our simulation results, even though TSW has selected a 

seasonally nonstationary models for the three series, the estimated coefficients after the 

adjustment are substantially higher than -0.5, suggesting that the adjusted series can be 

approximated by an invertible process. That also seems to be the case of HS, for which 

TSW has selected a stationary representation before adjustment. For the IPI and AIR 

series, the estimated coefficients of FI at frequency π/2 are larger than 0.5, albeit we 

cannot reject the null of 1 0.5d =  at any significance level. After adjustment, one of the 

estimated coefficients is smaller than -0.5 and the adjusted series may then be 

noninvertible, although we cannot reject null of 1 0.5d = −  in favor of 1 0.5d < − . 

Overall, the empirical results are in line with the results of the simulation study. 
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6. Conclusions 

In this paper we have examined the invertibility property of seasonal series 

adjusted by TSW. According to Gomez and Maravall (2001) whenever the process 

chosen by TSW to fit the data contains seasonal unit roots, the adjusted series estimated 

by the program has MA unit roots and, as a result, it is not invertible and cannot be 

approximated by an AR (VAR) process as is ordinarily done in practice.   

In the simulation study carried out in this work we found that the invertibility 

issue may not be in many circumstances a strong concern. In particular we found that if 

the true DGP follows the default of the program Airline model (ARIMA with unit roots 

at seasonal frequencies), the adjusted series produced by TSW are indeed noninvertible. 

However, if the series is fractionally integrated at the seasonal frequencies, which is less 

restrictive and very plausible in some cases according to the empirical evidence, the 

adjusted series still can be approximated by invertible processes, depending on the 

stationarity of the original series. Thus, if the original series is seasonally stationary 

with coefficients of FI at seasonal frequencies smaller than 0.5, the SA series estimated 

by TSW is likely to be statistically invertible or undistinguishable from an invertible 

process even if the model chosen by the program to model seasonality was 

nonstationary , therefore still admit AR (or VAR) approximation. This approximation is 

more plausible the further the seasonal FI parameters of the original series are from the 

nonstationary region. On the contrary, if the original series is seasonally nonstationary, 

the resulting adjusted series are expected to be noninvertible. As shown in the empirical 

examples, these results are interesting since stationary FI seasonality is not a rare event 

in economic data.  
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Appendix: Tables and Figures  
 
 
Table 1: Simulation results, Airline model 
 

True 
specificati

on 

Before 
adjustment 

After adjustment 

{ }1 4,Q Q  
1d̂  2d̂  %, NS %, I 

%, 
SNI 

%, SI 1dɶ [68 band] 2dɶ [68 band] 

{-0.8,-0.3} 
{-0.8,-0.6} 
{-0.8,-0.8} 
{-0.6,-0.3} 
{-0.6,-0.6} 
{-0.6,-0.8} 
{-0.3,-0.3} 
{-0.3,-0.6} 
{-0.3,-0.8} 
{-1,-0.3}b 

{-1,-0.6}b 

{-1,-0.8}b 

1.043 
1.124 
1.195 
1.040 
1.113 
1.203 
1.024 
1.116 
1.192 
1.025 
1.114 
1.213 

1.062 
1.089 
1.112 
1.071 
1.110 
1.096 
1.056 
1.071 
1.083 
1.064 
1.089 
1.106 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

16.4 
14.6 
10.8 
6.2 
25.2 
19.5 
4.0 
6.0 
15.0 
4.0 
4.2 
3.8 

81.8 
76.2 
87.2 
92.6 
72.6 
72.4 
94.4 
92.2 
68.6 
95.0 
95.4 
95.6 

10.6 
11.0 
9.8 
4.8 
20.2 
14.0 
3.4 
4.4 
7.8 
2.6 
4.0 
3.4 

-0.790 [-0.734, -0.883] 
-0.713 [-0.613,-0.801] 
-0.760 [-0.677,-0.980] 
-0.827 [-0.778,-0.870] 
-0.740 [-0.591,-0.814] 
-0.648 [-0.530,-0.730] 
-0.837 [-0.791,-0.878] 
-0.785 [-0.732,-0.859] 
-0.601 [-0.515,-0.675] 
-0.889 [-0.839,-0.935] 
-1.008 [-0.963,-1.044] 
-1.096 [-1.045,-1.137] 

