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Abstract: In this paper, we present a stochastic model for disability insurance contracts. The model is based on a 
discrete time non-homogeneous semi-Markov process (DTNHSMP) to which the backward recurrence time process 
is introduced. This permits a more exhaustive study of disability evolution and a more efficient approach to the 
duration problem. The use of semi-Markov reward processes facilitates the possibility of deriving equations of the 
prospective and retrospective mathematical reserves. The model is applied to a sample of contracts drawn at random 
from a mutual insurance company. 

 
1 Introduction 
 

Non-homogeneous semi-Markov processes were defined independently by Hoem (1972) and Iosifescu-
Manu (1972). The approach proposed by Iosifescu-Manu was further generalized by Janssen and De 
Dominicis (1984). Additional results were obtained in discrete time by Vassiliou and Papadopoulou 
(1992) and by Papadopoulou and Vassiliou (1994).  
The theory of semi-Markov processes quickly found applications in finance and insurance problems. The 
reader can find examples  in Janssen (1966), Hoem (1972), CMIR (1991), Carravetta et al. (1981), Balcer 
and Sahin (1979, 1986) Janssen and Manca (1997) and, more recently, in the book by Janssen and Manca 
(2007). 
A generalization of the transition probabilities of the discrete time non-homogeneous semi-Markov 
process (DTNHSMP) can be obtained by introducing the initial and final backward times (see D’Amico 
et al., 2009; D’Amico et al., 2010). The backward process facilitates the possibility of considering the 
dependence of the transition probabilities on the time of entrance into a given state. 
A detailed description of continuous time homogeneous semi-Markov processes with backward time is 
reported in Limnios and Oprişan (2001) and in Janssen and Manca (2006). The discrete time non-
homogeneous semi-Markov reward process with initial backward recurrence time is studied in Howard 
(1971) using recursive equations and more recently new results have been presented by Stenberg et al. 
(2007). 
In this paper we generalize the results obtained in D’Amico et al. (2009) by introducing the reward 
structure. The reward structure allows us to determine equations for the prospective and retrospective 
mathematical reserves and a discrete version of the Thiele differential equation in a semi-Markov 
environment. 
To the best of our knowledge, this is the first time that the general formulae of a DTNHSMP with rewards 
and initial and final backward times have been presented together with their corresponding mathematical 
reserves.  
The paper is organized as follows. The next section presents a short introduction to DTNHSMP 
considering initial and final backward times. Section 3 analyzes semi-Markov reward processes with 
initial and final backward times. Successively, prospective and retrospective reserves are determined. 
Section 4 describes the disability data from a mutual insurance company from Catalunya and gives the 
results obtained by the model with these data.  
 
 
 
 
 



2 Discrete time Non-homogeneous Semi-Markov Processes 
 

We follow the notation given in Janssen and Manca (2006). In a semi-Markov process environment, two 
random variables run together. ܬ௡, ݊ ∈ Գ, with state space I={1, 2, …, m}, represents the state at the n-th 
transition.  ௡ܶ, ݊ ∈ Գ, with state space equal to	Գ, represents the time of the n-th transition, 
:௡ܬ  Ω → 			,ܫ ௡ܶ: Ω → Գ. 
We suppose that the process (Jn, Tn) is a non-homogeneous Markov renewal process and by	ܺ௡ ൌ ௡ܶାଵ െ
௡ܶ we denote the sojourn time in state Jn before the (n+1)th jump.  The kernel Q =[Qij(s,t)] associated to 

the Markov renewal process is defined in the following way: 
 Qij(s,t) = P[ Jn+1 = j, T n+1t |  Jn = i, Tn=s], 
and so: 

 pij (s)= P[ Jn+1 = j,|  Jn = i, Tn=s]= 
t

lim Qij (s,t);  i, jI,  s, t	Գ, s t . 

P(s)= [pij(s)]is the transition matrix of the embedded non-homogeneous Markov chain.  
 
Furthermore, the probability that the process will leave state i from time s within time t has to be 
introduced: 
  
 Hi (s,t) = P[ Tn+1 t  |  Jn = i, Tn=s]. 
 

Obviously, it follows that
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Now the distribution function (d.f.) of the waiting time in each state i can be defined, given that the state 
successively occupied is known: 
 Fij (s,t)=P[ Tn+1t | Jn = i, Jn+1 = j, Tn=s]. 
The related probabilities can be obtained by means of the following formula: 
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In a Markov environment, the d.f. Fij(s,t) have to be geometrically distributed. By contrast, in the semi-
Markov case the d.f. Fij(s,t) may be of any type.  
By means of the Fij(s,t) we can take into account the problem given by the duration inside the states. In 
the disability context, we know that the transition probabilities depend on the time an individual has 
remained at a certain state level. 
Now, let ܰሺݐሻ ൌ ሼ݊݌ݑݏ ∈ Գ: ௡ܶ ൑  be the number of transitions up to time t, then the DTNHSMP Z(t)	ሽݐ
can be defined as ܼሺݐሻ ൌ  .ேሺ௧ሻ denoting the state occupied by the process at each timeܬ
The transition probabilities are defined in the following way: 

 ( )( , ) P ( ) | ( ) , .ij N ss t Z t j Z s i T s        

They are obtained by solving the following evolution equations: 
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The first part of formula (2.1) provides the probability that the system does not have transitions up to the 
time t given that it entered in state i at time s.  ( , ),ijd s t  in a disability insurance model represents the 

probability that the policyholder does not have any new evaluation from time s up to time t. This makes 
sense if and only if i=j. 
In the second part of (2.1), ( , )ib s   represents the probability that the system enters state  just at time 

 given that it entered in state i at time s. After the transition, the system will go to state j following one 
of the possible trajectories that go from state  at time , bringing the system into state j at time t.  

