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Diffusion dynamics on multiplex networks
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We study the time scales associated to diffusion procebagsake place on multiplex networks, i.e. on a set
of networks linked through interconnected layers. To thid,@ve propose the construction of a supra-Laplacian
matrix, which consists of a dimensional lifting of the Lagin matrix of each layer of the multiplex network.
We use perturbative analysis to reveal analytically thecstire of eigenvectors and eigenvalues of the complete
network in terms of the spectral properties of the individagers. The spectrum of the supra-Laplacian allows
us to understand the physics of diffusion-like processe®prmf multiplex networks.

PACS numbers: 89.75.Hc,89.20.-a,89.75.Kd

Modern theory of complex networks is facing new chal- pled layered networkst{ultiplex network) where each layer
lenges that arise from the necessity of understanding pgyope could have very particular features different from the ,rest
the dynamical evolution of real systems. One of such opemnd in this way, define a richer structure of interactidns [3]
problems concerns the topological and dynamical characteMultiplex networks are thus structured multilevel graphs i
ization of systems made up by two or more interconnecteavhich interconnections between layers determine how angive
networks. The standard approach in network modeling asaode in a layer and its counterpart in another layer are tinke
sumes that every edge (link) is of the same type and consend influence each other. Thus, they are essentially differ-
guently considered at the same temporal and topologickd scaent from simple graphs with colored edges, multi graphs or
[|i|]. This is clearly an abstraction of any real topologidals-  hypergraphs and provide a mathematical ground for the anal-
ture and represents either instantaneous or aggregageadnt ysis of many social networks (e.g. Facebook, Twitter, etc) a
tions over a certain time window. Therefore, to understanf several biological systems for instance, in biochemical
the intricate variability of real complex systems, wherengna networks, many different signaling channels do actuallykwo
different time scales and structural patterns coexist vegle  in parallel, giving raise to what is called multitasking, iain
new scenario, a new level of descriptiEh [2]. can be modeled through a network of interconnected layers

A natural extension which allows to overcome previous[@]' Although some works have recently focused on the de-

drawbacks is to describe a multilevel system as a set of coCTiPtion and analysis of interconnected neth|[5—Irﬁiot
retically grounded results about general dynamical prees

running on them are yet to come.

In this Letter we focus on a particular setup of multilevel
networks in which nodes are conserved through the different
| layers of the multiplex (see Figl 1). The current study ana-
lyzes a diffusion process that takes place at the wholemsyste
level, i.e. within and across layers. This setup could antou
for instance, for a diffusion dynamics taking place on top of
a social network of contacts. Admittedly, the latter is a net
work of networks, i.e. the aggregate of many different docia
circles or subnetworks, each having its own temporal ocstru
tural patterns (for example, think of our online activity il
includes different social networking sites such as Fackboo
Twitter, etc.). The same applies to multimodal transpatat

I networks lﬁb], on top of which individuals “diffuse” within

and between different layers (e.g. bus, subway, etc.). ket u
remark, however, that our interest here is not to solve a spe-
cific real problem but to illustrate the analysis of diffusjoro-
cesses on top of these structures.

FIG. 1: Example of multiplex network witi/ = 2 layers. Nodes We propose a mathematical setting that allows to scrutinize

are the same in both layers. The connectivity at each layiedes  the emergent diffusion time scales in multiplex networke W

pendent of each other, the connectivity inter-layer is feanh node  concentrate on diffusive processes, as they constituted go

to itself (dashed links). approximation for different types of dynamical processeg.(
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synchronization and other nonlinear processes amenable tifat the diagonal block structure of the supra-Laplacian re
linearization lﬁll]) whose dynamical properties can be capflects the interaction within layers and the off-diagonaldids
tured by the behavior of the eigenvalues of the Laplacian mathe connectivity between layers.