-1.004 [-0.843,-1.100] 
-1.102 [-0.828,-1.258] 
-1.214 [-1.069,-1.320] 
-1.069 [-0.982,-1.133] 
-1.067 [-0.787,-1.213] 
-1.002 [-0.726,-1.327] 
-0.963 [-0.878,-1.036] 
-0.909 [-0.774,-1.118] 
-0.766 [-0.638,-0.902] 
-1.002 [-0.943,-1.066] 
-1.013 [-0.950,-1.075] 
-1.008 [-0.944,-1.074] 

 
Notes: (a) Airline model: ( )( ) ( ) ( )4 4

1 41 1 1 1t tB B y Q B Q B ε− − = + + . If 
4 1Q → − , the seasonality is small or stable; if 

1 1Q → − , the trend is small. (b) These models correspond to the case when 
1 1Q = −  in the standard Airline model. ∇  and 

( )11 Q L+  will be canceled out in this case and the model will have a special form ( )4 4
41t ty Q L ε∇ = + . (c) Since the Airline 

model contains seasonal unit roots
1 2 1d d= = .(d) 

1̂d  and 
2d̂  are estimated means of the coefficients of FI at seasonal 

frequencies before adjustment. (e) NS – percentage of cases the TSW identifies a seasonally nonstationary model for the simulated 
data for a given process; I – percentage of cases both estimated coefficients of seasonal fractional integration are greater than -0.5; 
SNI – percentage of cases at least one coefficient of seasonal fractional integration is statistically smaller than -0.5 (statistically 
noninvertible); SI - percentage of cases both coefficients of seasonal fractional integration are statistically greater than -0.5 

(statistically invertible); (f) 
1dɶ  and 

2dɶ  are medians of the estimated coefficients of FI after adjustment and [68 band] refers to the 

16th and 84th percentiles. (g)The bandwidth parameter in the estimation is 0.5T ;  
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Table 2: Simulation results, SARFIMA model 
 
 

True 
specificat

ion 

Before 
adjustment 

After adjustment 

{ }1 2,d d
 

1d̂  2d̂  %, NS  %, I 
%, 
SNI 

%, 
SI 1dɶ [68 band] 2dɶ [68 band] 

0 0.3d =  

{0.1,0.1} 
{0.1,0.3} 
{0.1,0.5} 
{0.1,0.7} 

0.173 
0.166 
0.173 
0.168 

0.191 
0.366 
0.539 
0.734 

31.7 
49.1 
58.1 
35.8 

99.4 
97.0 
84.6 
45.0 

0.2 
0.2 
1.6 
15.8 

91.4 
78.6 
46.0 
11.0 

-0.116 [-0.041,-0.178] 
-0.240 [-0.176,-0.285] 
-0.272 [-0.212,-0.341] 
-0.258 [-0.192,-0.327] 

-0.096 [-0.028,-0.162] 
-0.119 [-0.055,-0.180] 
-0.273 [-0.207,-0.356] 
-0.511 [-0.434,-0.583] 

{0.3,0.1} 
{0.3,0.3} 
{0.3,0.5} 
{0.3,0.7} 

0.360 
0.353 
0.348 
0.352 

0.169 
0.362 
0.540 
0.731 

60.5 
64.7 
80.5 
74.7 

86.2 
92.4 
69.8 
27.2 

1.0 
0.0 
4.2 
27.6 

46.8 
56.0 
30.6 
6.4 

-0.200 [-0.147,-0.260] 
-0.274 [-0.227,-0.328] 
-0.333 [-0.275,-0.404] 
-0.340 [-0.272,-0.407] 

