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Diffusion dynamics on multiplex networks
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We study the time scales associated to diffusion processes that take place on multiplex networks, i.e. on a set
of networks linked through interconnected layers. To this end, we propose the construction of a supra-Laplacian
matrix, which consists of a dimensional lifting of the Laplacian matrix of each layer of the multiplex network.
We use perturbative analysis to reveal analytically the structure of eigenvectors and eigenvalues of the complete
network in terms of the spectral properties of the individual layers. The spectrum of the supra-Laplacian allows
us to understand the physics of diffusion-like processes ontop of multiplex networks.

PACS numbers: 89.75.Hc,89.20.-a,89.75.Kd

Modern theory of complex networks is facing new chal-
lenges that arise from the necessity of understanding properly
the dynamical evolution of real systems. One of such open
problems concerns the topological and dynamical character-
ization of systems made up by two or more interconnected
networks. The standard approach in network modeling as-
sumes that every edge (link) is of the same type and conse-
quently considered at the same temporal and topological scale
[1]. This is clearly an abstraction of any real topological struc-
ture and represents either instantaneous or aggregated interac-
tions over a certain time window. Therefore, to understand
the intricate variability of real complex systems, where many
different time scales and structural patterns coexist we need a
new scenario, a new level of description [2].

A natural extension which allows to overcome previous
drawbacks is to describe a multilevel system as a set of cou-

FIG. 1: Example of multiplex network withM = 2 layers. Nodes
are the same in both layers. The connectivity at each layer isinde-
pendent of each other, the connectivity inter-layer is fromeach node
to itself (dashed links).

pled layered networks (multiplexnetwork) where each layer
could have very particular features different from the rest,
and in this way, define a richer structure of interactions [3].
Multiplex networks are thus structured multilevel graphs in
which interconnections between layers determine how a given
node in a layer and its counterpart in another layer are linked
and influence each other. Thus, they are essentially differ-
ent from simple graphs with colored edges, multi graphs or
hypergraphs and provide a mathematical ground for the anal-
ysis of many social networks (e.g. Facebook, Twitter, etc) and
of several biological systems− for instance, in biochemical
networks, many different signaling channels do actually work
in parallel, giving raise to what is called multitasking, which
can be modeled through a network of interconnected layers
[4]. Although some works have recently focused on the de-
scription and analysis of interconnected networks [5–9], theo-
retically grounded results about general dynamical processes
running on them are yet to come.

In this Letter we focus on a particular setup of multilevel
networks in which nodes are conserved through the different
layers of the multiplex (see Fig. 1). The current study ana-
lyzes a diffusion process that takes place at the whole system
level, i.e. within and across layers. This setup could account,
for instance, for a diffusion dynamics taking place on top of
a social network of contacts. Admittedly, the latter is a net-
work of networks, i.e. the aggregate of many different social
circles or subnetworks, each having its own temporal or struc-
tural patterns (for example, think of our online activity which
includes different social networking sites such as Facebook,
Twitter, etc.). The same applies to multimodal transportation
networks [10], on top of which individuals “diffuse” within
and between different layers (e.g. bus, subway, etc.). Let us
remark, however, that our interest here is not to solve a spe-
cific real problem but to illustrate the analysis of diffusion pro-
cesses on top of these structures.

We propose a mathematical setting that allows to scrutinize
the emergent diffusion time scales in multiplex networks. We
concentrate on diffusive processes, as they constitute a good
approximation for different types of dynamical processes (e.g.
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synchronization and other nonlinear processes amenable of
linearization [11]) whose dynamical properties can be cap-
tured by the behavior of the eigenvalues of the Laplacian ma-
trix. For instance, the time needed to synchronize phase oscil-
lators in a network is related to the second smallest eigenvalue
of the Laplacian,λ2 [12], and the stability of the synchro-
nized state is determined by the eigenratioλN/λ2 [13]. The
spectral analysis of complex networks constitutes then still a
promising area of research [14, 15]. Following a perturba-
tive analysis of the spectra [16], our results allow to get new
physical insight about diffusion processes through the analyt-
ical determination of the asymptotic behavior of the eigenval-
ues of the Laplacian of the multiplex (supra-Laplacian) when
the diffusive coupling between layers is either small or large.
Our findings prove that the emergent physical behavior of the
diffusion process when considering coupled layered networks
is far from trivial, in some cases (specified below) the cou-
pling of networks shows a super-diffusive behavior meaning
that diffusive processes in the multiplex are faster than inany
of the networks that form it separately.

