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Abstract

This paper examines the implications of the sedsajastment by an ARIMA
model based (AMB) approach in the context of sealsdractional integration.
According to the AMB approach, if the model ideietif from the data contains seasonal
unit roots, the adjusted series will not be in\@etithat has serious implications for the
posterior analysis. We show that even if the ARIMdel identified from the data
contains seasonal unit roots, if the true data igeimg process is stationary seasonally
fractionally integrated (as it is often found inoaomic data), the AMB seasonal
adjustment produces dips in the periodogram atos@hagrequencies, but the adjusted
series still can be approximated by an invertiblecpss. We also perform a small
Monte Carlo study of the log-periodogram regressiotn tapered data for negative
seasonal fractional integration. An empirical apgiion for the Spanish economy that
illustrates our results is also carried out atehé of the article.
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1. Introduction

Given the seasonal nature of many macroeconomie tseries, seasonal
adjustment is a widespread practice and millionsesfes are routinely adjusted, some
of them are not even publicly available in the rdjnsted version. Seasonal adjustment
is believed to remove undesirable fluctuations atsenal frequencies without
producing significant changes at other frequen¢especially at the low part of the
spectrum) making the data easily tractable thesamyplifying posterior modeling and
analysis. However, the properties of the adjuseges crucially depend on the method
used for the adjustment and the initial propertiethe series, and they may result just
as unattractive for analysts as seasonality itself.

In this paper we examine one of the important festwf the adjusted data: dips
in the periodogram at seasonal frequencies andebdting noninvertibility of the
adjusted series. The spectral dips (or zeros) avduped by all seasonal adjustment
methods used in practice, regardless of whethey a naive adjustment by seasonal
dummies or a sophisticated ARIMA-model based (AMBnal extraction produced by
specialized programs. Ooms and Hassler (1997) pmintthat the regression on
seasonal dummies generates zeros in the periodagraeasonal frequencies that can
lead to the singularities in the log-periodograngression. Nerlove (1965) applies
Census X-11 and the modified ‘Hannan’ method andclkmles that both methods
remove more than just the seasonal component. &ratid Nerlove (1970) show that
the phenomenon observed in Nerlove (1965), namigly dreated near the seasonal
frequencies after adjustment, is obtained as dtrebtoptimal’ adjustment procedure
as well. The consequent seasonal adjustment rgubh€ensus, X-11-ARIMA and X-

12, produce the same result by construction. GosmeizMaravall (2001) call attention



to the fact that TRAMO-Seats generates dips atoseddrequencies whenever the
model identified for the data contains seasonat towts. According to Gomez and
Maravall (2001), the spectral zeros are the frequeounterpart of the unit MA roots
and therefore the adjusted series is not invertihtk does not accept autoregressive AR
(or VAR) approximationgo its Wold representation. Although often ignordus is
perhapsthe most important practical implication of AMB adiment, since AR (and
VAR) approximations to seasonally adjusted dataypieally carried out in the applied
econometric work.

In this work we analyze in detail the dips at tleasonal frequencies and the
apparent noninvertibility produced by the AMB apgehb, within the fractional
integration (FI) framework, which admits a widepresentation of the invertibility
condition than the one applied by Gomez and Mala{2001). In particular, a
fractionally integrated (Fl)process is (seasonally) invertible whenever the FI
coefficients at seasonal frequencies are higher theb. In addition, notice that the
negative seasonal Fl parameters correspond t@#utral zeros at seasonal frequencies.
Thus, the process can have spectral zeros at sgasequencies, but still remain
invertible.

We choose TRAMO-Seats for Windows (TSW) as thpresentative AMB
seasonal adjustment program. TSW is a pair of #t& adjustment programs developed
by the Bank of Spain that have been intensivelyleyagal by Eurostat since 1994, and
nowadays their use has been extended to variougp&am countries (Gomez and
Maravall (2001), ESS Guidelines on Seasonal Adjastn2009)}.

To check for the invertibility of the series adpdtby TSW, we produce

simulations for a set of processes. We do noticedtie analysis to processes with

! Recently, Eurostat has harmonised seasonal adjostpractices with the development of Demetra+
which currently includes both X-12-ARIMA and TRAMBGEATS.



integer orders of integration at zero and the sedstrequencies since it has been
shown by many authors that Fl at seasonal freqaent also a widespread
phenomenon in economics (Porter-Hudak, 1990; GlRraland Robinson, 2001; etc.).
However, we also make simulations for a set ofidélmodels, which are the default
models in TSW. For each model, we simulated 50@sewe adjust them by TSW and
then, we estimate the fractional differencing pagtars at the seasonal frequencies in
the adjusted series with the log-periodogram resgpeswith tapered data.

We find that if the data generating process (DGHlp#vs the default Airline
model, TSW always identifies seasonally nonstatip®RIMA models for the data,
and the adjusted series produced by TSW are indeidvertible, which is in line with
the results of Gomez and Maravall (2001). Howeiehe original series is fractionally
integrated at the seasonal frequencies, whichss testrictive and very plausible in
many cases according to the empirical evidence, dbpisted series may be
approximated by an invertible process dependinghenstationarity of the original
series. If the DGP is a seasonally stationary &dl@h, TSW is less prone to identifying
a seasonally nonstationary model. Moreover, e#reimodel chosen by the program
was a seasonally nonstationary, the resulting seftes contain dips at the seasonal
frequencies but these dips correspond to negatiasomal Fl with coefficients greater
than -0.5. Hence the adjusted series still caappeoximated by an invertible process.
On the contrary, the adjustment of a series gee@rfadbm a model with nonstationary
Fl seasonality results in noninvertible negativecé¢fficients. Note that this last result
is not straightforward since overdifferencing ipested to be larger for data generated
from seasonal stationary models when a nonstagomaodel is employed for

seasonality.



The paper is organized as follows. Section 2 dessrihe problem. Section 3
briefly introduces the ideas behind the concepsedsonal Fl. The simulation set-up
and the results are presented in Section 4. Se&iaontains a small empirical
application illustrating the results reported ircts@n 4. Section 6 concludes the paper.
2. The Problem

SEATS is an "ARIMA-model-based" (AMB) seasonal atiment routine.
Within the AMB approach, the program TSW startsidgntifying the ARIMA model

to the observed data
®(B)x = O(B a, 1)
where B is backward shift operatoB x = %, & is an iid N(O,az)innovation, the

polynomial ®(B) = F(B)(1-B)° (1- B)D’ contains nonseasonal and seasonal roots

respectively,t is the number of observations per year, D is ihéeder) order of
integration at frequency zero, whilg, is the (integer) seasonal order of differentiation
The polynomialsF(B) and ©(B) are finite in B, the first one includes stationary

seasonal and nonseasonal AR roots and the secandrnigertible MA polynomial.