Well-known algorithms are available for the numerical solution of equation (2.1), see for example 
Janssen and Manca (2007).  




 



 
Definition 1: Let ( )( ) N tB t t T  be the backward recurrence time process (see Limnios and Oprişan, 

2001; Janssen and Manca, 2006). 
 
The backward recurrence time process denotes the time since the occurrence of the last transition. 
In D’Amico et al. (2009) the following probabilities were defined: 

߶௕ ௜௝ሺ݈, ;ݏ ሻݐ ൌ ܲሾܼሺݐሻ ൌ ݆|ܼሺݏሻ ൌ ݅, ሻݏሺܤ ൌ ݏ െ ݈ሿ 
 ൌ ேሺ௧ሻܬൣܲ ൌ ݆หܬேሺ௦ሻ ൌ ݅, ேܶሺ௦ሻ ൌ ,ݏ ேܶሺ௦ሻାଵ ൐  ൧, (2.2)ݏ
 
 ߶௜௝

௕ ሺݏ; ݈’, ሻݐ ൌ ܲሾܼሺݐሻ ൌ ݆, ሻݐሺܤ ൌ ݐ െ ݈ᇱ|ܼሺݏሻ ൌ ݅, ሻݏሺܤ ൌ 0ሿ 
 ൌ ேሺ௧ሻܬൣܲ ൌ ݆, ேܶሺ௧ሻ ൌ ݈ᇱ, ேܶሺ௧ሻାଵ ൐ ேሺ௦ሻܬหݐ ൌ ݅, ேܶሺ௦ሻ ൌ  ൧. (2.3)ݏ
 
Formulae (2.2) and (2.3) represent the semi-Markov transition probabilities with initial and final 
backward times respectively.  
In (2.2) we know that at time s the system is in state i. We also know that it entered in this state at time l 
and s-l represents the initial backward time. Then we are looking for the probability of being in state j at 
time t. 
In (2.3) we know that the system entered state i at time s. In this case we are interested in the probability 
of being in state j at time t with the entrance in this state at time l’. The final backward time is t-l’. 
Combining these two cases, we obtain the transition probabilities with initial and final backward times 
(see D’Amico et al., 2009): 
 

 
 

( ) ( ) ( ) 1 ( ) ( ) ( ) 1

( , ; ', ) P ( ) , ( ) ' | ( ) , ( )

=P , ', | , ,

b b
ij

N t N t N t N s N s N s

l s l t Z t j B t t l Z s i B s s l

J j T l T t J i T l T s



 

      

       
. (2.4) 

 
In Figure 1 a trajectory of a DTNHSMP with initial and final backward times is reported. In this figure 
we have that ( ) , ( ) 1,N s n N t h    the initial backward time ( ) nB s s T s l     and the final 

backward time 1( ) 'hB t t T t l    . 

 

 
Figure 1: Initial and final backward values 

 
To present the evolution equations of probabilities (2.2), (2.3) and (2.4) we introduce the following 
notation: 
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which represents the probability of having no transition from state i between times l and t given that no 
transition occurred from state i between times l and s.  
Moreover by 
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we denote the probability of making the next transition from state i to state j from time l to time t given 
that the system does not make transitions from state i between times l and s. 
The relations (2.5), (2.6) and (2.7) represent the evolution equations of (2.2), (2.3) and (2.4) respectively: 
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where  ' 1l s 1  if and only if 'l s . 
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Expression (2.5) provides the probability that the system is in state j at time t given that it was in state i at 
time s and entered in this state at time l. If in (2.5) l s  then we recover the equation (2.1).  
Expression (2.6) gives the probability that the system will enter state j just at time l’ and will remain in 
this state, without any other transition, up to time t  given that it entered at time s in state i. The part 

 '( ; )ij l sd s t 1  of (2.6) represents the probability of not having a transition from time s to time t. 

Consequently, the final backward time 't l must be exactly equal to t s  and it makes sense only if 
i j . The second part of (2.6) means that the system does not move from time s to time    and that, just 

at this time, it jumps to state   . Afterwards, following one of the possible trajectories, the system arrives 

in state j just at time l' and does not move from this state at least up to time t. 
 
Remark 1. It should be noted that considering all the possible backward values in the final state, we 
recover the transition probabilities (2.1) that is: 
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Expression (2.7) gives the probability that the system entered in state j at time l’ and remained inside this 
state without any other transition up to time t given that it entered state i at time l and it did not move up 
to s. The term   '( , ; )ij l ld l s t 1  gives the probability of not having transitions from l to t outside state i 

given that no transition occurred from l to s. This probability contributes only if   i j and 'l l . The 

second part of (2.7) represents the probability of making the next transition from i at time l to whatever 
state   at whatever time   and then of moving, following whatever trajectory which makes provision 

for the entrance in j at time l’ with no transition up to time t. This probability is conditional on the 
permanence of the system in i from time l up to time s.  
The algorithm used to obtain the numerical solutions for the given equations (2.5), (2.6) and (2.7) is given 
in D’Amico et al. (2009). 
 
Remark 2. Relation (2.7) is a combination of (2.5) and (2.6). This last evolution equation is the one used 
to construct the model for the disability insurance. This type of model was suggested by Haberman and 
Pitacco (1999), but no formulae were included with the problem, or at least they were not presented. 
 
