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ABSTRACT 

This paper extends the framework for the valuation of life insurance policies and annuities 

by Andrés-Sánchez and González-Vila (2012, 2014) in two ways. First, we allow various 

uncertain magnitudes to be estimated by means of fuzzy numbers. This applies not only to 

interest rates but also to the amounts to be paid out by the insurance company. Second, 

the use of symmetrical triangular fuzzy numbers allows us to obtain expressions for the 

pricing of life contingencies and their variability that are closely linked to standard 

financial and actuarial mathematics. Moreover, they are relatively straightforward to 

compute and understand from a standard actuarial point of view. 
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1. INTRODUCTION 

Stochastic techniques are, beyond doubt, at the core of actuarial mathematics. However, in 

insurance decision-making problems, as well as in other areas related to economics and 

finance, much of the information is imprecise and vague, or relies heavily on subjective 

judgements and, so, it is not clearly measurable. For such information, the use of fuzzy set 

theory (FST) can represent a suitable alternative and/or a supplementary way to that of 

pure statistical methods as has been shown in De Witt (1982), Lemaire (1990), 

Ostaszewski (1993), Cummins and Derrig (1997), Andrés-Sánchez and Terceño (2003) 

and Shapiro (2004). 
                                                            
1 The authors acknowledge the useful comments of anonymous referees. 
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In the field of the financial pricing of insurance, FST has been used to model discount rates. 

Cummins and Derrig (1997), Derrig and Ostaszewski (1997) and Andrés-Sánchez (2014) 

do so in a non-life context, while Lemaire (1990), Ostaszewski (1993) and Betzuen et al. 

(1997) model discount rates for life insurance contingencies valuation. In these papers 

probabilities, however, are reduced to predefined frequencies and so, the financial pricing 

of insurance contracts is solved by applying the fuzzy financial mathematics developed by 

Buckley (1987). Anyway, when applying these methods, probabilistic information is lost 

because random magnitudes are reduced to their mathematical expectation. 

Shapiro (2009) exposes the concept of fuzzy random variables (FRVs) with Actuarial 

Science in view. Similarly, Huang et al. (2009) develop an individual risk model in which 

the cost of accidents is estimated using fuzzy numbers (FNs), while the number of claims 

follows a Poisson process. In the field of life insurance, Andrés-Sánchez and González-Vila 

(2012, 2014) develop a methodology in which discount rates are fuzzy whereas the 

mortality is strictly random. In these papers, the stochastic modelling of life contingencies 

with deterministic discount rates and monetary amounts (see Wolthuis and Van Hoek 

(1986) for a complete description) is extended to cases in which the discount rates are 

fuzzy and, so, the outcomes (the present value of insured life contingencies) are fuzzy sets. 

All these developments also rely on the concept of FRVs. In their works, the authors do not 

assume any particular shape for fuzzy interest rates and consequently no closed 

expressions for those present values are developed. Likewise, only crisp unitary amounts 

are considered. 

This paper extends the previous findings of Andrés-Sánchez and González-Vila (2012, 

2014) in two ways. First, we also allow the insured amounts to be paid out by the 

insurance company to be uncertain and to be quantified with FNs, which is a more general 

framework. Note, that, in fact, these amounts may be linked to economic indexes, such as 

the consumer price index, a wage growth rate, etc. Likewise, if we are evaluating the 

underwriter’s overall outcome of a policy, future maintenance costs, general and 

settlement expenses, etc. may not be known exactly a priori. 

Second, we suppose that the amounts to be paid and the interest rates are fitted with 

symmetrical triangular fuzzy numbers (STFNs). Indeed, the use of these FNs is very 

common in the fuzzy literature. In a strictly actuarial context, we find Andrés-Sánchez and 

Terceño (2003), Shapiro (2013) and Heberle and Thomas (2014). Despite that under these 

hypothesis the present value of the analyzed life contingencies structures does not turn 

into a STFN, we will propose a STFN approximation that is relatively easy to implement 

and understand with standard actuarial skills since it relies on conventional statistical and 

financial concepts. In our opinion, the issue of maintaining the symmetrical triangular 

shape in the present value of insurance contract is relevant. Following Grzegorzewski and 

Pasternak-Winiarska (2014) complicated forms of FNs may cause unpleasant drawbacks 

in processing imprecise information modeled by these fuzzy structures including 

problems with calculations, computer implementation and in interpretation of the results. 

This is the reason why a suitable approximation of FNs is an interesting alternative to 

substitute the original “input” membership functions by another “outputs” which are 

simpler or more regular and hence more convenient for further tasks. In this sense 

Grzegorzewski and Mrówka (2005) indicate that triangular approximation can be 

considered a more complete kind of defuzzification than simply reducing a FN to a crisp 
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representative value given that performing defuzzification early may result in a loss of too 

much information and it is better to process fuzzy information as long as possible. Bearing 

in mind this idea, we are looking for simplification in the computational process and the 

interpretation of the results on the one hand but, on the other, we do not want to simplify 

too much the original information. 