If the aim of the application of the TSW is the sm@al adjustment, the observed

series X is decomposed into the mutually orthogonal sedsoradjusted (SA)
componentn, and seasonal componegt
X=n+s
The processes for the seasonal and the SA commomaihtfollow ARIMA

specifications:

®.(B)n = ©,(Ba, g, -~ nid00;) (2)

®(B)s = OB a, a,~ nid007) 3)



such that®(B) = @ (B)®_(B) andO(B)a, = ®,(B)O,(B)a, + ®.(B)O,(B)a,. In
this way the seasonal component captures the peakad the seasonal frequencies,
which may be subtracted by the filter.

For the seasonal adjustment, the purpose is, gKierto obtain the estimator of
A such thatE[(r} -7)°| X(] is minimized, i.e. the MMSE estimator of.
Define n, =¥, (B) a,, with ¥,(B)=0,(B)/®,(B); x and s are defined in the

same way. As shown in Whittle (1963f is obtained by means of the Wiener-

Kolmogorov (WK) filter as the MMSE estimator of teignal given the observed series:

AN — |:0-r? l'IJn(B)LIJn(F)

BV }x = V(B )X @

where F is a forward-shift operator (i.E'x = x,,). Estimator given by (4) is called

historical estimator. The WK filter can be exprakaéier simplification as

7, 6,(B) @ (B)O (F) @ (F)

V(B,F) =
g O(B) ©(F)

(5)

From (1), (4) , and (5) it can be obtained that

0,(F)®(F)o;
O(F) o*

@, (B)ii = ©,(B (6)

It is clear that the process for the SA compon2ptg different from the process
for its historical estimator (6). If the procesg (& seasonally stationary, the seasonal

component (3) will not contain the seasonal unittscand, as a result, the polynomial
CDS(F) will be stationary. In this casg given by (6) is going to be invertible. If the
seasonal component is nonstationary I(1) (i.e. ahtains unit roots at seasonal

frequencies)® (F)=1+F +F*+..+F' ™" =S( F), these unit roots will show up as



MA in the model generating} and will produce spectral values of zeros for the

associated seasonal frequencies.

If the seasonal component identified within AMB eggch is nonstationatye
historical estimator of the series will not be irtide. An important implication of this
result according to Gomez and Maravall (2001) & the estimator of the SA series.

will not accept, in general, an AR (or VAR) approation to its Wold representatith
3. Seasonal fractional integration

The AMB approach assumes that the data follows RiVIA-type process. This
assumption restricts the DGP to be either statioh@) or, alternatively integrated of
order one, I(1), at zero and/or the seasonal frecjas. In this article we extend the
seasonal 1(1)/I(O)approach to the fractional case, and examine erlsese the original
series have noninteger orders of integration as@® frequencies. In such a case, the
process is said to be seasonally fractionally iatesgl or seasonal 1(d).

For the purpose of the present work, we first defam 1(0) process as a
covariance stationary process with a positive andnHded spectral density at all
frequencies in the spectrum. Then, we say thabeegsx; is seasonal I(d) if it can be
represented as:

(1-B)'x = a, (7)
whereB' is the seasonal lag operator (i&X; = x.,) andz represents the number
of periods per year (e.g.~= 4 with quarterly data; = 12 in case of monthly data, etc.),

d is a real value and; is an I(0) process that may include seasonal amdeasonal

2 The Note 1 is applied to the historical or finatimator of the SA series. However, only the
central observations of the SA series are prodbgettie historical estimator. For the periods clwsthe
beginning or the end, the filter cannot be completed some preliminary estimator has to be used. Th
filters for preliminary estimator are different froeach other, generating different models for guariod
they are applied, and all of them are differentrfrine final estimator (6) and from the model of 8
component (2). If the series is long its properéies dominated by the final estimator. Howevert i§
short it will have a highly nonlinear structure.



weakly autocorrelated (e.g., ARMA) terms.dit> 0 in (1),% is said to be a seasonal
long memory process, so-named because of the sttegigee of association between
observations widely (seasonally) separated in tithenay be shown that for this
process, the spectral density function is unboundedhe zero and the seasonal
frequencies, which is a characteristic of seaslumg) memory processes. However, the
specification in (9) is rather restrictive in thense that it imposes the same degree of
integration at all frequencies, noting that-(B") can be decomposed into £1B)SB)
whereSB) = 1+ B + B® + ... + B! refers exclusively to the seasonal frequencies.
Thus, for example, in case of the polynonfia+- BY)?, it can be expressed és— B%(1
+B+B?+B%' = (1- B (1+B)* (1 + B%)" implying the same degree of integration,
d, at zero and the seasonal frequenaies/2 (37/2) (of a 2z cycle). Extending this
model, we may consider a more general specificatiah permits different degrees of
integration at each of the frequencies. In pardicuior the case of quarterly data, in the
paper we will examine models of the form:
L-B)*@+ Bf:(1+ B )i x = g, (8)

whered, refers to the order of integration at the long ourzero frequencyd; is
the order of integration at the semiannual freqyen@ndd; corresponds to the annual
frequenciestr/2 and 3t/2. Applications using the flexible model (10) che found in
Arteche and Robinson (2000), Gil-Alana and Robing2@01), Arteche (2003) and
Hassler, Rodrigues and Rubia (2009).

If the true process for (quarterly) data is fractlly integrated and is given by
(10), then TSW will find the best possible intefi@mework approximation to model
seasonality, which can be stationary or not. Téigcally, the process for the signal will

have the following form:



G — g e (B) ®(F) -4, 4
N, = OB O(R) Gaos (1rB (10 B) (©)
where the termsm and m are parts of two-sided WK filter (with
o(B) O(F)

backward and forward operators correspondingly)edinto subtract the seasonal

o(B)
q)S(B)

component given by1+ B)d2 (1+ Bz)dl. In other words; is the TSW integer

framework approximation to the fractionally ingesieid seasonal component.

Note that the spectrum of the process in (9) istme as that of

A

do — 2 o (B -d, -d
0%, -% (B){@(( ” (1+B) % (1+ B) " a

If TSW choose a nonstationary SARIMA to fit the alat then
@ (B) =(1+ B)(1+ BZ) and therefore:
2-d;

(1+B)"™ (1+8)
©*(B)

O%N, =% 2(g) 3 (10)

Therefore, ifd;,d, <1, the adjusted series should have a seasonaldinatti

integrated MA polynomial with coefficients largenain 1 being, hypothetically, not
invertible. In the following section we investigati@s issue in practice by means of

simulations.
4.  Simulation study

4.1. Simulation set-up
To study invertibility of the time series adjusteg TSW, we generate quarterly
data from different specifications of SARFIMA moslelThe parameters for the

simulated SARFIMA processes of the form as in (®dy = {0.3, 0.7, 1, 1.5}d =



{0.1,0.3,0.5, 0.7} ={1, 2}, i ={1, 2} ando® = 1. Ford, = 1 we simulate additionally
d =1.