 
3 Semi-Markov reward processes with backward times 
 

Now we introduce the reward structure. A permanence reward  ,i s t  is paid when the process visits 

state i at time t for a contract starting at time s. An impulse reward  ,ij s t  is paid due to the transition 

from state i to state j at time t for a contract starting at time s. We assume that permanence and impulse 
rewards are amounts of money. They have to be discounted using a discrete time non-homogeneous 
discount factor ( , )s t .  To define v(s,t) we introduce the non-homogeneous interest rates 

( , 1), ( , 2), , ( , ),r s s r s s r s s t    and then we can define  

,ݏሺݒ  ሻݐ ൌ ൜
1 if ݐ ൌ ݏ

∏ ሺ1 ൅ ,ݏሺݎ ݄ሻሻିଵ௧
௛ୀ௦ାଵ if ݐ ൐  . ݏ

 
With the aim of defining the discounted accumulated semi-Markov reward process with initial and final 
backward times we introduce the random variable 

1൛்ಿሺೞሻశభவ௧ห௃ಿሺೞሻୀ௜,்ಿሺೞሻୀ௟,்ಿሺೞሻశభவ௦ൟ, 



with Bernoulli distribution of parameter 
݌   ൌ Pr൫ ேܶሺ௦ሻାଵ ൐ ேሺ௦ሻܬหݐ ൌ ݅, ேܶሺ௦ሻ ൌ ݈, ேܶሺ௦ሻାଵ ൐   .൯ݏ
This random variable assumes a value of one if the time of the next transition is greater than t given that 
the system entered state i with last transition at time l and it did not move up to time s. The random 
variable is also introduced 

1൛௃ಿሺೞሻశభୀ௞,்ಿሺೞሻశభୀఏห௃ಿሺೞሻୀ௜,்ಿሺೞሻୀ௟,்ಿሺೞሻశభவ௦ൟ, 

with Bernoulli distribution of parameter 
෤݌   ൌ Pr൫ܬேሺ௦ሻାଵ ൌ ݇, ேܶሺ௦ሻାଵ ൌ ேሺ௦ሻܬหߠ ൌ ݅, ேܶሺ௦ሻ ൌ ݈, ேܶሺ௦ሻାଵ ൐   .൯ݏ
This random variable assumes a value of one if the time of the next transition is equal to θ and the state 
entered is k given that the system entered state i with last transition at time l and it did not move up to 
time s. 
In line with Stenberg et al. (2007) we define the accumulated reward process with initial and final 
backward times by means of the following relation: 
 
Definition  2. Let  , ; ',ij l s l t  be the discounted accumulated semi-Markov reward process with initial 

and final backward times, defined by  

,௜௝ሺ݈ߦ ;ݏ ݈ᇱ, ሻݐ ൌ
ௗ

 

1൛்ಿሺೞሻశభಭ೟ห௃ಿሺೞሻୀ௜,்ಿሺೞሻୀ௟,்ಿሺೞሻశభவ௦ൟ1ሼ௜ୀ௝ሽ1൛௟ᇲୀ௟ൟ ൤෍ ߰௜ሺݏ, ߬ሻݒሺݏ, ߬ሻ
௧

ఛୀ௦ାଵ
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൅෍ ෍ 1൛௃ಿሺೞሻశభୀ௞,்ಿሺೞሻశభୀఏห௃ಿሺೞሻୀ௜,்ಿሺೞሻୀ௟,்ಿሺೞሻశభவ௦ൟ

௟ᇱ

ఏୀ௦ାଵ௞∈ூ

	

. ቂ∑ ߰௜ሺݏ, ߬ሻݒሺݏ, ߬ሻ ൅
்ಿሺೞሻశభ
ఛୀ௦ାଵ

,ݏሺݒ ேܶሺ௦ሻାଵሻ ൬ߛ௜,௃ಿሺೞሻశభ൫ݏ, ேܶሺ௦ሻାଵ൯ ൅ ௃ಿሺೞሻశభ௝൫ߦ ேܶሺ௦ሻାଵ, ேܶሺ௦ሻାଵ; ݈ᇱ,  (3.1)														൯൰ቃݐ

 

The symbol ൌ
ௗ

 means that the random variables on the left and on the right have the same distribution. 
The process  , ; ',ij l s l t  describes the discounted total amount of money accumulated from time s up to 

time t considering that the DTNHSMP will be in state j at time t with entrance in this state at time l’ (final 
backward time equal to t-l’) given that at time s it was in state i with entrance in this state at time l (initial 
backward time equal to s-l).    

Let us denote by    , ; ', , ; ',b b
ij ijV l s l t E l s l t    . To compute the expectation of (3.1) we have to consider 

that: 
 

i)      ܧ ቂ1൛்ಿሺೞሻశభவ௧ห௃ಿሺೞሻୀ௜,்ಿሺೞሻୀ௟,்ಿሺೞሻశభவ௦ൟቃ 

 
		ൌ Pr൫ ேܶሺ௦ሻାଵ ൐ ேሺ௦ሻܬหݐ ൌ ݅, ேܶሺ௦ሻ ൌ ݈, ேܶሺ௦ሻାଵ ൐ ൯ݏ ൌ ݀௜௝ሺ݈, ,ݏ  ;ሻݐ

 
ii) 1൛௃ಿሺೞሻశభୀ௞,்ಿሺೞሻశభୀఏ|௃ಿሺೞሻୀ௜,்ಿሺೞሻୀ௟,்ಿሺೞሻశభவ௦ൟ and ߦ௞,௝ሺߠ, ;ߠ ݈ᇱ,  ሻ are independent random variablesݐ

because the accumulation process ߦ௞,௝ሺߠ, ;ߠ ݈ᇱ,  ሻ has the Markov property at transition times. Indeed, itݐ
depends only on the future evolution of the DTNHSMP starting from state k at time θ and ending in state 
j at time t with a final backward time equal to l’; 
 

iii)  ܧ ቂ1൛௃ಿሺೞሻశభୀ௞,்ಿሺೞሻశభୀఏห௃ಿሺೞሻୀ௜,்ಿሺೞሻୀ௟,்ಿሺೞሻశభவ௦ൟቃ 

 
		ൌ Pr൫ܬேሺ௦ሻାଵ ൌ ݇, ேܶሺ௦ሻାଵ ൌ ேሺ௦ሻܬหߠ ൌ ݅, ேܶሺ௦ሻ ൌ ݈, ேܶሺ௦ሻାଵ ൐  ൯ݏ
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By taking the expectation in (3.1) we obtain the following equation:  
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(3.2) 

Equation (3.2) is the evolution equation representing the actuarial value of the total rewards accumulated 
in the interval [s, t] by imposing constraints on the arrival times in the states occupied at times s and t.  
Following Stenberg et al. (2007) recursive equations can be derived for the higher order moments of the 
reward process  , ; ',ij l s l t .  