trix. For instance, the time needed to synchronize phask osc  The dynamical properties of the system can then be cast in
lators in a network is related to the second smallest eideava terms of the eigenvalues of this matrix. Eg. (1) can be writ-
of the Laplacian,\, [IE], and the stability of the synchro- ten asx = —/£x and, given thai is symmetric, its solution
nized state is determined by the eigenratip/ )\, [IE]. The in terms of normal modes ig;(t) = ¢;(0)e~*it, where);
spectral analysis of complex networks constitutes thdinesti are the eigenvalues df, see e.gﬁﬂS]. The diffusion time
promising area of researcE[ 15]. Following a perturbascaler of the multiplex is controlled by the smallest non-zero
tive analysis of the spectrﬂlG], our results allow to get ne eigenvalue ofL. Specifically,r = 1/\;. To get a physi-
physical insight about diffusion processes through thdéy&na cal insight on these eigenvalues as a function of the diftere
ical determination of the asymptotic behavior of the eigdnv diffusion coefficients within layersif; and D) and between
ues of the Laplacian of the multiplex (supra-Laplacian) whe layers (O,), we propose to analyze the whole system using
the diffusive coupling between layers is either small ogéar perturbation theory. To simplify the notation, we choose th
Our findings prove that the emergent physical behavior of thaiffusion coefficientsD; = D, = 1 fixing then the relative
diffusion process when considering coupled layered né¢svor time scale of the problem.

is far from trivial, in some cases (specified below) the cou- Let us consider the decompositidn= Ly + D, whereL,
pling of networks shows a super-diffusive behavior meanings the block diagonal matrix corresponding to the Laplagian
that diffusive processes in the multiplex are faster thaaniyn ~ of every layer, with zeros in the off-diagonal blocks, @nds

of the networks that form it separately. formed by the rest of the elements. In matrix form it reads:
Let us consider a set up in which the diffusive dynamics is

linearly coupled within nodes in each lay&r, through a dif- L—Ly+D— L]0 ) D, I -1\ 3)

fusion constanf, and among nodes in different layeks Lo I I

and L, in this case with a diffusion constantx . The net- . . -

work at each layer is assumed to be connected and undirected,Let_ us start the discussion by consideriig = O'_ Then,
but it can be weighted. The state of each of ffienodes is th_e eigenvalues of are fche set formed b_y the union of the
represented as a vector indexed by layef§t) where the eigenvalues co_rrespondmgto the Llaplamlans of ealch layer
subscript stands for the node and the superscript for thes.lay and L22' Tth e|gen\£alues a'@_: Al < Ay < 2"/\N and
The equations describing the dynamical evolution of thiesta ) = AT <A < .. Ay, respectively, while the eigenvalues of

of the nodes, considering a multiplex of thé layers, are: the sup_ra-LapIacian matrix af)e:_ /\% = A < A3 < ... S
A2n, beingAs = min(A\3, A\3). It is interesting to note that

to analyze the eigenvector space it is convenient to move to a

drK N M , : -
zz =Dx » wfi(@f —zf)+> Drr(xf—2f), (1)  new basis where the space correspondingite= \» = 0 is
j=1 L=1 spanned by vectord ---1|1---1)and(1---1] = 1--- — 1)
X« ) _ X« instead of the canonic@l ---1|0---0) and(0---0|1---1).
wherew;; denotes the weight matrix at layéf (w;; = 0 Now let us consider that the diffusion between layers is

means that there is no link between nodesad; in layerK).  different from zero,D, # 0. In this case, the supra-

This set of equations can be dimensionally lifted to a sp&ce 0 gp|acian will have the trivial eigenvalug = 0 with corre-
N x M dimensions. To have a more clear picture of our for-ghonding eigenvectdi - - - 1|1 - - - 1), and a non-trivial eigen-

most simple case of two layefd = 2. First, we defineacol- (1...1]—1... 1), since

umn vector state of N elements|x --- x4 |23 ..., 2%) =

(x!|x?) = x. Then Eq.[(L) can be written in matrix form, 1 0 1

where the interaction matrix has a block structure that con- £ — )" \o) " 2D, 1] )

forms an object we call supra-Laplacigh with the same

properties that any zero-sum rows Laplacian has: Note that this eigenvalue always exists, but it will be thakm
est non-zero one only wheb,, is very small, as compared to