The choice of the values is justified by the engairievidence. The number of
observations for each series is set T = 500.

To generate the data, the long memory polynommal®) have to be expanded.
We choose the lag truncation 1000 for each polyabnithereafter, we multiply
expanded long memory polynomials (the resultingypainial has 3000 lags) and
following Bhardwaj and Swanson (2006), we trundhie resulting polynomial when
the coefficients become smaller than 1.0e-004 t(tecation lag is always smaller than
1000). All observations are generated using stahdarmal errors. For each process
and each replication, we generate 3000 observatamts we use just the last T
observations to avoid the initial values problespezially important when taking into
account long-memory properties of the DGP.

To each simulated series we apply TSW. If TSW chsoa seasonally
nonstationary ARIMA model for this series, we cotlé@ for the future analysis. If the
model chosen by TSW contains stationary seasonaétyliscard the simulated series.
We proceed until we have | = 500 simulated semeséch specification identified by
TSW as seasonally nonstationary.

In addition to SARFIMA, we produce simulations foiset of quarterly Airline
models of Box and Jenkins (1970) that are beligeeabproximate reasonably well the

stochastic properties of many series

1-B)@-B)x = 1+ QB+ QB)a



with 7=4 and negative values f@; andQs: Q ={-0.8,-0.6- 0.3, i=1,4
and[Q,Q,] ={[-1.-0.4 [- 1- 0.5 [- & OJF* In the same way as for SARFIMA, we

collect 1 = 500 series for each specification ideed by TSW as seasonally
nonstationary.

Thereafter, each selected series for each speamfices adjusted by TSW and
coefficients of Fl at seasonal frequencies areneséd. It is important to remark that,
even if several series are simulated from the s8ARFIMA specification, the TSW
can choose distinct ARIMA models for each of thewdated series. Moreover, even if
the model chosen is the same the estimated ARIMAnpeaters under misspecification
may be very different. Since seasonal filters aguplto the data are based on the
identified ARIMA models, different filters may bepplied to each of the series
simulated from the same SARFIMA process. In thigywhe mean of the estimated
parameters of Fl at seasonal frequencies of thestad] series does not have statistical
meaning. Therefore, to build conclusions on the inveriipibf the adjusted series we
propose the following testing procedure. After restiing the FI parameters at seasonal

frequencies we test if the adjusted series isssi@dily noninvertible, i.e. whether we
can reject the null hypothesis =-0.5 in favor of the alternativel, <-0.5 at least for
one of the parameters of seasonal Fl. If it is thet case, we test if the series is

statistically invertible: i.e. we can reject thellnwypothesisd =-0.5 in favor of the

% For example, in Maravall (2009) 50% of the 500 rhdnexports and imports series of 15 European
Union countries analyzed accept the Airline modehppropriate.

¥ We exclude 40 observations from the beginning famah the end of series to eliminate nonlinearities
produced by preliminary estimator of SA.

* Even if we restrict TSW to choose always the défairline model, the estimated coefficients of the
model will differ at each replication and the saaddilters will be distinct. Obviously, we could fix an
ARIMA model with a given set of parameters to usethe adjustment, but this would produce results
not interesting from a practical point of view.

10



alternatived, >-0.5 for both estimated parameters of seasorfald a result, for each

Airline and SARFIMA specification, we can computeotio the percentage of
statistically noninvertible and the percentage titistically invertible series (in the
adjusted | = 500 series chosen by TSW to be selgonanstationary before
adjustment).

To estimate the coefficients of FI at the seasdreluencies we use the log-
periodogram regression with a complex-valued tageposed by Hurvich and Chen

(2000):
h =0.5{1— ex%iZlT(tT——O.S)H t=1.T.

The choice of the log-periodogram regression isifjad by several reasons.
Since we do not know what the correct specificatifter adjustment is, we avoid the
parameterization of the whole spectrum by choosingocal estimation method.
Tapering is particularly suitable when the estirdateefficients of FI are expected to be
negative, possibly smaller than -0.5. In theseuoistances, the estimation results based
on the nontapered data will have a strong posibises, making the method not
appropriate for the purposes of this work. As Helvand Ray (1995) and Velasco
(1999) point out, the use of a taper can allewviaenegative effects of overdifferencing,
reducing the bias in FI estimates. Finally, tapgaiso reduces the bias that appears due
to contamination of the periodogram from the simoeimory component of the spectral
density and allows for a less restrictive trimmio§ frequencies in presence of
asymmetries as it happens at frequerrey2. A comprehensive discussion of the
performance of the method for seasonal and cydioa series with asymmetric long

memory properties is presented in Arteche and \¢elé3005).

®> We use 10% significance level. Note also thatpsocedure is very conservative.

11



Nevertheless, we also perform a small Monte Catladys to check the
performance of the estimation method in the presericnegative seasonal fractional
integration at seasonal frequencies in the follgwivay. For each specification, after
simulating the data and before applying the TSW. (vhen we still know the true
DGP), we take yearly differences, making sure tia resulting series are over-
differenced at seasonal frequencies having negé&iivamefficients. We estimate these
coefficients computing the mean for each specibceto assess the estimation bias.

All the simulations and estimations were produiceiatlab. The programs are
available from the authors upon request. For sedsaljustment we use the last release
of the TSW for Matlab developed by the Bank of &pdihe programs with instructions
can be downloaded from the web-site of the Bar®pfit?.

4.2.  Simulation Results

The results of the simulation study for the diffaréiirline and SARFIMA
specifications are presented in Tables 1 and Zotisely. In both tables, the particular
specification from which the data is simulated awpein the first column (i.e., the
values for the MA paramete@®; andQ, for the Airline model and the parameters of Fl
at seasonal frequencidsandd, for SARFIMA).

4.2.1 Monte Carlo results for the tapered log-periodogram regression for seasonal
frequencies with negative Fi

The results of the Monte Carlo study are presentedhe following two

columns. The coefficients in the table ate=1+d’, i =1,2 in columns two and three

® http://www.bde.es/servicio/software/interfacesa.ht

12



respectively, where&i* Is the mean of the estimates of the coefficienthwiearly

differenced data
To study the performance of Fl estimators it is @amg@nt to distinguish between
the actual bias of the estimation procedure andbthe due to the contamination of

periodogram frequencies by components attributeather frequencies. To do so, we
first analyze simulation results for SARFIMA proses with {d,=1, d =1,
d,=0.1,0.3,0.5,0.} and {d, =1, d, =0.1,0.3,0.5,0., d, =1}. Note that after taking
yearly difference these processes will be charaetrby negative Fl at one seasonal
frequency only. As can be observed in Table 2,lias for these processes is very
small; the mean of the estimated valuﬂgmver the replicas are always very close to the
values used for simulation.