It should be noted that equation (3.2) makes provision in a complete way for the duration dependence by 
using the backward process at initial and final times simultaneously. Moreover, the process also considers 
the final state j and this is a crucial point for defining the retrospective reserve (see subsection below).  
There are some interesting particular cases of equation (3.2). First of all we can ignore the duration effects 
on the starting state by not considering the initial backward time. In this case, if   0B s   ⇒ ݈ᇱ ൌ  and	ݏ

we obtain the following definition: 
 
Definition 3. Let  ߦ௜,௝ሺݏ; ݈ᇱ, ሻݐ ≔ ,ݏ௜,௝ሺߦ	 ;ݏ ݈ᇱ,  ሻ be the discounted accumulated semi-Markov rewardݐ
process with final backward time, defined by  

;ݏ௜௝ሺߦ ݈ᇱ, ሻݐ ൌ
ௗ
	

1൛்ಿሺೞሻశభಭ೟ห௃ಿሺೞሻୀ௜,்ಿሺೞሻୀ௦,்ಿሺೞሻశభவ௦ൟ1ሼ௜ୀ௝ሽ1൛௟ᇲୀ௦ൟ ൤෍ ߰௜ሺݏ, ߬ሻݒሺݏ, ߬ሻ
௧

ఛୀ௦ାଵ
൨	

෍ ෍ 1൛௃ಿሺೞሻశభୀ௞,்ಿሺೞሻశభୀఏห௃ಿሺೞሻୀ௜,்ಿሺೞሻୀ௦,்ಿሺೞሻశభவ௦ൟ

௟ᇱ

ఏୀ௦ାଵ௞∈ூ

	

	

ቂ∑ ߰௜ሺݏ, ߬ሻݒሺݏ, ߬ሻ ൅ ,ݏሺݒ ேܶሺ௦ሻାଵሻ ൬ߛ௜,௃ಿሺೞሻశభ൫ݏ, ேܶሺ௦ሻାଵ൯ ൅ ௃ಿሺೞሻశభ௝൫ߦ ேܶሺ௦ሻାଵ; ݈ᇱ, ൯൰ݐ
்ಿሺೞሻశభ
ఛୀ௦ାଵ ቃ																											

(3.3) 
 

Denote by    ; ', ; ',b
ij ijV s l t E s l t    , by taking the expectation of (3.3) we have: 

௜ܸ௝
௕ሺݏ; ݈ᇱ, ሻݐ ൌ 1൛௟ᇲୀ௦ൟ1ሼ௜ୀ௝ሽ൫1 െ ;ݏ௜ሺܪ ሻ൯ݐ ൤෍ ߰௜ሺݏ, ߬ሻݒሺݏ, ߬ሻ

௧

ఛୀ௦ାଵ
൨ 

+൅∑ ∑ ܾ௜௞ሺݏ; ∑ሻሺߠ ߰௜ሺݏ, ߬ሻݒሺݏ, ߬ሻఏ
ఛୀ௦ାଵ

௟ᇲ
ఏୀ௦ାଵ௞ఢூ  

 
                                     ൅ߛ௜,௞ሺݏ, ,ݏሺݒሻߠ ሻߠ ൅ ௞ܸ௝

௕ ሺߠ; ݈ᇱ, ,ݏሺݒሻݐ  ሻሻ.                      (3.4)ߠ
 
Formula (3.4) is obtained by substituting for l the value s in expression (3.2), by using the notation 

௜ܸ௝
௕ሺݏ; ݈ᇱ, ሻݐ ≔ ܸ௕ ௜௝

௕ሺݏ, ;ݏ ݈ᇱ,  :ሻ and by observing thatݐ

݀௜௝ሺݏ, ;ݏ ሻݐ ൌ
1 െ ,ݏ௜ሺܪ ሻݐ
1 െ ,ݏ௜ሺܪ ሻݏ

ൌ 1 െ ,ݏ௜ሺܪ  ,ሻݐ

ܾ௜௝ሺݏ, ;ݏ ሻݐ ൌ
ܾ௜௝ሺݏ; ሻݐ

1 െ ;ݏ௜ሺܪ ሻݏ
ൌ ܾ௜௝ሺݏ;  .ሻݐ

If we ignore the duration effects on the arriving state by not considering the final backward value and we 
similarly ignore the arriving state j we have the process  , ;i l s t . This represents the accumulated 

discounted semi-Markov reward process with initial backward time. This process has been defined and 
analyzed by Stenberg et al. (2007). 
 
 
3.1 The algorithm 
 
The relations of a discrete time initial and final backward semi-Markov reward process are fully described 
above. We present this program using a pseudo-language so that the reader can follow the algorithm used 
to obtain the numerical solution for the given process. 
The computer program used in the application was written in Mathematica code. 
 