Dy andDQ.
Next, we focus our attention on the opposite limit, a very

large diffusion coeﬁicientlEZ] between layer3, > 1.
whereL, and L, are the respective Laplacians of each layerpefining D, = 1/e, we can write

and/ is the identity matrix. Here we have replaceg, by D,
to emphasize the role of the diffusion process among the same 1 ‘ —I Ly ‘ 0
. ; . L=D, €
node at different layers. The Laplacian matrix of each layer —I\ I 0 \Lg
KisjustLyx = Sk — Wk, wherelWWy is the weights matrix )
at layer K, andSk a diagonal matrix containing the strength The spectrum of_ is considered here a perturbation of that

of each node at layerk, (Sk)i; = s = > w{j Note ate = 0. Itis worth recalling that, foe = 0, the spectrum

DL D1 —D,I1
z—(“* | ) @)

~D,I  |DyLy+ DI

=D,L. (5)




corresponds to that of the coupling matrix

(=7)

which consists of two eigenvalués;, = 0 and, = 2) both
N-degenerate and spanned by eigenvectors of the fatm)

(6)

3

perturbation in Eq[{8) must be orthogortalu) L (u}|u}),
we can also find the eigenvector of the superpositiont L-)
such that, = —uj = —u’, then

11/ = i(Lg - Ll)u. (13)

Summarizing, the eigenvectors with finite (i.e. non diver-

and(u|—u), i.e. vectors having identical or opposite values ingent) eigenvalues of the supra-Laplaciarior a large value
thei'™ and(i + N)!* components, respectively. Thus, in the of the diffusion coefficienD, = 1/¢ between layers are

limit D, — oo, the set of eigenvalues df will split in two

groups, one showing a linear divergent behawet 2D, for

the sub-spacéu| — u), and another having a finite valueas
the result of the undetermined limid ( oo) in Eq. (8) for the
sub-spacéu|u).

Now, we use the common ansatz in perturbation theory an
propose a perturbed solution in terms of both eigenvalués an

eigenvectors:

MO LV o,
VEO) + evgl) + 0(62) ,

A=

v, =

(7)

where the super-indices within parentheses representdiee o

of the perturbation [19, 20]. Given that a set of eigenvalue
of £ will diverge linearly a2D,,, we concentrate in propos-

ing perturbations for the finite solutions. These corresiton

consider the following perturbation of the eigenspectrdm o

L.

A= 0+e\,

() ()

Expanding taO(e) the eigenvalue problemiv = Av we ob-

tain:
(uj —uh) + Liu _ov [ 2
6<(u'2—u'1)—i—L2u>_/\<u>+0( ). O

Matching each of the components in Hd. (9) we get:

(8)

Liu+ (u) —uy) = Nu,
Lou+ (uh—u}) = Nu, (10)
that, after adding and subtracting E{s.1(10), transforun int
2\ u

2(u) —uy)

(Ll —+ LQ)U =

(Ll — LQ)U = (11)

From the system of Eqd_([L1) it is revealed thats an

I
. . AS
v - (“ +eu ) with eigenvalue =, (14)

u—eu
beingu and\, the eigenvectors and corresponding eigenval-
ges of the superpositigi.; + Ls).
The physical insight obtained is the following, for low val-
ues of the diffusion coefficient between layers, the diffasi
time scale of the global system is controlled by the invefse o
2D,. This asymptotic result is valid until the order b, is
similar to those ofD, and D». For large values oD, the
eigenspectrum splits into a set of values that diverg@das
and a set of finite values, associated to the superpositithreof
layers. The minimal eigenvalue different from zero turns ou

%0 be half the eigenvalue corresponding to the superpasitio

of both layers\; /2.

A comparison between the diffusion time scale of the in-
dependent layers and the whole multiplex is possible using
known bounds about the eigenvalues of the Laplacians [21].
The time scale associated to the multiplex foy < 1 is
T = ﬁ that means that the cross-diffusion between layers
is the limiting value of the diffusion spreading. On the athe
hand, the time scale associated to the multiplexigrs- 1 is
T & 2/\s. This latter case is far less trivial than the previous
one. Using the bounds i@l] we deduce the following result:

As < A+ A2

2 = 2
The above inequality implies that the diffusion in the mul-
tiplex will be faster than the diffusion in the slowest layer
Thus, as a consequence of the multiplex structure, at least o
layer (the one with the largest diffusion time scale) hadiits
fusion speeded up. The emergence of a super-diffussion, i.e
the fact that the time scale of the multiplex is faster that th
of both layers acting separately is, in general, not guasaht
and depends on the specific structures coupled together. Fur
thermore, the following inequality also holds [21]:

2N L4 s?
NEIIWEE IS

> min (A3, \2) . (15)

As
2

(16)

eigenvector of the network formed by the superposition of

both layers’ laplacians, and that the eigenvalu&pft first
order in the expansion, is

<A
A=XN=2
2’

being), the eigenvalue of the superpositioh; + L) corre-

(12)

2N —1 4
beingsX the strength of nodeat layerk .