If the process contains Fl at other frequencidbgeiseasonal or zero frequency,

the estimated parameters are slightly positivepséd. The bias is higher when the

negative Fl at other frequencies is greater in lalbswalue. Thus, the highest bias is

observed for the processi{=0.3, d, =0.1, d, =0.1}. Recall that after taking yearly
difference it becomesd, =-0.7, d, =-0.9, d, =-0.9}.

Simulation results from Airline specifications arneseful to study the
performance of the method in the presence of gmerhory components. Results are

presented in the Table 1. The estimation methodysdwdetects seasonal unit roots. The

precision of the estimates depends on the valubeo§easonal MA paramet€l,: the

greater this value in absolute terms, the grehtebias.

" Recall that since we expect to have negative sedémctional integration after adjustment, thigioal
data was yearly differenced in the Monte Carlo wsial to ensure that the resulting series are
overdifferenced at seasonal frequencies with negatoefficients of fractional integration. For the

processes with the fractional order of integratédrzero dO =15 we take also a first difference in
addition to the yearly difference. The same appbethe Airline model.

13



Finally, note that no matter the specification, teefficient d, tends to be
estimated less precisely than the coefficikntlue to the asymmetries presented in the

periodogram around frequengi2.

Overall, the performance of the method at seasiweqliencies is similar to its
performance at frequency zero, documented in pusvgtudies. The log-periodogram
regression with tapered data performs well for tiegaeasonal Fl even for coefficients
from the noninvertible region and also for therastion of the parameter at frequency
n/2, where the spectrum is not symmetric. The methorks also well in the presence
of short memory components, as shown in Table 1th@rwhole, the results from the
Monte Carlo study confirm that the log-periodograagression with tapered data is
appropriate for the purposes of the present work.

4.2.2 Results on theinvertibility of the adjusted series

The column four of Tables 1 and 2 presents theep¢age of cases for which
TSW chooses a seasonally nonstationary model tbditlata for each of the simulated
processes. As can be seen in Table 1, TSW alwaasel a nonstationary model when
the true DGP follows the Airline model. As expected the SARFIMA specifications
(Table 2) this percentage increases together Wwehrtagnitude of botth, and d, .

Next three columns of Tables 1 and 2 contain resaflthe statistical testing as
described in the simulation set-up. Column fivesprds the percentage of cases in
which the seasonal adjusted processes is estimategitible, i.e., with the two
estimated coefficients of Fl at seasonal frequengeeater than -0.5. Thereafter we
compute the percentage of replications in which 8% series have at least one
estimated coefficient of seasonal Fl statisticaliyaller than -0.5 - that is to say, the
series is statistically noninvertible (column sixj. the hypothesis of statistical

noninvertibility is rejected, we test statisticavertibility: both estimated coefficients

14



are statistically greater than -0.5. The percentafgstatistically invertible results is
given in column seven. When the data are simulfrted the Airline model (Table 1),
the estimated coefficients of Fl at frequencei&sandr are almost always smaller than -
0.5, which indicates the (possible) noninvertigilof the corresponding SA series.
Moreover, in a high percentage of cases this naniibility is statistically significant.
This result is not surprising and it is completelyline with the implications of the
TSW for this class of models (Gomez and MaravadO@®). For the SARFIMA
specifications (Table 2), the result of the appiara of TSW depends on the initial
properties of the simulated data. Thus, if the meefficients of the seasonal Fl are
within the stationary regiond( < 0.5,1 = {1, 2}), even if the TSW identifies a
nonstationary seasonal model (this occurs in divelg small percentage of cases), the
estimated coefficients of seasonal Fl of the SAesaare greater than -0.5 in most of the
cases. Only a very small percentage of seriespmesiply) statistically noninvertible.
The percentage of statistically invertible resdiésreases as the seasonal FI coefficients
of the original series approach the nonstationagyon. For example, faly = 0.3, if the
original series have both coefficients of seasdflati = 0.1, TSW only selects a
seasonal nonstationary representation in 31.7%etases. In addition, even if this is
the case and a nonstationary ARIMA is chosen, #tenated coefficients of the SA
series almost always lie (99.4%) in the invertibdgion. Moreover, in 91.4% of the
cases both parameters are statistically greater 4h& and the series are statistically
invertible. The percentage of statistically invielei results decreases to 78.6%ifand
d> are equal to 0.3. Still, the estimated paramedegsgreater than -0.5 in 97% of the
cases and the percentage of statistically noniiientesults is just 0.2%.

On the contrary, if one of the coefficients of sead Fl in the DGP is greater

than 0.5, TSW fits a seasonally nonstationary modelrelatively higher percentage of

15



cases, and for those cases the SA series are edtemated to be noninvertible. Once
more, the percentage of statistically noninvertitgsults increases with the parameters
of seasonal FI of the original series. Thus, (adgardy = 0.3) ifd; = 0.7 for the two
seasonal FI coefficients in the original DGP, TSéésts a nonstationary representation
in 99.8% of the cases. Only in 13.2% of the calsesSAA series are invertible (and only
in 7.6% the invertibility is statistically signi@nt) whereas in 50.2% of the replicas the
SA series were found to be statistically noninéeti It is also interesting to note that,
although the parameter of fractionally integratiahzero is not neutral, the same
conclusions are obtained for all simulatid
The previous results indicate that invertibility ynaot be a severe issue in

many circumstances. However, they contradict theoritical findings derived in
Section 3. Recall that the simulations are basedata identified by TSW as seasonally
nonstationary and according to equation (10) thasted series should always contain
seasonal unit MA roots. To aid in the explanatibnhés apparent puzzle, the columns
eight and nine in Tables 1 and 2 report the medith the 16" and 84 percentiles
(68% band) of the estimated seasonal FI paramafess adjustment. Several results
emerge from these columns:

1. If the DGP contains stationary seasonality wélatively low parameters of
Fl, the adjusted series is not only usually estadstatistically) invertible, but also the

estimated parameters of Fl are indeed very smallagnitude, with no sign of unit MA

roots. For example, if the data is generated fran8ARFIMA with d; =0.3, d, =0.1
and d,=0.1, the median estimated values after adjustment dare—0.11€ and
d, =-0.09¢.

2. If the DGP contains seasonal FI with equal patars @, = d,), the medians

of parameter estimates after adjustment are ats®edb each other and very similar to
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the values employed to generate the data but wthosite sign. This can also be

observed in the former example.
3. If d, andd, in the DGP are very different in magnitude, thediae values
after adjustment are negative, but smaller in ntageithan the larger parameter in the

DGP . For example, if parameters in the DGP @ye 0.3, d, =0.7 and d, =0.1, the

median estimated values after adjustmentdare—0.47€ and d, = —0.46E.