We structure the rest of our paper as follows. In section 2 we describe the concepts and 

instruments of FST used in our developments: FNs and FRVs. We then develop a STFN 

approximation for the present value derived from STFN cash-flows and discount rates 

with a straightforward financial interpretation. In sections 4 and 5 we introduce the use of 

FRV with STFN outcomes to price life contingencies. We conclude our paper with a 

summary of the main conclusions and possible extensions. 

 

2. FUZZY NUMBERS AND FUZZY RANDOM VARIABLES 

2.1. FUZZY NUMBERS AND FUZZY ARITHMETIC 

In this section we describe the basic concepts of FST and FNs and so present the basic 

notation used throughout this paper. The basic concept on which FST is based is fuzzy set. 

A fuzzy set 𝐴 ̃ can be defined as 𝐴 ̃ =  {(𝑥, 𝜇𝐴̃(𝑥))|𝑥 ∈ 𝑋}, where 𝜇𝐴̃  is known as the 

membership function and is a mapping from the referential set 𝑋 to the interval [0,1], i.e. 

𝜇𝐴̃: 𝑋[0,1]. Therefore, 0 indicates non-membership in the fuzzy set 𝐴 ̃ and 1 indicates 

absolute membership. Alternatively, a fuzzy set can be represented by its -level sets or -

cuts. An -cut is a crisp set 𝐴, where 𝐴 = {𝑥 ∈ 𝑋| 𝜇𝐴̃(𝑥) ≥  }, ∀ ∈ (0,1], with the 

convention that 𝐴=0 is the closure of the support of 𝐴 ̃, i.e. all 𝑥 ∈ 𝑋 that  𝜇𝐴̃(𝑥) ≥ 0. 

A fuzzy number is a fuzzy set 𝐴 ̃ defined over the set of real numbers and it is a 

fundamental concept of FST for representing uncertain quantities. It is normal, i.e. 

max 
𝑥 𝑋 

𝜇𝐴̃𝑥) = 1, and convex, that is, its -cuts are closed and bounded intervals. So, they 

are 𝐴 = [𝐴(𝛼), 𝐴(𝛼)] , where  𝐴(𝛼)  (𝐴(𝛼)) are continuously increasing (decreasing) 

functions of the membership level  ∈ [0,1]. A FN can be interpreted as a fuzzy quantity 

approximately equal to the real number for which the membership function takes the 

value 1. In this paper we use symmetrical triangular fuzzy numbers, which we denote as 

𝐴 ̃ = (𝐴, 𝑟𝐴). The value A is the core (mode or center) and it can be understood as the most 

reliable value of the FN, i.e. 𝜇𝐴̃𝐴) = 1 . Likewise 𝑟𝐴 ≥ 0 is the spread or radius and 

indicates the variability of 𝐴 ̃ respect its mode A. Thus, the membership function and its 

corresponding -cuts are: 

𝜇𝐴̃𝑥) = max {0,1 −
|𝑥 − 𝐴|

𝑟𝐴
} 

𝐴 = [𝐴(𝛼), 𝐴(𝛼)] = [𝐴 − 𝑟𝐴(1 − 𝛼), 𝐴 + 𝑟𝐴(1 − 𝛼)]  (1) 

The expected value of the FN 𝐴 ̃, 𝐸𝑉(𝐴 ̃; 𝜆) , is a representative real value of this FN that 

was developed in Campos and González (1989). This concept allows us to introduce the 

risk aversion of the decision maker with a coefficient 0 ≤  ≤ 1 in such a way that: 
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𝐸𝑉(𝐴 ̃; 𝜆) = (1 − 𝜆) ∫ 𝐴(𝛼)𝑑𝛼
1

0
+ 𝜆 ∫ 𝐴(𝛼)𝑑𝛼

1

0
 (2a) 

In (2a),  graduates the importance of the lower and upper extremes of 𝐴  when 

defuzzifying 𝐴 ̃. So, the greater the risk aversion of the decision maker is, the greater   is. 

For example, in a non-life claim reserving context Heberle and Thomas (2014) and 

Andrés-Sánchez (2014) use this criteria to defuzzify the value of reserves previously given 

by FNs in such a way that   > 0.5  for a risk-averse criteria for reserving. 