Inputs: 
T: time horizon considered, 
m: number of states, 
P(t): matrix of the non-homogeneous embedded Markov chain, 
F(s,t): matrix of the waiting time d.f.,  
Γ(s,t): matrix of the impulse rewards, 
Ψ(s,t): matrix of the permanence rewards, 
R(s): matrix of the non-homogeneous interest rates, 
 
(* discount factors construction*) 
FOR  ݏ ൌ 0, ݏ ൏ ܶ, ݏ ൅ ൅, 
      FOR  ݐ ൌ ݏ ൅ 1, ݐ ൑ ܶ, ݐ ൅ ൅, 
             v(s,t)= v(s,t-1) /(1+r(s,t)); 
     END FOR; 
END FOR; 
 
(* kernel construction*) 
FOR  ݏ ൌ 0, ݏ ൑ ܶ, ݏ ൅ ൅, 
      FOR  ݐ ൌ ݏ ൅ 1, ݐ ൑ ܶ, ݐ ൅ ൅, 
             Q(s,t)= P(s) *F(s,t) 
     END FOR; 
END FOR; 
 
(* probability of exiting from state i *) 
FOR  ݏ ൌ 0, ݏ ൑ ܶ, ݏ ൅ ൅, 
      FOR  ݐ ൌ ݏ ൅ 1, ݐ ൑ ܶ, ݐ ൅ ൅, 
             FOR iൌ 1, ݅ ൑ ݉, ݅ ൅ ൅, 
                   ۶ሺݏ, ሻݐ ൌ ,ݏሺۿ ሻݐ ∙ ૚ ; 
             END FOR; 
     END FOR; 
END FOR; 
 
(* probability of exiting from state i with initial backward time s-u *) 
FOR  ݑ ൌ 0, ݑ ൑ ܶ, ݑ ൅ ൅, 
      FOR  ݏ ൌ ,ݑ ݏ ൑ ܶ, ݏ ൅ ൅, 
             FOR ݐ ൌ ݏ ൅ 1, ݐ ൑ ܶ, ݐ ൅ ൅,  
                    FOR iൌ 1, ݅ ൑ ݉, ݅ ൅ ൅, 
                           dii(u,s;t)=(1-Hi(u,t))/ (1-Hi(u,s)) ; 

                    END FOR; 
             END FOR; 
     END FOR; 
END FOR; 
 
(* probability of going from state i to state j just at time t with an initial backward time s-u *) 
FOR  ݑ ൌ 0, ݑ ൑ ܶ, ݑ ൅ ൅, 
      FOR  ݏ ൌ ,ݑ ݏ ൑ ܶ, ݏ ൅ ൅, 
             FOR  ݐ ൌ ݏ ൅ 1, ݐ ൑ ܶ, ݐ ൅ ൅, 
                    FOR iൌ 1, ݅ ൑ ݉, ݅ ൅ ൅, 
                          FOR jൌ 1, ݆ ൑ ݉, ݆ ൅ ൅, 
                                 bij(u,s;t)=(Qij(u,t)- Qij(u,t-1))/ (1-Hi(u,s)) ; 

                         END FOR; 
                    END FOR; 
             END FOR; 
     END FOR; 
END FOR; 
 
(* solution of DTNHSMRP evolution equation with initial and final backward times *) 
 



(* construction of the accumulated discounted permanence reward matrix શ෩ሺݏ,  ሻ and of the discountedݐ
transition reward matrix a(s,t)*) 
FOR  ݏ ൌ 0, ݏ ൏ ܶ, ݏ ൅ ൅, 
      FOR  ݐ ൌ ݏ ൅ 1, ݐ ൑ ܶ, ݐ ൅ ൅, 
             ૐ෩ሺݏ, ሻݐ ൌ ૐ෩ሺݏ, ݐ െ 1ሻ ൅ ૐሺݏ, ሻݐ ∗ ,ݏሺݒ  ;ሻݐ
,ݏሺ܉              ሻݐ ൌ ઻ሺݏ, ሻݐ ∗ ,ݏሺݒ  ;ሻݐ
      END FOR; 
END FOR; 
     
(* construction of the matrix of the kernel multiplied by the rewards *) 
FOR  ݑ ൌ 0, ݑ ൑ ܶ, ݑ ൅ ൅, 
      FOR  ݏ ൌ ,ݑ ݏ ൑ ܶ, ݏ ൅ ൅, 
             FOR ݐ ൌ ݏ ൅ 1, ݐ ൑ ܶ, ݐ ൅ ൅,  
,ݑሺܚ۰                   ;ݏ ሻݐ ൌ ,ݑሺ܊ ;ݏ ሻݐ ∗ ൣ	ૐ෩ሺݏ, ሻݐ ൅ ,ݏሺ܉  ;ሻ൧ݐ
             END FOR; 
     END FOR; 
END FOR; 
 
(* step 1 – computation of expected reward with initial and final backward times equal to zero *) 
FOR hൌ ܶ ൅ 1, ݄ ൐ 0, ݄ െ െ, 
௕௕܄       ሺ݄, ݄, ݄, ݄ሻ ൌ 	ૐ෪ሺ݄, ݄ሻ ∗ ,ሺ݄܌ ݄, ݄ሻ; 
        FOR kൌ ܶ ൅ 1, ݇ ൐ ݄, ݇ െ െ,  
௕௕܄               ሺ݄, ݄, ݇, ݇ሻ ൌ 	ૐ෪ሺ݄, ݇ሻ ∗ ,ሺ݄܌ ݄, ݇ሻ; 
             FOR zൌ ݇, ݖ ൐ ݄, ݖ െ െ, 
௕௕܄                     ሺ݄, ݄, ݇, ݇ሻ൅ൌ ,ሺ݄܊ ݄, ሻݖ ∙ ௕௕܄ ሺݖ, ,ݖ ݇, ݇ሻ ∗ ,ሺ݄ݒ  ;ሻݖ
൅ൌ	ۯ                       ,ሺ݄ܚ۰ ݄,  ;ሻݖ
             END FOR; 
௕௕܄               ሺ݄, ݄, ݇, ݇ሻ	൅ൌ ۯ ∙ ૚; 
     END FOR; 
END FOR;   
 