An extremely (positive) bias of the estimation noetHfor the type of processes
generated by TSW could probably explain the firatihg. However, it is in clear
contradiction with the Montecarlo analysis and,eesgly, with the results from Airline
specifications (Table 1) since the estimation methkearly detects the noninvertible
unit MA roots in the adjusted data. The alternatesplanation is that the integer
framework approximation for stationary Fl seasop@cesses employed by TSW is

good enough to be virtually not distinguishablenird-| when the seasonal filter is

applied. Note that, if% = (1+ Bz)dl (1+ B)*, then (10) becomes:

A 2
O%N, = %Oﬁ(B) (1+B)* (1+ B)" q (11)

Thus, ifd, >-0.5, i = 1,Z, the process can be approximated by an invenpitdeess.

This last explanation can also accommodate thensleand third findings. The integer
SARIMA framework where TSW operates is not flexibl@ough to fit seasonality with

different level of persistence at seasonal freqesncTherefore, TSW finds an

approximation Wher%fa(%)) = (1+ BZ)d (1+B)", min{d,,d,} <d<maxd,,d}. In

2 -
this caseI®N, = %@ﬁ(B) (1+B)* ™™ (1+ Bz)2d % a which is trivial ifd, = d,.
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Overall, simulation results are in line with Gomazad Maravall (2001), but
using a more flexible definition of invertibilityif the process contains strong
nonstationary seasonality (including FI) then tiAesgries estimated by TSW will be in
general noninvertible. However, if the original issr were stationary fractionally
integrated at seasonal frequencies, TSW will ch@osenstationary representation in a
smaller percentage of cases and, even if a nomssayi seasonal model is chosen, the
resulting SA series is likely not distinguishahlenh an invertible process. This result is
important because an econometrician never knows thieaDGP for the real data is,
and always works with approximations which fit theta reasonably well according to
the results of statistical testing. We illustrate cesults with real data in the following

section.
5.  Empirical examples

To illustrate the simulation results, we considevesal quarterly series of the
Spanish economy: Industrial Production Index (IP&ifline passengers (AIR),
employment (EMP) and three quarterly cyclical ecoimindicators, namely: cement
consumption (CC), car registrations (CR) and hausitarts (HS)IPI and these three
indicators are considered to be the cycle driversah economy in Leamer (2009) and
have been recently used by Bujosa et al. (2012¢otwstruct a composite leading
indicator for the Spanish economy. All series drergly seasonal, and cover a span
starting from the beginning of the 70s. Monthlyadfor IP1, CC, CR, HS and AIR can
be obtained from the Bank of Spain. To convertlBigo quarterly, we use the simple
average of the observations inside each quartkerGeries are converted to quarterly

by adding the observations inside the quarter. Bympént has been obtained from the
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OECD stats database. We exclude the last yearbsaireations to avoid the influence
of the current crisfs

Figure 1 (left panels) plots the original seriest(seasonally adjusted) and the
series after adjustment by TSW. Nonstationary i@ thean and a strong seasonal
pattern is observed in all the original series.

[Insert Figure 1 about herej

The right panel in Figure 1 depicts the periodograshboth differenced series:
original and adjusted by TSW. As expected, the goegrama of the differenced
original series have strong peaks at the two seddoequencies, while those of the
differenced adjusted series present dips at the $@quencies.

TSW identifies the following models for the origirsries:

Variable ARIMA model chosen by TSW
(1-0.2278)00%, =( + 0.7148)¢,
In(IPl)  changed by Seats to:
00, = (1-0.2278)( + 0.7148')¢,

cc  O0%,=(1-0.7058")¢,

CR  OO%, =(1-0.6778)¢,

HS  (1+0.483@°)Dy, =( + 0.5368)¢
In(AIR)  00%, =(1-0.16868)( & 0.6158')s,

EMP  (1+0.7928)00%, =( ¥ 0.6328') ¢

As can be seen from the above, all the series exegpHS and EMP follow a
standard Airline model. For CC and CR the trendeiy strong and; is equal to zero.
The model identified for the IPI does not accem #umissible decomposition and is
modified by SEATS. Given that AR(1) polynomials kib; in the interval (-0.2, -0.4)

are practically indistinguishable from the MA(1)twiQ, = - ®;, SEATS replaces the

8 For IPI, CC, and CR we exclude the last yearsatd.dFor the case of housing starts (HS) an aditio
year had to be taken into account since the effefctise crisis manifest earlier for this indicat@m the
other hand, an additional year was able to be aftdeirline passengers (AIR) and employment (EMP).
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NA model with the corresponding Airline model (Maa#l (2009)). TSW chooses a
stationary seasonal model for HS and SARIMA for EMP

We estimate the coefficients of Fl at seasonalueagies before and after the
adjustment by TSW. The results are presented iteTab

[Insert Table 3 about here]

It is interesting to note that the examined sefiodew neither the Airline nor the
SARIMA model, since the estimated coefficients df & the seasonal frequencies
before the adjustment (columns four and five) drstatistically different from one. As

can be seen in the table CC, CR and EMP seem tseésonally stationary before

adjustment, especially CC, for which the null hymsis H,:d =0.5 is rejected in

favor to the alternativeH,:d <0.5 at conventional significance levels for both
parameters of seasonal FI. For the other two semesan reject the null in favor of the
alternative at 15% significance level which seemisd appropriate give the short length
of the data. In line with our simulation resultsjee though TSW has selected a
seasonally nonstationary models for the three sette estimated coefficients after the
adjustment are substantially higher than -0.5, estijgg that the adjusted series can be
approximated by an invertible process. That algmseto be the case of HS, for which
TSW has selected a stationary representation befdjrtestment. For the IPl and AIR
series, the estimated coefficients of Fl at freqyeti2 are larger than 0.5, albeit we
cannot reject the null ofl, =0.5 at any significance level. After adjustment, ofi¢he
estimated coefficients is smaller than -0.5 and #ugusted series may then be

noninvertible, although we cannot reject null df=-0.5 in favor of d, <-0.5.

Overall, the empirical results are in line with tiesults of the simulation study.
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6. Conclusions

In this paper we have examined the invertibilitygerty of seasonal series
adjusted by TSW. According to Gomez and Maravall0Ol® whenever the process
chosen by TSW to fit the data contains seasonalraois, the adjusted series estimated
by the program has MA unit roots and, as a regult not invertible and cannot be
approximated by an AR (VAR) process as is ordigatdne in practice.