-0.327 [-0.249,-0.400] 
-0.259 [-0.197,-0.335] 
-0.302 [-0.231,-0.397] 
-0.563 [-0.452,-0.625] 

{0.5,0.1} 
{0.5,0.3} 
{0.5,0.5} 
{0.5,0.7} 

0.544 
0.529 
0.533 
0.530 

0.158 
0.342 
0.533 
0.730 

95.8 
94.9 
96.9 
99.6 

66.8 
68.2 
63.4 
32.8 

9.4 
6.2 
9.0 
30.0 

26.2 
22.6 
17.2 
10.2 

-0.301 [-0.257,-0.349] 
-0.341 [-0.284,-0.401] 
-0.401 [-0.339,-0.457] 
-0.478 [-0.397,-0.561] 

-0.403 [-0.312,-0.497] 
-0.399 [-0.329,-0.481] 
-0.404 [-0.333,-0.476] 
-0.440 [-0.375,-0.531] 

{0.7,0.1} 
{0.7,0.3} 
{0.7,0.5} 
{0.7,0.7} 

0.741 
0.736 
0.720 
0.721 

0.156 
0.332 
0.530 
0.708 

100.0 
100.0 
99.8 
99.8 

38.8 
30.0 
27.0 
13.2 

26.0 
28.2 
33.4 
50.2 

11.6 
10.4 
8.0 
7.6 

-0.476 [-0.420,-0.526] 
-0.489 [-0.427,-0.548] 
-0.518 [-0.461,-0.575] 
-0.590 [-0.528,-0.658] 

-0.465 [-0.340,-0.574] 
-0.531 [-0.447,-0.613] 
-0.536 [-0.456,-0.628] 
-0.598 [-0.519,-0.680] 

0 0.7d =  

{0.1,0.1} 
{0.1,0.3} 
{0.1,0.5} 
{0.1,0.7} 

0.184 
0.174 
0.142 
0.145 

0.187 
0.363 
0.569 
0.745 

16.7 
22.1 
72.4 
77.8 

98.2 
96.2 
81.0 
47.8 

0.2 
0.4 
2.4 
16.0 

91.0 
86.6 
41.2 
18.6 

-0.031 [0.012,-0.096] 
-0.116 [-0.056,-0.172] 
-0.186 [-0.104,-0.269] 
-0.290 [-0.181,-0.389] 

-0.046 [0.014,-0.118] 
-0.069 [0.004,-0.155] 
-0.298 [-0.237,-0.373] 
-0.490 [-0.410,-0.575] 

{0.3,0.1} 
{0.3,0.3} 
{0.3,0.5} 
{0.3,0.7} 

0.358 
0.348 
0.335 
0.332 

0.164 
0.349 
0.534 
0.731 

73.3 
76.9 
74.2 
97.3 

76.4 
80.8 
73.6 
28.2 

8.2 
5.2 
7.2 
36.4 

42.2 
51.0 
39.0 
11.0 

-0.236 [-0.172,-0.300] 
-0.286 [-0.201,-0.368] 
-0.275 [-0.189,-0.364] 
-0.527 [-0.412,-0.628] 

-0.335 [-0.238,-0.421] 
-0.278 [-0.200,-0.380] 
-0.325 [-0.263,-0.400] 
-0.488 [-0.401,-0.560] 

{0.5,0.1} 
{0.5,0.3} 
{0.5,0.5} 
{0.5,0.7} 

0.534 
0.522 
0.527 
0.524 

0.159 
0.335 
0.532 
0.726 

98.2 
99.2 
99.0 
99.2 

52.0 
30.0 
31.0 
17.2 

15.4 
38.8 
28.4 
59.2 

19.2 
12.2 
9.2 
8.8 

-0.400 [-0.320,-0.475] 
-0.465 [-0.395,-0.548] 
-0.524 [-0.453,-0.590] 
-0.638 [-0.549,-0.727] 

-0.457 [-0.373,-0.556] 
-0.585 [-0.475,-0.680] 
-0.493 [-0.424,-0.575] 
-0.535 [-0.457,-0.617] 