Let us consider a set up in which the diffusive dynamics is
linearly coupled within nodes in each layerK, through a dif-
fusion constantDK , and among nodes in different layersK
andL, in this case with a diffusion constantDKL. The net-
work at each layer is assumed to be connected and undirected,
but it can be weighted. The state of each of theN nodes is
represented as a vector indexed by layersxK

i (t) where the
subscript stands for the node and the superscript for the layer.
The equations describing the dynamical evolution of the states
of the nodes, considering a multiplex of theM layers, are:

dxK
i

dt
= DK

N
∑

j=1

wK
ij (x

K
j −xK

i )+

M
∑

L=1

DKL(x
L
i −xK

i ) , (1)

wherewK
ij denotes the weight matrix at layerK (wK

ij = 0
means that there is no link between nodesi andj in layerK).
This set of equations can be dimensionally lifted to a space of
N ×M dimensions. To have a more clear picture of our for-
malism we will consider, without loss of generalization, the
most simple case of two layersM = 2. First, we define a col-
umn vector state of2N elements,(x1

1 · · ·x
1
N |x2

1 . . . , x
2
N ) =

(x1|x2) = x. Then Eq. (1) can be written in matrix form,
where the interaction matrix has a block structure that con-
forms an object we call supra-LaplacianL, with the same
properties that any zero-sum rows Laplacian has:

L =

(

D1L1 +DxI −DxI

−DxI D2L2 +DxI

)

, (2)

whereL1 andL2 are the respective Laplacians of each layer,
andI is the identity matrix. Here we have replacedD12 byDx

to emphasize the role of the diffusion process among the same
node at different layers. The Laplacian matrix of each layer
K is justLK = SK −WK , whereWK is the weights matrix
at layerK, andSK a diagonal matrix containing the strength
of each nodei at layerK, (SK)ii = sKi =

∑

j w
K
ij . Note

that the diagonal block structure of the supra-Laplacian re-
flects the interaction within layers and the off-diagonal blocks
the connectivity between layers.

The dynamical properties of the system can then be cast in
terms of the eigenvalues of this matrix. Eq. (1) can be writ-
ten asẋ = −Lx and, given thatL is symmetric, its solution
in terms of normal modes isφi(t) = φi(0)e

−λit, whereλi

are the eigenvalues ofL, see e.g. [17, 18]. The diffusion time
scaleτ of the multiplex is controlled by the smallest non-zero
eigenvalue ofL. Specifically,τ = 1/λ2. To get a physi-
cal insight on these eigenvalues as a function of the different
diffusion coefficients within layers (D1 andD2) and between
layers (Dx), we propose to analyze the whole system using
perturbation theory. To simplify the notation, we choose the
diffusion coefficientsD1 = D2 = 1 fixing then the relative
time scale of the problem.

Let us consider the decompositionL = L0 +D, whereL0

is the block diagonal matrix corresponding to the Laplacians
of every layer, with zeros in the off-diagonal blocks, andD is
formed by the rest of the elements. In matrix form it reads:

L = L0 +D =

(

L1 0

0 L2

)

+Dx

(

I −I

−I I

)

. (3)

Let us start the discussion by consideringDx = 0. Then,
the eigenvalues ofL are the set formed by the union of the
eigenvalues corresponding to the Laplacians of each layerL1

andL2. The eigenvalues are0 = λ1
1 < λ1

2 ≤ . . . λ1
N and

0 = λ2
1 < λ2

2 ≤ . . . λ2
N , respectively, while the eigenvalues of

the supra-Laplacian matrix are0 = λ1 = λ2 < λ3 ≤ . . . ≤
λ2n, beingλ3 = min(λ1

2, λ
2
2). It is interesting to note that

to analyze the eigenvector space it is convenient to move to a
new basis where the space corresponding toλ1 = λ2 = 0 is
spanned by vectors(1 · · · 1|1 · · · 1) and(1 · · · 1| − 1 · · · − 1)
instead of the canonical(1 · · · 1|0 · · · 0) and(0 · · · 0|1 · · · 1).

Now let us consider that the diffusion between layers is
different from zero,Dx 6= 0. In this case, the supra-
Laplacian will have the trivial eigenvalueλ1 = 0 with corre-
sponding eigenvector(1 · · · 1|1 · · · 1), and a non-trivial eigen-
valueλ = 2Dx that corresponds exactly to the eigenvector
(1 · · · 1| − 1 · · · − 1), since

L

(

1

−1

)

=

(

0

0

)

+ 2Dx

(

1

−1

)

. (4)

Note that this eigenvalue always exists, but it will be the small-
est non-zero one only whenDx is very small, as compared to
D1 andD2.