In the simulation study carried out in this work veeind that the invertibility
issue may not be in many circumstances a strongeconin particular we found that if
the true DGP follows the default of the programliAg model (ARIMA with unit roots
at seasonal frequencies), the adjusted series gedday TSW are indeed noninvertible.
However, if the series is fractionally integrateédhee seasonal frequencies, which is less
restrictive and very plausible in some cases aaogrtb the empirical evidence, the
adjusted series still can be approximated by iftertprocesses, depending on the
stationarity of the original series. Thus, if thegmal series is seasonally stationary
with coefficients of Fl at seasonal frequencieslm#han 0.5, the SA series estimated
by TSW is likely to be statistically invertible amdistinguishable from an invertible
process even if the model chosen by the programmtmlel seasonality was
nonstationary , therefore still admit AR (or VAR)@oximation. This approximation is
more plausible the further the seasonal FI parametiethe original series are from the
nonstationary region. On the contrary, if the orédiseries is seasonally nonstationary,
the resulting adjusted series are expected to bmwertible. As shown in the empirical
examples, these results are interesting sincestal FI seasonality is not a rare event

in economic data.
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Appendix: Tablesand Figures

Table 1: Simulation results, Airline model

True Before

specificati . After adjustment

adjustment

on

A N 0, ~ ~
{Q.Q}| d | d, |wnNs| w1 | 2 | ws d, [68 band] d, [68 band]
{-0.8,-0.3} | 1.043 | 1.062 | 100.0 | 16.4 81.8 10.6 -0.790 [-0.734, -0.883]| -1.004 [-0.843,-1.100]
{-0.8,-0.6} | 1.124 | 1.089 | 100.0 | 14.6 76.2 11.0 -0.713 [-0.613,-0.801] | -1.102 [-0.828,-1.258]
{-0.8,-0.8} | 1.195 | 1.112 | 100.0 | 10.8 87.2 9.8 -0.760 [-0.677,-0.980] | -1.214 [-1.069,-1.320]
{-0.6,-0.3} | 1.040 | 1.071 | 100.0 6.2 92.6 4.8 -0.827 [-0.778,-0.870] | -1.069 [-0.982,-1.133]
{-0.6,-0.6} | 1.113 | 1.110 | 100.0 | 25.2 | 72.6 | 20.2 | -0.740[-0.591,-0.814]| -1.067 [-0.787,-1.213]
{-0.6,-0.8} | 1.203 | 1.096 | 100.0 | 195 | 72.4 | 14.0 | -0.648[-0.530,-0.730]| -1.002 [-0.726,-1.327]
{-0.3-0.3} | 1.024 | 1.056 | 100.0 | 4.0 944 | 3.4 | -0.837[-0.791,-0.878]| -0.963 [-0.878,-1.036]
{-0.3-0.6} | 1.116 | 1.071 | 100.0 | 6.0 922 | 4.4 | -0.785[-0.732,-0.859]| -0.909 [-0.774,-1.118]
{-0.3,-0.8} | 1.192 | 1.083 | 100.0 | 15.0 | 686 | 7.8 | -0.601[-0.515,-0.675] | -0.766 [-0.638,-0.902]
{-1,-0.3}° | 1.025 | 1.064 | 100.0 | 4.0 95.0 | 2.6 -0.889 [-0.839,-0.935] | -1.002 [-0.943,-1.066]
{-1,-0.6}° | 1.114 | 1.089 | 100.0 | 4.2 954 | 4.0 -1.008 [-0.963,-1.044] | -1.013 [-0.950,-1.075]
{-1,-0.8}b 1.213 | 1.106 | 100.0 3.8 95.6 34 -1.096 [-1.045,-1.137] | -1.008 [-0.944,-1.074]

Notes: (a) Airline model: (1 B)(l— 34) y =(1+Q B)(l+ Q g)gt

L f Q4 _ =1, the seasonality is small or stable; if

Q1 - —1, the trend is small. (b) These models corresponthé case whe@l =—1 in the standard Airline model] and

(1+ Ql L) will be canceled out in this case and the mod#élhaive a special forer“yt = (1+ Q |_4) g, - (c) Since the Airline

model contains seasonal unit rodls: d2 =1.(d) dl and d2 are estimated means of the coefficients of Flestsenal

frequencies before adjustment. (e) NS — percerdhgases the TSW identifies a seasonally nonstatjyomodel for the simulated
data for a given process; | — percentage of castsdstimated coefficients of seasonal fractiontddration are greater than -0.5;
SNI — percentage of cases at least one coefficesteasonal fractional integration is statisticalipaller than -0.5 (statistically
noninvertible); Sl - percentage of cases both amefits of seasonal fractional integration areistiaally greater than -0.5

(statistically invertible); (f)dl and az are medians of the estimated coefficients of fdraddjustment and [68 band] refers to the

16" and 84 percentiles. (g)The bandwidth parameter in thienesion is T°%;
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Table 2: Simulation results, SARFIMA mode€