{0.7,0.1} 
{0.7,0.3} 
{0.7,0.5} 
{0.7,0.7} 

0.728 
0.717 
0.712 
0.712 

0.142 
0.324 
0.522 
0.718 

100.0 
100.0 
100.0 
100.0 

22.2 
13.6 
8.0 
5.6 

56.4 
59.0 
66.8 
76.0 

10.4 
4.8 
3.0 
3.8 

-0.617 [-0.523,-0.731] 
-0.590 [-0.523,-0.652] 
-0.610 [-0.563,-0.678] 
-0.677 [-0.625,-0.731] 

-0.457 [-0.327,-0.618] 
-0.590 [-0.451,-0.736] 
-0.689 [-0.583,-0.770] 
-0.639 [-0.569,-0.715] 

0 1d =  

{0.1,0.1} 
{0.1,0.3} 
{0.1,0.5} 
{0.1,0.7} 
{0.1,1.0} 

0.164 
0.177 
0.165 
0.148 
0.117 

0.176 
0.356 
0.545 
0.748 
1.037 

24.8 
26.3 
28.9 
57.6 
64.6 

100.0 
98.6 
88.8 
38.2 
9.6 

0.0 
0.0 
1.2 
27.4 
86.6 

98.4 
90.8 
56.4 
15.2 
9.0 

-0.042 [-0.003,-0.083] 
-0.134 [-0.072,-0.191] 
-0.098 [-0.045,-0.155] 
-0.086 [-0.034,-0.173] 
-0.056 [-0.005,-0.110] 

-0.035 [0.019,-0.095] 
-0.025 [0.038,-0.089] 
-0.280 [-0.175,-0.375] 
-0.562 [-0.453,-0.658] 
-0.876 [-0.814,-0.937] 

{0.3,0.1} 
{0.3,0.3} 
{0.3,0.5} 
{0.3,0.7} 
{0.3,1.0} 

0.355 
0.335 
0.339 
0.328 
0.316 

0.168 
0.348 
0.533 
0.728 
1.037 

58.1 
70.0 
74.4 
89.9 
91.4 

94.0 
92.4 
86.8 
38.6 
18.2 

1.2 
1.8 
1.6 
18.4 
75.8 

71.0 
70.0 
48.2 
12.6 
14.0 

-0.145 [-0.093,-0.195] 
-0.211 [-0.144,-0.262] 
-0.211 [-0.140,-0.297] 
-0.208 [-0.145,-0.281] 
-0.459 [-0.244,-0.607] 

-0.212 [-0.143,-0.295] 
-0.214 [-0.139,-0.288] 
-0.280 [-0.215,-0.345] 
-0.514 [-0.438,-0.578] 
-0.799 [-0.715,-0.888] 

{0.5,0.1} 
{0.5,0.3} 
{0.5,0.5} 
{0.5,0.7} 
{0.5,1.0} 

0.533 
0.527 
0.514 
0.516 
0.505 

0.159 
0.338 
0.530 
0.722 
1.017 

96.2 
97.8 
98.0 
98.4 
100.0 

69.0 
40.4 
42.6 
35.8 
11.4 

10.2 
30.0 
30.0 
31.8 
86.6 

29.8 
14.8 
14.2 
11.0 
9.2 

-0.355 [-0.286,-0.415] 
-0.474 [-0.379,-0.561] 
-0.484 [-0.405,-0.580] 
-0.386 [-0.323,-0.513] 
-0.768 [-0.496,-0.866] 

-0.351 [-0.247,-0.443] 
-0.503 [-0.394,-0.607] 
-0.483 [-0.381,-0.566] 
-0.530 [-0.452,-0.603] 
-0.812 [-0.727,-0.887] 