So, for a STFN 𝐴 ̃ = (𝐴, 𝑟𝐴) it is straightforward to check that: 

𝐸𝑉(𝐴 ̃; 𝜆) = 𝐴 + 𝑟𝐴 (𝜆 −
1

2
)    (2b) 

Let 𝑓(·) be a continuous real valued function of 𝑛-real variables 𝑥𝑗 , 𝑗 = 1,2, … , 𝑛, and let 

𝐴̃1, 𝐴̃2, … , 𝐴̃𝑛 𝑛 FNs. Then Zadeh’s extension principle in Zadeh (1965) allows us to define a 

FN 𝐵̃ induced by the FNs 𝐴̃1, 𝐴̃2, … , 𝐴̃𝑛 through 𝑓(·) as 𝐵̃ = 𝑓(𝐴̃1, 𝐴̃2, … , 𝐴̃𝑛). 

Although it is usually impossible to obtain the membership function of 𝐵̃, it is often 

possible to obtain a closed expression for its -cuts, 𝐵. If 𝑓(·) is increasing with respect to 

the first 𝑚 variables, 𝑚 ≤ 𝑛, and decreases in the last 𝑛 −𝑚 variables, Buckley and Qu 

(1990) demonstrate that: 

𝐵𝛼 = [𝐵(𝛼), 𝐵(𝛼)] = [𝑓 (𝐴1(𝛼), 𝐴2(𝛼), … , 𝐴𝑚(𝛼), 𝐴𝑚+1(𝛼), 𝐴𝑚+2(𝛼), …𝐴𝑛(𝛼)) , 

𝑓 (𝐴1(𝛼), 𝐴2(𝛼), …𝐴𝑚(𝛼), 𝐴𝑚+1(𝛼), 𝐴𝑚+2(𝛼), … , 𝐴𝑛(𝛼))]  (3) 

When 𝑓(·) is simply a linear combination of its variables ∑ 𝑘𝑗𝑥𝑗
𝑛
𝑗=1 , 𝑘𝑗, 𝑗 = 1,2, … , 𝑛, the 

result of evaluating this function with 𝐴̃𝑗 = (𝐴𝑗 , 𝑟𝐴𝑗), 𝑗 = 1,2, … , 𝑛, is a STFN 𝐵̃ = (𝐵, 𝑟𝐵), 

where: 

𝐵 = ∑ 𝑘𝑗𝐴𝑗
𝑛
𝑗=1 , 𝑟𝐵 = ∑ |𝑘𝑗|𝑟𝐴𝑗

𝑛
𝑗=1  

Notice that whereas the center of 𝐵̃ is simply the linear combination of 𝐴𝑗 , 𝑗 = 1,2, … , 𝑛, 

the spread of 𝐵̃ is the sum of the spreads of 𝑘𝑗𝐴̃𝑗 , 𝑗 = 1,2, … , 𝑛. Since this spread is positive, 

the absolute value of 𝑘𝑗 , ∀𝑗, has to be used. For example, if we consider 𝑓(𝑥1, 𝑥2) = 2𝑥1 −

4𝑥2, 𝐴̃1 = (3,2) and 𝐴̃2 = (6,3), the FN 𝐵̃ induced by the FNs 𝐴̃1 and 𝐴̃2 through 𝑓(·) is the 

STFN (𝐵, 𝑟𝐵) = 2 · (3, 2) − 4 · (6, 3)  with 𝐵 = 2 · 3 − 4 · 6 = −18  and 𝑟𝐵 = 2 · 2 + |−4| ·

3 = 16. 

However, the result of evaluating non-linear functions with STFNs is not a STFN. In any 

case, if 𝑓(·) is a real-valued function derivable and continuously increasing (decreasing) 

with respect to the first (last) 𝑚 (𝑛 − 𝑚) variables, it admits a STFN approximation that is 

based on the approximation to non-linear operations with L-R FNs developed in Dubois 

and Prade (1993, p. 131). It is built up from the first-order Taylor polynomial expansion 

from the 1-cut to any -cut. So, let us approximate 𝐵(𝛼) in (3) from 𝐵(1) using the Taylor 

expansion to the first degree with 𝐵()𝐵(1) +
𝑑𝐵(1)

𝑑𝛼
(𝛼 − 1). If we name the vector 
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comprising the centers of 𝐴̃𝑗 , 𝑗 = 1,2, … , 𝑛, 𝐴𝐶 = (𝐴1, 𝐴2, … , 𝐴𝑛), this Taylor expansion is 

equivalent to: 

𝐵() = 𝑓(𝐴1(𝛼), 𝐴2(𝛼), … , 𝐴𝑚(𝛼), 𝐴𝑚+1(𝛼), 𝐴𝑚+2(𝛼), …𝐴𝑛(𝛼)) ≈ 

≈ 𝑓(𝐴𝐶) −∑
𝜕𝑓(𝐴𝐶)