(* step 2 – computation of expected reward with only initial backward times *) 
FOR uൌ ܶ, ݑ ൐ 0, ݑ െ െ, 
      FOR hൌ ܶ ൅ 1, ݄ ൐ ,ݑ ݄ െ െ, 
௕௕܄              ሺݑ, ݄, ݄, ݄ሻ ൌ 	ૐ෪ሺ݄, ݄ሻ ∗ ,ݑሺ܌ ݄, ݄ሻ; 
              FOR kൌ ܶ ൅ 1, ݇ ൐ ݄, ݇ െ െ,  
௕௕܄                     ሺݑ, ݄, ݇, ݇ሻ ൌ 	ૐ෪ሺ݄, ݇ሻ ∗ ,ݑሺ܌ ݄, ݇ሻ; 
                     FOR zൌ ݇, ݖ ൐ ݄, ݖ െ െ, 
ୠ௕܄                            ሺݑ, ݄, ݇, ݇ሻ൅ൌ ,ݑሺ܊ ݄, ሻݖ ∙ ௕௕܄ ሺݖ, ,ݖ ݇, ݇ሻ ∗ ,ሺ݄ݒ  ;ሻݖ
                             ۱	൅ൌ ,ݑሺܚ۰ ݄,  ;ሻݖ
                     END FOR; 
௕௕܄                      ሺݑ, ݄, ݇, ݇ሻ	൅ൌ ۱ ∙ ૚; 
            END FOR; 
      END FOR;   
END FOR;   
 
(* step 3 – computation of expected reward with only final backward times *) 
FOR kൌ ܶ ൅ 1, ݇ ൐ 1, ݇ െ െ, 
      FOR lprൌ ݇ െ 1, lpr ൐ 0, lpr െ െ, 
௕௕܄              ሺlpr, lpr, lpr, ݇ሻ ൌ 	ૐ෪ሺlpr, ݇ሻ ∗ ,ሺlpr܌ lpr, ݇ሻ; 
              FOR hൌ lpr െ 1, ݄ ൐ 0, ݄ െ െ,  
௕௕܄                     ሺ݄, ݄, lpr, ݇ሻ ൌ ,ሺ݄܊ ݄, lprሻ ∙ ሺ	ૐ෪ሺlpr, ݇ሻ ∗ ,ሺlpr܌ lpr, ݇ሻሻ; 
                     FOR zൌ lpr, ݖ ൒ ݄, ݖ െ െ, 
௕௕܄                            ሺ݄, ݄, lpr, ݇ሻ	൅ൌ ,ሺ݄܊ ݄, ሻݖ ∙ ௕௕܄ ሺݖ, ,ݖ lpr, ݇ሻ ∗ ,ሺ݄ݒ  ;ሻݖ
                             ۳	൅ൌ ,ሺ݄ܚ۰ ݄,  ;ሻݖ
                     END FOR; 
௕௕܄                      ሺ݄, ݄, lpr, ݇ሻ	൅ൌ ۳ ∙ ૚; 
              END FOR; 



      END FOR; 
END FOR;   
 
(* step 4 – computation of expected reward with initial and final backward times *) 
FOR kൌ ܶ ൅ 1, ݇ ൐ 1, ݇ െ െ, 
      FOR lprൌ ݇ െ 1, lpr ൐ 1, lpr െ െ, 
            FOR lൌ lpr െ 1, ݈ ൐ 1, ݈ െ െ, 
             					 ௕௕܄ ሺ݈, lpr, lpr, ݇ሻ൅ൌ 	ૐ෪ሺlpr, ݇ሻ ∗ ,ሺ݈܌ lpr, ݇ሻ; 
            END FOR; 
      END FOR;   
            FOR lprൌ ݇ െ 1, lpr ൐ 1, lpr െ െ, 
                  FOR hൌ lpr െ 1, ݄ ൐ 1, ݄ െ െ, 
                         FOR lൌ ݄ െ 1, ݈ ൐ 0, ݈ െ െ, 
                    													 ௕௕܄ ሺ݈, ݄, lpr, ݇ሻ൅ൌ 	ૐ෪ሺlpr, ݇ሻ ∗ ,ሺ݈܌ lpr, ݇ሻሻ; 
                                FOR zൌ lpr, ݖ ൐ ݄, ݖ െ െ, 
௕௕܄                                      ሺ݈, ݄, lpr, ݇ሻ	൅ൌ ,ሺ݈܊ ݄, ሻݖ ∙ ௕௕܄ ሺݖ, ,ݖ lpr, ݇ሻ ∗ ,ሺ݄ݒ  ;ሻݖ
                                      ۵	൅ൌ ,ሺ݈ܚ۰ ݄,  ;ሻݖ
                                END FOR; 
௕௕܄                                 ሺ݈, ݄, lpr, ݇ሻ	൅ൌ ۵ ∙ ૚; 
                      END FOR; 
               END FOR; 
        END FOR;   
END FOR; 
 
The   means the element-by-element or Hadamard matrix product. The   is the usual row column 
matrix product. The ૚ is a vector of ones of appropriate size. The variable names written in italics are real 
numbers; those written in boldface are matrices or vectors. 
The algorithm shows how to solve the (3.2) and (3.4) evolution equations and the evolution equation in 
the case of only initial backward time. After reading the inputs, the structure of the discount factor is 
constructed by using the non- homogeneous interest rates and then the kernel of the process is constructed 
multiplying the matrices P and F. Step-4 is the resolution of equation (3.2) which is executed by five 
down to loops.  In Step-1, Step-2 and Step-3 we solve different special cases of equation (3.2).  
        