{0.7,0.1} 
{0.7,0.3} 
{0.7,0.5} 

0.728 
0.711 
0.714 

0.142 
0.327 
0.516 

100.0 
100.0 
100.0 

29.6 
15.8 
15.2 

36.0 
66.6 
75.8 

11.8 
7.6 
6.6 

-0.557 [-0.485,-0.628] 
-0.654 [-0.578,-0.727] 
-0.721 [-0.633,-0.801] 

-0.351 [-0.221,-0.460] 
-0.630 [-0.513,-0.722] 
-0.792 [-0.637,-0.916] 
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{0.7,0.7} 
{0.7,1.0} 

0.700 
0.699 

0.716 
1.010 

100.0 
100.0 

8.2 
8.6 

80.4 
90.2 

3.4 
5.8 

-0.773 [-0.670,-0.851] 
-0.942 [-0.866,-1.003] 

-0.727 [-0.637,-0.820] 
-0.824 [-0.757,-0.895] 

{1.0,0.1} 
{1.0,0.3} 
{1.0,0.5} 
{1.0,0.7} 
{1.0,1.0} 

1.017 
1.009 
1.004 
1.010 
1.005 

0.117 
0.314 
0.506 
0.691 
0.991 

100.0 
100.0 
100.0 
100.0 
100.0 

7.6 
8.6 
6.2 
7.2 
6.4 

91.2 
90.8 
93.6 
90.8 
93.2 

6.8 
5.0 
4.8 
4.6 
4.6 

-0.947 [-0.888,-0.992] 
-0.944 [-0.901,-0.989] 
-0.942 [-0.900,-0.979] 
-0.914 [-0.867,-0.968] 
-0.919 [-0.878,-0.962] 

-0.153 [-0.66,-0.254] 
-0.403 [-0.278,-0.587] 
-0.596 [-0.479,-0.738] 
-0.795 [-0.655,-0.983] 
-0.899 [-0.833,-0.956] 

0 1.5d =  

{0.1,0.1} 
{0.1,0.3} 
{0.1,0.5} 
{0.1,0.7} 

0.177 
0.142 
0.137 
0.132 

0.188 
0.367 
0.541 
0.739 

18.3 
49.1 
72.5 
69.2 

94.8 
96.2 
82.0 
55.2 

1.4 
0.4 
4.4 
13.8 

76.4 
77.0 
41.0 
19.2 

-0.155 [-0.104,-0.215] 
-0.208 [-0.142,-0.269] 
-0.307 [-0.239,-0.375] 
-0.304 [-0.245,-0.372] 

-0.171 [-0.095,-0.248] 
-0.147 [-0.083,-0.220] 
-0.279 [-0.214,-0.363] 
-0.464 [-0.384,-0.548] 

{0.3,0.1} 
{0.3,0.3} 
{0.3,0.5} 
{0.3,0.7} 

0.332 
0.331 
0.325 
0.318 

0.153 
0.343 
0.535 
0.728 

75.1 
69.8 
84.5 
80.4 

63.0 
73.4 
63.4 
38.6 

11.0 
4.4 
9.4 
30.0 

31.8 
34.0 
20.2 
12.8 

-0.269 [-0.200,-0.336] 
-0.345 [-0.277,-0.415] 
-0.408 [-0.359,-0.475] 
-0.430 [-0.356,-0.502] 

-0.410 [-0.302,-0.531] 
-0.341 [-0.279,-0.427] 
-0.358 [-0.285,-0.437] 
-0.486 [-0.390,-0.622] 

{0.5,0.1} 
{0.5,0.3} 
{0.5,0.5} 
{0.5,0.7} 

0.519 
0.516 
0.505 
0.502 

0.147 
0.336 
0.526 
0.717 

89.6 
96.5 
96.3 
97.8 

53.6 
49.2 
50.8 
31.4 

22.6 
21.2 
12.2 
27.2 

19.2 
13.0 
8.8 
6.8 

-0.344 [-0.272,-0.410] 
-0.383 [-0.330,-0.433] 
-0.427 [-0.382,-0.481] 
-0.497 [-0.435,-0.560] 