Next, we focus our attention on the opposite limit, a very
large diffusion coefficient [22] between layersDx ≫ 1.
DefiningDx = 1/ǫ, we can write

L = Dx

[(

I −I

−I I

)

+ ǫ

(

L1 0

0 L2

)]

= DxL̃. (5)

The spectrum of̃L is considered here a perturbation of that
at ǫ = 0. It is worth recalling that, forǫ = 0, the spectrum



3

corresponds to that of the coupling matrix
(

I −I

−I I

)

, (6)

which consists of two eigenvalues(λ̃1 = 0 andλ̃2 = 2) both
N -degenerate and spanned by eigenvectors of the form(u|u)
and(u|−u), i.e. vectors having identical or opposite values in
theith and(i + N)th components, respectively. Thus, in the
limit Dx → ∞, the set of eigenvalues ofL will split in two
groups, one showing a linear divergent behaviorλ ≈ 2Dx for
the sub-space(u| − u), and another having a finite valueλ as
the result of the undetermined limit (0 · ∞) in Eq. (5) for the
sub-space(u|u).

Now, we use the common ansatz in perturbation theory and
propose a perturbed solution in terms of both eigenvalues and
eigenvectors:

λi = λ
(0)
i + ǫλ

(1)
i +O(ǫ2) , (7)

vi = v
(0)
i + ǫv

(1)
i +O(ǫ2) ,

where the super-indices within parentheses represent the order
of the perturbation [19, 20]. Given that a set of eigenvalues
of L will diverge linearly as2Dx, we concentrate in propos-
ing perturbations for the finite solutions. These correspond to
consider the following perturbation of the eigenspectrum of
L̃:

λ̃ = 0 + ǫλ̃′ ,

v =

(

u

u

)

+ ǫ

(

u
′

1

u
′

2

)

. (8)

Expanding toO(ǫ) the eigenvalue problem̃Lv = λ̃v we ob-
tain:

ǫ

(

(u′

1 − u
′

2) + L1u

(u′

2 − u
′

1) + L2u

)

= ǫλ̃′

(

u

u

)

+O(ǫ2) . (9)

Matching each of the components in Eq. (9) we get:

L1u+ (u′

1 − u
′

2) = λ̃′
u ,

L2u+ (u′

2 − u
′

1) = λ̃′
u , (10)

that, after adding and subtracting Eqs. (10), transform into:

(L1 + L2)u = 2λ̃′
u

(L1 − L2)u = 2(u′

1 − u
′

2) (11)

From the system of Eqs. (11) it is revealed thatu is an
eigenvector of the network formed by the superposition of
both layers’ laplacians, and that the eigenvalue ofL, at first
order in the expansion, is

λ = λ̃′ =
λs

2
, (12)

beingλs the eigenvalue of the superposition(L1 +L2) corre-
sponding to the eigenvectoru. Moreover, given that the vector

perturbation in Eq. (8) must be orthogonal(u|u) ⊥ (u′

1|u
′

2),
we can also find the eigenvector of the superposition(L1+L2)
such thatu′

2 = −u
′

1 ≡ −u
′, then

u
′ =

1

4
(L2 − L1)u. (13)

Summarizing, the eigenvectors with finite (i.e. non diver-
gent) eigenvalues of the supra-LaplacianL for a large value
of the diffusion coefficientDx = 1/ǫ between layers are

v
′ =

(

u+ ǫu′

u− ǫu′

)

with eigenvalue
λs

2
, (14)

beingu andλs the eigenvectors and corresponding eigenval-
ues of the superposition(L1 + L2).

The physical insight obtained is the following, for low val-
ues of the diffusion coefficient between layers, the diffusion
time scale of the global system is controlled by the inverse of
2Dx. This asymptotic result is valid until the order ofDx is
similar to those ofD1 andD2. For large values ofDx the
eigenspectrum splits into a set of values that diverges as2Dx,
and a set of finite values, associated to the superposition ofthe
layers. The minimal eigenvalue different from zero turns out
to be half the eigenvalue corresponding to the superposition
of both layersλs/2.