 
3.2 Prospective reserves 
 
Let us assume that the policy is issued at time s in state Z(s)=i of the semi-Markov chain with backward 
time B(s)=s-l. Premiums and benefits for the policy are paid by the insured party and by the insurer 
depending on the state of the degree of disability. 
The permanence reward ( , )i s t  considers the payment of a premium or a benefit due to the occupancy 

of state i at time t for a contract starting at time s. 
The impulse reward ( , )ij s t  considers an insurance benefit or lump sum. 

In general, the prospective premium reserve is defined as the expected value of the loss function (see 
Wolthuis, 2003). In our case the random process  , ; ',ij l s l t  represents the accumulated discounted 

reward process with initial and final backward times and expresses the difference between future benefits 
and premium payments with constraints on the duration in the starting and arriving states. Consequently, 

 , ; ',ij l s l t is a constrained loss function and its expectation represents the prospective reserve with full 

backward information. A particular case of  , ; ',b b
ijV l s l t  is  , ;b

ijV l s t  which is the prospective reserve 

with initial backward time.  
Generally, in life insurance, the policy terminates with the death of the policyholder. Since death occurs at 
a random time, the prospective reserve is considered for t   (see, for example, Wolthuis, 2003). 
Let us denote by    , , ; .i il s l s   the accumulated discounted reward process in the interval [s,∞) 

given that the DTNHSMP entered state i at time l and did not move up to s. 
If we consider the random variables 1൛்ಿሺೞሻశభவ௦ାଵห௃ಿሺೞሻୀ௜,்ಿሺೞሻୀ௟,்ಿሺೞሻశభவ௦ൟ, and 

1൛௃ಿሺೞሻశభୀ௞,்ಿሺೞሻశభୀ௦ାଵห௃ಿሺೞሻୀ௜,்ಿሺೞሻୀ௟,்ಿሺೞሻశభவ௦ൟ with Bernoulli distribution function of parameter 

Pr൫ ேܶሺ௦ሻାଵ ൐ ݏ ൅ 1หܬேሺ௦ሻ ൌ ݅, ேܶሺ௦ሻ ൌ ݈, ேܶሺ௦ሻାଵ ൐  and	൯ݏ



Pr൫ܬேሺ௦ሻାଵ ൌ ݇, ேܶሺ௦ሻାଵ ൌ ݏ ൅ 1หܬேሺ௦ሻ ൌ ݅, ேܶሺ௦ሻ ൌ ݈, ேܶሺ௦ሻାଵ ൐  ൯ respectively, we can give the followingݏ
recursive representation: 

,௜ሺ݈ߦ	 ሻݏ ൌ 
1൛	்ಿሺೞሻశభவ௦ାଵห௃ಿሺೞሻୀ௜,்ಿሺೞሻୀ௟,்ಿሺೞሻశభவ௦ൟሾ߰௜ሺݏ, ݏ ൅ 1ሻݒሺݏ, ݏ ൅ 1ሻ ൅ ,௜ሺ݈ߦ ݏ ൅ 1ሻሿ 

							෍1൛	௃ಿሺೞሻశభୀ௞	்ಿሺೞሻశభୀ௦ାଵห௃ಿሺೞሻୀ௜,்ಿሺೞሻୀ௟,்ಿሺೞሻశభவ௦ൟ
௞∈ூ

,ݏሺݒ ேܶሺ௦ሻାଵሻ 

       ∙ ቂ߰௃ಿሺೞሻశభ൫ݏ, ேܶሺ௦ሻାଵ൯ ൅ ,ݏ௜,௃ಿሺೞሻశభ൫ߛ ேܶሺ௦ሻାଵ൯ ൅ ௃ಿሺೞሻశభሺߦ ேܶሺ௦ሻାଵ, ேܶሺ௦ሻାଵሻቃ 
  (3.5) 
 
Formula (3.5) states that, given the information set ൛ܬேሺ௦ሻ ൌ ݅, ேܶሺ௦ሻ ൌ ݈, ேܶሺ௦ሻାଵ ൐  ൟ, if no transitionݏ
occurs up to time s+1, the accumulated discounted reward for the interval [s,∞) can be obtained as the 
sum of the discounted permanence reward due to the occupancy of state i at time s+1, i.e. ߰௜ሺݏ, ݏ ൅
1ሻݒሺݏ, ݏ ൅ 1ሻ and the accumulated discounted reward for the interval [s+1,∞) given that the DTNHSMP 
is in state i where it entered with last transition at time l.  
By contrast, if the next transition occurs at time s+1 in state k then the accumulated discounted reward for 
the interval [s,∞) is obtained as the sum of two addends: 
The first term is the discounted permanence reward due to the occupancy of the state visited at time s+1, 
the second is the discounted impulse reward due to the transition executed at time s+1, and the third is the 
remaining accumulated discounted reward for the interval [s+1,∞) given that the DTNHSMP is in state k 
where it entered at time s+1.     

If we denote by    , ,i iW l s E l s    , by taking the expectation of (3.5), by applying similar arguments 

to i), ii) and iii) we obtain 
 

௜ܹሺ݈, ሻݏ ൌ
1 െ ;௜ሺ݈ܪ ݏ ൅ 1ሻ

1 െ ;௜ሺ݈ܪ ሻݏ
ሾ߰௜ሺݏ, ݏ ൅ 1ሻ ൅ ௜ܹሺ݈, ݏ ൅ 1ሻሿݒሺݏ, ݏ ൅ 1ሻ 

∑ ܾ௜௞ሺ݈, ;ݏ ݏ ൅ 1ሻሾ߰௜ሺݏ, ݏ ൅ 1ሻ ൅ ,ݏ௜௞ሺߛ ݏ ൅ 1ሻ ൅ ௜ܹሺ݈, ݏ ൅ 1ሻሿ௞∈ூ ,ݏሺݒ ݏ ൅ 1ሻ   (3.6) 
 
Equation (3.6) expresses the change of the prospective reserve for state i at time s with duration s-l from 
time s to time s+1. Therefore, it can be seen as a generalization of the Thiele differential equation for a 
disability insurance contract described by a non-homogeneous semi-Markov chain. 
This equation explains that the expected accumulated reward during the whole life of a contract can be 
computed. 
 