-0.444 [-0.322,-0.573] 
-0.489 [-0.404,-0.576] 
-0.441 [-0.380,-0.528] 
-0.477 [-0.391,-0.565] 

{0.7,0.1} 
{0.7,0.3} 
{0.7,0.5} 
{0.7,0.7} 

0.709 
0.705 
0.703 
0.700 

0.134 
0.323 
0.508 
0.717 

99.6 
99.8 
100.0 
100.0 

32.4 
26.8 
20.8 
16.4 

45.8 
44.2 
42.4 
46.8 

14.6 
7.4 
5.0 
4.8 

-0.479 [-0.388,-0.574] 
-0.456 [-0.386,-0.554] 
-0.488 [-0.427,-0.546] 
-0.547 [-0.490,-0.616] 

-0.436 [-0.241,-0.682] 
-0.582 [-0.444,-0.749] 
-0.601 [-0.516,-0.705] 
-0.605 [-0.510,-0.681] 

 

Notes: (a) SARFIMA model: ( ) ( ) ( ) 10 2 21 1 1
dd d

t tL L L y e− + + = , if 
1 2, 0.5d d >  the seasonality is nonstationary; (b) 

1̂d  and 

2d̂  are estimated means of the coefficients of FI at seasonal frequencies before adjustment. (c) NS – percentage of cases the TSW 

identifies a seasonally nonstationary model for the simulated data for a given process; I – percentage of cases both estimated 
coefficients of seasonal fractional integration are greater than -0.5; SNI – percentage of cases at least one coefficient of seasonal 
fractional integration is statistically smaller than -0.5 (statistically noninvertible); SI - percentage of cases both coefficients of 

seasonal fractional integration are statistically greater than -0.5 (statistically invertible). (d) 
1dɶ  and 

2dɶ  are medians of the 

estimated coefficients of FI after adjustment and [68 band] refers to the 16th and 84th percentiles. (e) The bandwidth parameter in the 

estimation is 0.5T . 

 
 
Table 3: Empirical results 
 

 T 1 2/m m  
Before adjustment After adjustment 

1d̂  2d̂  1
ˆ ad  2

ˆ ad  

ln(IPI) 128 32/16 
0.617 

(0.144) 
0.231 

(0.229) 
-0.153 
(0.144) 

-0.646 
(0.229) 

CC 148 36/18 
0.276 

(0.133) 
0.075 

(0.209) 
-0.127 
(0.133) 

-0.284 
(0.209) 

CR 188 48/24 
0.385 

(0.112) 
0.060 

(0.171) 
-0.075 
(0.112) 

-0.330 
(0.171) 

HS 144 36/18 
0.391 

(0.134) 
0.474 

(0.210) 
-0.266 
(0.134) 

-0.132 
(0.2100) 

ln(AIR) 148 36/18 
0.532 

(0.133) 
0.244 

(0.209) 
-0.195 
(0.133) 

-0.537 
(0.209) 

EMP 140 36/28 
0.380 

(0.134) 
0.054 

(0.210) 
-0.232 
(0.134) 

-0.226 
(0.210) 

 
Notes: (a) HS- Houses started (1970:1-2006:4); CR – Cars registered (1960:1-2007:4); CC – Cement consumption (1970:1-2007:4); 
ln(IPI) – natural logarithm of IPI (1975:1-2007:4); ln(AIR) – Airline passengers (1970:1-2008:4); ICR – industrial cars registration -  
(1964:1-2007:4); (b) 

1 2/m m  - bandwidth parameters for the estimation at frequencies(π/2)/π.  For each time series the bandwidth 

parameters (for both frequencies) were selected based on an examination of the log-log plot of the tapered periodogram of the data 
in differences.   
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Figure 1. Nonadjusted and TSW adjusted data of the empirical application and 
their respective sample periodogram 
  

  

  

  

  

  

  
 
Note: Left panel: The original and adjusted by TSW variables; right panel: estimated sample periodograma of the original and 
adjusted by TSW series. 
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