True Before
specificat - After adjustment
ion adjustment
~ ~ 0, 0, ~ ~
{d,d} d | d, |wnNs| %1 || % d, [68 band] d, [68 band]
d,=0.3
{0.1,0.1} | 0.173 | 0.191 | 31.7 994 | 0.2 | 914 -0.116 [-0.041,-0.178] | -0.096 [-0.028,-0.162]
{0.1,0.3} | 0.166 | 0.366 | 49.1 97.0 | 0.2 | 78.6 -0.240 [-0.176,-0.285] | -0.119 [-0.055,-0.180]
{0.1,0.5} | 0.173 | 0.539 58.1 84.6 16 | 46.0 -0.272 [-0.212,-0.341] | -0.273 [-0.207,-0.356]
{0.1,0.7} | 0.168 | 0.734 35.8 45.0 | 158 | 11.0 -0.258 [-0.192,-0.327] | -0.511 [-0.434,-0.583]
{0.3,0.1} | 0.360 | 0.169 | 60.5 86.2 | 1.0 | 46.8 -0.200 [-0.147,-0.260] | -0.327 [-0.249,-0.400]
{0.3,0.3} | 0.353 | 0.362 | 64.7 924 | 0.0 | 56.0 -0.274 [-0.227,-0.328] | -0.259 [-0.197,-0.335]
{0.3,0.5} | 0.348 | 0.540 | 80.5 69.8 | 4.2 | 30.6 -0.333[-0.275,-0.404] | -0.302[-0.231,-0.397]
{0.3,0.7} | 0.352 | 0.731 74.7 272 | 276 | 6.4 -0.340 [-0.272,-0.407] | -0.563 [-0.452,-0.625
{0.5,0.1} | 0.544 | 0.158 95.8 66.8 9.4 | 26.2 -0.301 [-0.257,-0.349] | -0.403 [-0.312,-0.497]
{0.5,0.3} | 0.529 | 0.342 94.9 68.2 6.2 | 22.6 -0.341 [-0.284,-0.401] | -0.399 [-0.329,-0.481]
{0.5,0.5} | 0.533 | 0.533 | 96.9 634 | 9.0 | 17.2 -0.401 [-0.339,-0.457] | -0.404 [-0.333,-0.476]
{0.5,0.7} | 0.530 | 0.730 | 99.6 32.8 | 30.0| 10.2 -0.478[-0.397,-0.561] | -0.440 [-0.375,-0.531
{0.7,0.1} | 0.741 | 0.156 | 100.0 | 38.8 | 26.0 | 11.6 -0.476 [-0.420,-0.526] | -0.465 [-0.340,-0.574]
{0.7,0.3} | 0.736 | 0.332 | 100.0 | 30.0 | 28.2 | 10.4 -0.489 [-0.427,-0.548] | -0.531[-0.447,-0.613]
{0.7,0.5} | 0.720 | 0.530 99.8 270 | 334 | 8.0 -0.518 [-0.461,-0.575] | -0.536 [-0.456,-0.628]
{0.7,0.7} | 0.721 | 0.708 99.8 13.2 | 50.2| 7.6 -0.590 [-0.528,-0.658] | -0.598 [-0.519,-0.680
d,=0.7
{0.1,0.1} | 0.184 | 0.187 | 16.7 98.2 | 0.2 | 91.0 -0.031[0.012,-0.096] | -0.046[0.014,-0.118]
{0.1,0.3} | 0.174 | 0.363 | 22.1 96.2 | 0.4 | 86.6 -0.116 [-0.056,-0.172] | -0.069 [0.004,-0.155]
{0.1,0.5} | 0.142 | 0.569 | 72.4 810 | 24 | 41.2 -0.186 [-0.104,-0.269] | -0.298 [-0.237,-0.373]
{0.1,0.7} | 0.145 | 0.745 77.8 47.8 | 16.0 | 18.6 -0.290 [-0.181,-0.389] | -0.490 [-0.410,-0.575]
{0.3,0.1} | 0.358 | 0.164 | 73.3 764 | 8.2 | 42.2 -0.236 [-0.172,-0.300] | -0.335[-0.238,-0.421]
{0.3,0.3} | 0.348 | 0.349 76.9 80.8 5.2 | 51.0 -0.286 [-0.201,-0.368] | -0.278 [-0.200,-0.380]
{0.3,0.5} | 0.335 | 0.534 74.2 73.6 7.2 | 39.0 -0.275[-0.189,-0.364] | -0.325 [-0.263,-0.400]
{0.3,0.7} | 0.332 | 0.731 97.3 28.2 | 364 | 11.0 -0.527 [-0.412,-0.628] | -0.488 [-0.401,-0.560
{0.5,0.1} | 0.534 | 0.159 | 98.2 52.0 | 154 | 19.2 -0.400 [-0.320,-0.475] | -0.457 [-0.373,-0.556]
{0.5,0.3} | 0.522 | 0.335 | 99.2 30.0 | 38.8| 12.2 -0.465 [-0.395,-0.548] | -0.585 [-0.475,-0.680]
{0.5,0.5} | 0.527 | 0.532 | 99.0 310 | 284 | 9.2 -0.524 [-0.453,-0.590] | -0.493[-0.424,-0.575]
{0.5,0.7} | 0.524 | 0.726 | 99.2 17.2 | 59.2| 8.8 -0.638 [-0.549,-0.727] | -0.535 [-0.457,-0.617]
{0.7,0.1} | 0.728 | 0.142 | 100.0 222 | 564 | 104 -0.617 [-0.523,-0.731] | -0.457 [-0.327,-0.618]
{0.7,0.3} | 0.717 | 0.324 | 100.0 136 | 59.0| 4.8 -0.590 [-0.523,-0.652] | -0.590 [-0.451,-0.736]
{0.7,0.5} | 0.712 | 0.522 | 100.0 8.0 66.8 | 3.0 -0.610 [-0.563,-0.678] | -0.689 [-0.583,-0.770]
{0.7,0.7} | 0.712 | 0.718 | 100.0 5.6 76.0| 3.8 -0.677 [-0.625,-0.731] | -0.639 [-0.569,-0.715
d, =