A comparison between the diffusion time scale of the in-
dependent layers and the whole multiplex is possible using
known bounds about the eigenvalues of the Laplacians [21].
The time scale associated to the multiplex forDx ≪ 1 is
τ = 1

2Dx

that means that the cross-diffusion between layers
is the limiting value of the diffusion spreading. On the other
hand, the time scale associated to the multiplex forDx ≫ 1 is
τ ≈ 2/λs. This latter case is far less trivial than the previous
one. Using the bounds in [21] we deduce the following result:

λs

2
≥

λ1
2 + λ2

2

2
≥ min (λ1

2, λ
2
2) . (15)

The above inequality implies that the diffusion in the mul-
tiplex will be faster than the diffusion in the slowest layer.
Thus, as a consequence of the multiplex structure, at least one
layer (the one with the largest diffusion time scale) has itsdif-
fusion speeded up. The emergence of a super-diffussion, i.e.
the fact that the time scale of the multiplex is faster than that
of both layers acting separately is, in general, not guaranteed
and depends on the specific structures coupled together. Fur-
thermore, the following inequality also holds [21]:

λs

2
≤

2N

2N − 1
min
i

(

s1i + s2i
2

+Dx

)

, (16)

beingsKi the strength of nodei at layerK.
Finally, it is worth noticing that although the previous anal-

ysis assumes that the networks within layers are connected,
we have also analyzed the case in which this hypothesis is
relaxed. Imagine for example two layers such as one layer
has two disconnected components. In this situation, the re-
sults hold in the limitDx ≫ 1, and in the limitDx ≪ 1 the
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FIG. 2: (color online) Evolution of the eigenspectra of the toy model
presented in Fig. 1 as a function of the couplingDx (top) forD1 =

D2 = 1, and comparison between the second smallest eigenvalues
λ2 of the different Laplacians (bottom).

lowest (different from zero) eigenvalue scales asαDx, with
0 < α ≤ 2 although the perturbed eigenvector is far more
intricate.

To illustrate our results, we have computed the evolution of
the eigenvalues of the supra-Laplacian for the example repre-
sented in Fig. 1, which corresponds to two random networks
of N = 6 nodes. In Fig. 2 (top) we plot the eigenvalues as a
function of the diffusion coefficientDx. We observe the split-
ting of the eigenvalues into two groups, divergent and finite
values, as predicted. Fig. 2 (bottom) shows the theoreticales-
timates forλ2 in the asymptotic limitsDx ≪ 1 andDx ≫ 1.
Note that, except for the intermediate zone (Dx ≈ 1), where
the analysis does not hold, the agreement is excellent. In
this panel we have represented, as indicated in the legend, the
eigenvalues of each layer, the eigenvalue of the superposition
of both layers and the line corresponding to2Dx as well as the
eigenvalue of the supra-Laplacian. The results undoubtedly
confirm that both theoretical limits (small and largeDx) are
correctly identified by the analytical derivations. Note that the

model allows switch on and off the consideration of isolated
layers or the whole multiplex, simply by puttingDx = 0. For
the example exposed, we observe a super-diffusion process
for the whole multiplex, that means that the time scale asso-
ciated to the whole multiplex network is smaller than that of
layer 1 and layer 2 if they were considered independently, i.e.
τ < τ1 < τ2. Other examples comparing multiplex networks
with 1000 nodes per layer, with different standard topologies,
including clustered networks, are presented in the Supplemen-
tal Material accompanying this letter, all them showing perfect
agreement with the developed analysis.

In conclusion, we have developed a formalism to unveil the
time scales of diffusive processes on multiplex networks. The
approach has been specifically presented for a two-layer mul-
tiplex, in a particular set up in which nodes are preserved
through layers. We obtained analytical results in the two
asymptotic limits of small and large diffusion coefficientsbe-
tween layers. The findings show that the multiplex structure
is able to speed up the less diffusive of the layers. In prin-
ciple, it could also give rise to a super-diffusion process thus
enhancing the diffusion of both layers. This striking result ap-
pears when one considers that the diffusion between the lay-
ers of the multiplex is faster than that occurring within each
of the layers. Thus, it paves the way to the analysis of super-
diffusion processes in real multiplex scenarios such as mul-
timodal transportation systems. On more general grounds,
given the wide applicability of the properties of the Lapla-
cian to address many dynamical properties of networked sys-
tems, our results constitute a first step towards a better under-
standing of linear and nonlinear processes on top of multiplex
structures.
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the different laplacians for a multiplex network consisting of
two layers with 1000 nodes in each layer. The first contains
a network structured in 4 communities of 250 nodes each,
with average internal and external degrees〈kint〉 = 105 and
〈kext〉 = 105 respectively, and the second layer is similar but
with 17 communities,〈kint〉 = 50 and〈kext〉 = 8. The aver-
age clustering coefficients at each layer are 0.2336 and 0.6541
respectively.