Finally, it is worth noticing that although the previous &na
ysis assumes that the networks within layers are connected,
we have also analyzed the case in which this hypothesis is
relaxed. Imagine for example two layers such as one layer
has two disconnected components. In this situation, the re-

sponding to the eigenvectar Moreover, given that the vector sults hold in the limitD, > 1, and in the limitD, < 1 the
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model allows switch on and off the consideration of isolated
layers or the whole multiplex, simply by puttidg, = 0. For

the example exposed, we observe a super-diffusion process
for the whole multiplex, that means that the time scale asso-
ciated to the whole multiplex network is smaller than that of
layer 1 and layer 2 if they were considered independengly, i.

T < 711 < 79. Other examples comparing multiplex networks
with 1000 nodes per layer, with different standard topasgi
including clustered networks, are presented in the Supgtem
tal Material accompanying this letter, all them showindgeetr
agreement with the developed analysis.
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10 10 10 10" In conclusion, we have developed a formalism to unveil the
B, time scales of diffusive processes on multiplex networkse T
approach has been specifically presented for a two-layer mul
P T T T tiplex, in a particular set up in which nodes are_preserved
oL through Ifa\y(_ars_. We obtained analy_ucali results in the two
. )\z of L; asymptotic limits of small and large diffusion coefficiebts-
o Ajof (LAl 12 tween layers. The findings show that the multiplex structure
— A=2D, is able to speed up the less diffusive of the layers. In prin-
— A, of Supra-Laplacian ciple, it could also give rise to a super-diffusion procdssst
enhancing the diffusion of both layers. This striking résip-
————————————————————————————— pears when one considers that the diffusion between the lay-
ers of the multiplex is faster than that occurring within keac
of the layers. Thus, it paves the way to the analysis of super-
diffusion processes in real multiplex scenarios such as mul
U ol Dl 1 timodal transportation systems. On more general grounds,
10° 10 10° 10* 102 given the wide applicability of the properties of the Lapla-
D, cian to address many dynamical properties of networked sys-
tems, our results constitute a first step towards a bettezrund

standing of linear and nonlinear processes on top of makipl
FIG. 2: (color online) Evolution of the eigenspectra of thg model  gtryctures.
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network with average degrég) = 8.
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two layers with 1000 nodes in each layer. The first contains
a scale-free network with degree distributittk) ~ k=22,

and the second layer a small-world network with average de-
gree(k) = 8 and a replacement probability= 0.3.

two layers with 1000 nodes in each layer. The first contains

a scale-free network with degree distributidiik) ~ k=25,

and the second layer a scale-free network with degree-distri

bution P(k) ~ k=3.
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and the second layeri x 25 lattice with eight neighbors per a network structured in 4 communities of 250 nodes each,

node and periodic boundary conditions. with average internal and external degrée8) = 105 and
(k®Y = 105 respectively, and the second layer is similar but

WE— T T T with (k") = 200 and (k®%) = 10. The average clustering
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and the second layer has been obtained from a copy of the

first layer network with 400 extra random links. Here we

observe the absence of super-diffusion. This is a consecomparison between the second smallest eigenvalyed

quence of the semi-superpositigfl; + W>)/2 being a the different laplacians for a multiplex network consigtiof

(weighted) spanning graph of the network in the secondwo layers with 1000 nodes in each layer. The first contains

layer W5, thus according to Corollary 3.4 in [20] we have a network structured in 4 communities of 250 nodes each,

A2((L1 4 L2)/2) < Aa(L2). with average internal and external degrée8) = 105 and
(k®Y = 105 respectively, and the second layer is similar but
with 17 communities(k™) = 50 and (k®%) = 8. The aver-
age clustering coefficients at each layer are 0.2336 and 0.65
respectively.