{0.1,0.1} | 0.164 | 0.176 | 24.8 | 100.0 | 0.0 | 98.4 -0.042 [-0.003,-0.083] | -0.035[0.019,-0.095]
{0.1,0.3} | 0.177 | 0.356 26.3 98.6 0.0 | 90.8 -0.134 [-0.072,-0.191] | -0.025 [0.038,-0.089]
{0.1,0.5} | 0.165 | 0.545 28.9 88.8 1.2 | 56.4 -0.098 [-0.045,-0.155] | -0.280 [-0.175,-0.375]
{0.1,0.7} | 0.148 | 0.748 57.6 38.2 | 274 | 15.2 -0.086 [-0.034,-0.173] | -0.562 [-0.453,-0.658]
{0.1,2.0} | 0.117 | 1.037 64.6 9.6 86.6 | 9.0 -0.056 [-0.005,-0.110] | -0.876 [-0.814,-0.937]
{0.3,0.1} | 0.355 | 0.168 58.1 94.0 1.2 | 710 -0.145 [-0.093,-0.195] | -0.212 [-0.143,-0.295]
{0.3,0.3} | 0.335 | 0.348 | 70.0 924 | 1.8 | 70.0 -0.211 [-0.144,-0.262] | -0.214[-0.139,-0.288]
{0.3,0.5} | 0.339 | 0.533 | 74.4 86.8 | 1.6 | 48.2 -0.211 [-0.140,-0.297] | -0.280 [-0.215,-0.345]
{0.3,0.7} | 0.328 | 0.728 | 89.9 386 | 18.4 | 12.6 -0.208 [-0.145,-0.281] | -0.514[-0.438,-0.578]
{0.3,2.0} | 0.316 | 1.037 | 914 18.2 | 758 | 14.0 -0.459 [-0.244,-0.607] | -0.799 [-0.715,-0.888]
{0.5,0.1} | 0.533 | 0.159 96.2 69.0 | 10.2 | 29.8 -0.355 [-0.286,-0.415] | -0.351 [-0.247,-0.443]
{0.5,0.3} | 0.527 | 0.338 97.8 40.4 | 30.0 | 148 -0.474 [-0.379,-0.561] | -0.503 [-0.394,-0.607]
{0.5,0.5} | 0.514 | 0.530 98.0 42.6 | 30.0 | 14.2 -0.484 [-0.405,-0.580] | -0.483 [-0.381,-0.566]
{0.5,0.7} | 0.516 | 0.722 98.4 358 | 31.8| 11.0 -0.386 [-0.323,-0.513] | -0.530 [-0.452,-0.603]
{0.5,1.0} | 0.505 | 1.017 | 100.0 | 114 | 86.6| 9.2 -0.768 [-0.496,-0.866] | -0.812[-0.727,-0.887
{0.7,0.1} | 0.728 | 0.142 | 100.0 | 29.6 | 36.0 | 11.8 -0.557 [-0.485,-0.628] | -0.351 [-0.221,-0.460]
{0.7,0.3} | 0.711 | 0.327 | 100.0 | 15.8 | 66.6 | 7.6 -0.654 [-0.578,-0.727] | -0.630 [-0.513,-0.722]
{0.7,0.5} | 0.714 | 0.516 | 100.0 15.2 | 758 | 6.6 -0.721 [-0.633,-0.801] | -0.792 [-0.637,-0.916
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{0.70.7y | 0.700 | 0.716 | 100.0 | 8.2 | 804 3.4 | -0.773[-0.670,-0.851] | -0.727 [-0.637,-0.820]
{0.7,1.0} | 0.699 | 1.010 | 100.0 | 8.6 | 90.2| 58 | -0.942[-0.866,-1.003] | -0.824 [-0.757,-0.895
{1.0,0.1} | 1.017 | 0.117 | 1000 | 7.6 | 91.2| 6.8 | -0.947[-0.888,-0.992] | -0.153[-0.66,-0.254]
{1.0,0.3} | 1.009 | 0.314 | 100.0 | 8.6 | 90.8| 5.0 | -0.944[-0.901,-0.989] | -0.403[-0.278,-0.587]
{1.0,0.5} | 1.004 | 0.506 | 100.0 | 6.2 | 93.6| 4.8 | -0.942[-0.900,-0.979] | -0.596 [-0.479,-0.738]
{1.0,0.7} | 1.010 | 0.691 | 100.0 | 7.2 | 90.8| 4.6 | -0.914[-0.867,-0.968] | -0.795 [-0.655,-0.983]
{1.0,1.0} | 1.005 | 0.991 | 100.0 | 6.4 | 93.2| 46 | -0.919[-0.878,-0.962] | -0.899 [-0.833,-0.956]
d,=1.5
{0101} | 0177 | 0.188 | 183 | 948 | 1.4 | 76.4| -0.155[-0.104,-0.215] | -0.171 [-0.095,-0.248]
{0.1,0.3} | 0.142 | 0.367 | 49.1 | 96.2 | 0.4 | 77.0| -0.208[-0.142,-0.269] | -0.147 [-0.083,-0.220]
{0.1,05} | 0.137 | 0541 | 725 | 820 | 4.4 | 41.0| -0.307[-0.239,-0.375] | -0.279 [-0.214,-0.363]
{0.1,0.7} | 0132 | 0.739 | 69.2 | 552 | 13.8| 19.2| -0.304[-0.245,-0.372] | -0.464 [-0.384,-0.548
{0301} | 0.332 | 0.153 | 751 | 63.0 | 11.0 | 31.8 | -0.269[-0.200,-0.336] | -0.410 [-0.302,-0.531]
{0303} | 0.331 | 0343 | 69.8 | 734 | 4.4 | 340| -0.345[-0.277,-0.415] | -0.341[-0.279,-0.427]
{0.305) | 0.325| 0535 | 845 | 634 | 9.4 | 202| -0.408[-0.359,-0.475] | -0.358 [-0.285,-0.437]
{0.30.7} | 0.318 | 0.728 | 80.4 | 386 | 30.0| 12.8| -0.430[-0.356,-0.502] | -0.486 [-0.390,-0.622
{0501} | 0.519 | 0.147 | 89.6 | 53.6 | 22.6 | 19.2 | -0.344[-0.272,-0.410] | -0.444[-0.322,-0.573]
{0503} | 0516 | 0.336 | 965 | 49.2 | 21.2| 13.0| -0.383[-0.330,-0.433] | -0.489 [-0.404,-0.576]
{0505} | 0.505 | 0.526 | 96.3 | 50.8 | 12.2| 8.8 | -0.427[-0.382,-0.481] | -0.441[-0.380,-0.528]
{0507} | 0502 | 0.717 | 97.8 | 314 | 27.2| 6.8 | -0.497[-0.435-0.560] | -0.477 [-0.391,-0.565
{0701} | 0.709 | 0.134 | 99.6 | 32.4 | 458 | 14.6 | -0.479[-0.388,-0.574] | -0.436 [-0.241,-0.682]
{0.7.0.3} | 0.705 | 0.323 | 99.8 | 26.8 | 44.2| 7.4 | -0.456[-0.386,-0.554] | -0.582 [-0.444,-0.749]
{0.7,0.5} | 0.703 | 0.508 | 100.0 | 20.8 | 42.4| 5.0 | -0.488[-0.427,-0.546] | -0.601 [-0.516,-0.705]
{0.7,0.7} | 0.700 | 0.727 | 100.0 | 164 | 46.8| 4.8 | -0.547[-0.490,-0.616] | -0.605 [-0.510,-0.681]

Notes: (a) SARFIMA model:(1—1)* (1+L)* (1+ |_2)dl y,=e. if d;,d,>0.5 the seasonality is nonstationary; (&1 and

d2 are estimated means of the coefficients of Featsnal frequencies before adjustment. (c) NS eeptage of cases the TSW

identifies a seasonally nonstationary model for sheulated data for a given process; | — percentdgeases both estimated
coefficients of seasonal fractional integration greater than -0.5; SNI — percentage of casesaat e coefficient of seasonal
fractional integration is statistically smaller thad.5 (statistically noninvertible); Sl - percegeaof cases both coefficients of

seasonal fractional integration are statisticalfgater than -0.5 (statistically invertible). (cﬂ1 and dz are medians of the

estimated coefficients of Fl after adjustment e6&ifjand] refers to the 1@nd 84 percentiles. (e) The bandwidth parameter in the
estimation isT%5.

Table 3: Empirical results

Before adjustment After adjustment

T m/m d, d, a: d;
In(IP1) 128 32/16 (8'_?411471) (81233) (-(())..11543) {8_'5396)
cc 148 36/18 (Sjﬂ,g) (8',%3) (-c()).ils???) (-g.'zggg)
cR | ass | amee | 03B 000 | 0078 | 030
HS 144 36/18 8:?2411) (83‘2‘13) (_8,'123?4?) (6(.)é11?6%)
In(AIR) 148 36/18 (82?23) (8%3) (_g.'lle?:?) (_g-'ggg)
EMP 140 36/28 (82?22) (8'_2?3) ('g.-lzgj) ('81-2212(?)

Notes: (a) HS- Houses started (1970:1-2006:4); CR — @ayistered (1960:1-2007:4); CC — Cement consum(gfi®70:1-2007:4);
In(IP1) — natural logarithm of IPI (1975:1-2007:4)(AIR) — Airline passengers (1970:1-2008:4); ISEdustrial cars registration -

(1964:1-2007:4); (bm/ m - bandwidth parameters for the estimation at feegiest/2)/x. For each time series the bandwidth

parameters (for both frequencies) were selecteddbas an examination of the log-log plot of theetagl periodogram of the data
in differences.
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Figure 1. Nonadjusted and TSW adjusted data of the empirical application and
their respective sample periodogram
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Note: Left panel: The original and adjusted by TS#fiables; right panel: estimated sample periodograf the original and
adjusted by TSW series.
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