3.3 Retrospective reserves 
 

In general retrospective reserves are defined as the expected discounted value of past premiums minus 
past benefits. 
Different definitions of retrospective reserves have been proposed. Here we consider Norberg’s (1990) 
definition and we adapt it to our general framework. For a general notation on retrospective reserve see 
Janssen et al. (2009).  
Let us denote the conditional retrospective premium reserve relative to the period   ,s t with initial and 

final backward times by  , ; ', .b b
ijM l s l t  

The reserve  , ; ',b b
ijM l s l t is defined over the time interval  ,s t  valued at time and conditioned on

 ( ) , ( )Z s i B s s l    and  ( ) , ( ) 'Z t i B t t l   for 0 s t   by  

    ( , ) , ; ', , ; ', ( , ; ', )b b b b b b
ij ij ijv s t l s l t M l s l t V l s l t   , (3.7) 

from which we obtain  

    
1

, ; ', ( , ; ', )
( , ) , ; ',

b b b b
ij ij b b

ij

M l s l t V l s l t
v s t l s l t

  , (3.8) 

If   , ; ', 0b b
ij l s l t  we set  , ; ', 0b b

ijM l s l t  . 

The definition of the retrospective reserve in a semi-Markov environment demonstrates the need to 
introduce the reward process ( , ; ', )ij l s l t  by considering an initial state and backward time, as well as a 

final state and backward time. 
Notice that it is possible to derive recursive equations for the retrospective reserves by using relation (3.2) 
and (3.6) for the prospective reserves. 



 
4 Real data numerical example 
 
In this section we apply our model to a sample of real contracts. For the sake of completeness, we first 
report results for the transition probabilities, as obtained in D’Amico et al. (2009), and, second, we extend 
the analysis by introducing a reward structure. 
The model has the following four states: 
W – active; 2) P – pensioner; 3) Di – disabled; 4) De – dead 
interrelated as indicated in Figure 2. 

 
 

Figure 2: The disability model 
 
It is well known that the transition probabilities from the disabled state are a function of the duration in 
the current state (see Haberman and Pitacco, 1999). In the SMP environment this aspect is considered, but 
solution (2.1) is not sensitive to duration. The introduction of the backward times, as in (2.7), allows us to 
manage transition probabilities that depend on the length of permanence inside the initial and final states. 
The data analyzed are taken from a sample of contracts drawn at random from a mutual insurance 
company in Catalunya. A total of 150,000 insurance contracts are analysed and 2,800 LTC spells are 
observed for a period extending from 1975 to 2005.  
In order to simplify the model, we chose to work with a five-year interval. 
Owing to lack of space, we do not show the kernel estimates and other results, but these are available 
upon request. Note that the transition probability values vary in function of both the initial and final 
backward times, so the model is sensitive to both backward times (see Figure 3).  
In all the histograms W is the starting state. The blue bars report the results in the absence of initial 
backward time (IBk=0); the red bars report the case with one year of initial backward time (IBk=1). The 
first observation is that the probability distribution is spread among the final backward times (for example 
in the south- west histogram FBk=0, 1, 2 and 3) and the arriving states. Indeed, in the north-west there are 
eight possible events with an arriving time equal to starting time plus one (AT=ST+1), four in the case of 
a final backward time equal to 1 and four with a final backward time equal to 0. In the north-east, with an 
arriving time equal to starting time plus two (AT=ST+2), there are twelve possible cases, four for each 
final backward time and so on. The first blue and red bars in each histogram represent the probability of 
staying in the starting state; this decreases in function of the arriving time. It is also interesting to observe 
that the shape of the histograms changes in function of both the initial and final backward times, so the 
model is sensitive to both backward times. 
To facilitate the reading of Figure 3, the first two bars in the first histogram represent respectively the 
probabilities 11 11(0,0;0,1), (0,1;1,2)b b b b   
 



 Figure 3: Comparison of initial and final backward times 
 

The same behaviour is translated to the accumulated reward process. Due to missing data on rewards 
(permanence and impulse), we assumed the following reward structure: 
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and we consider a constant interest rate structure r(s,s+h)=2% for all h>0.  
Table 1 shows the dependence of the accumulated reward process in function of the initial and final 
backward times. In fact, by comparing two columns we see different expected reward values due to 
different initial backward times. By comparing two rows, we see the effects resulting from different final 
backward times. 
 

Final backward  V1(0,3;l’,10) V1(1,3;l’,10) V1(2,3;l’,10) V1(3,3;l’,10) 
l’=3 -4622.85 -8392.82 -11732.10 -13395.30 
l’=4 -420821.00 -424019.00 -426845.00 211.25 
l’=5 -415040.00 -417212.00 -419330.00 -1537.27 
l’=6 -401852.00 -402520.00 -403586.00 -8536.55 
l’=7 -371546.00 -370686.00 -369788.00 -20629.00 
l’=8 -291318.00 -285725.00 -279689.00 -23346.60 
l’=9 -131829.00 -125292.00 -115690.00 -20180.90 
l’=10 -3209.33 -11431.30 -15806.30 -17031.90 

Table 1: Expected accumulated reward values 
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