𝜕𝑥𝑗
𝑟𝐴𝑗(1 − 𝛼) +

𝑚

𝑗=1

∑
𝜕𝑓(𝐴𝐶)

𝜕𝑥𝑗
𝑟𝐴𝑗(1 − 𝛼)

𝑛

𝑗=𝑚+1

= 𝑓(𝐴𝐶) −∑|
𝜕𝑓(𝐴𝐶)

𝜕𝑥𝑗
| 𝑟𝐴𝑗(1 − 𝛼)

𝑛

𝑗=1

 

Analogously, for 𝐵̅(𝛼) we find: 

𝐵(𝛼) = 𝑓 (𝐴𝑚+1(𝛼), 𝐴𝑚+2(𝛼), …𝐴𝑛(𝛼), 𝐴1(𝛼), 𝐴2(𝛼), … , 𝐴𝑚(𝛼)) ≈

≈ 𝑓(𝐴𝐶) +∑|
𝜕𝑓(𝐴𝐶)

𝜕𝑥𝑗
| 𝑟𝐴𝑗(1 − 𝛼)

𝑛

𝑗=1

 

So, 𝐵̃(𝐵, 𝑟𝐵) where: 

𝐵 =  𝑓(𝐴𝐶)     (4a) 

𝑟𝐵 = ∑ |
𝜕𝑓(𝐴𝐶)

𝜕𝑥𝑗
| 𝑟𝐴𝑗

𝑛
𝑗=1  (4b) 

In an actuarial context, STFNs and a STFN approximation to any arithmetic operation with 

STFNs are used in Andrés-Sánchez and Terceño (2003) to price life and non-life insurance, 

whereas Heberle and Thomas (2014) and Andrés-Sánchez and Terceño (2003) apply it in 

non-life reserving problems. 

 

2.2. FUZZY RANDOM VARIABLES 

In many real situations, uncertainty is caused by a variety of factors: randomness, hazard, 

vagueness, inaccuracy, imprecision, etc. Stochastic variability can be described by the use 

of probability theory, while other types of uncertainty, such as vagueness and imprecision, 

can be captured with the use of fuzzy sets (Viertl and Hareter (2004)). The concept of 

FRVs combines both random and fuzzy uncertainty. 

Roughly speaking, a FRV can be defined as a random variable (RV) whose outcomes are 

not real numbers (or vectors) but FNs (or fuzzy sets defined on 𝑛). It was initially 

proposed by Kwakernaak (1978, 1979), who extended the concept of RVs on  to the case 

where the realizations are FNs. Kruse and Meyer (1987) subsequently enhanced 

Kwakernaak’s concepts. Likewise, Puri and Ralescu (1986) conceptualized FRVs as a 

fuzzification of a random set. However, when outcomes are mapped to the real line both 

definitions coincide, as demonstrated in Krätchmer (2001). In an insurance context, 

Shapiro (2009) presented a general reflection on the potential uses of FRVs in Actuarial 

Science. In more specific problems, Huang et al. (2009) developed a non-life risk model in 

which the number of claims follows a Poisson distribution, while their monetary values 
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are triangular FNs. Later, Shapiro (2013) models future lifetime as a FRV. Finally, Andrés-

Sánchez and González-Vila (2012, 2014) apply FRVs to price life contingencies under the 

hypothesis of fuzzy interest rate and random behavior of mortality. 

To define a discrete FRV, we consider a probability space defined by (, 𝒜, 𝑃) where  is 

a discrete space of elementary events {𝑗}, 𝑗 = 1,2, … , 𝑛, 𝒜 is the -algebra of subsets of  

and 𝑃 is a probability measure on . Additionally, we consider the Borel measurable space 

(, ℬ) and we name the set of all FNs defined on  as 𝐹(). The mapping 𝑿̃:𝐹(), 

where ∀𝑗 ∈  the fuzzy outcome is 𝑋̃𝑗 with -cuts 𝑋𝑗𝛼
= [𝑋𝑗(𝛼), 𝑋𝑗(𝛼)], is called a fuzzy 

random variable 𝑿̃ if: 

∀𝐵 ∈ ℬ, ∀ ∈ [0,1], {𝑗 ∈ |𝑋𝑗𝛼
∩ 𝐵 ≠ ∅}  ∈ 𝒜 

Wang and Zhang (1992) demonstrate that any FRV 𝑿̃ defines, ∀ ∈ [0,1], an infima RV 

𝑿(𝛼) and a suprema RV 𝑿(𝛼), whose realizations are, respectively, {𝑋𝑗(𝛼)}
𝑗=1,2,…,𝑛

  and 

{𝑋𝑗(𝛼)}𝑗=1,2,…,𝑛
. These RVs allow us to bound the distribution function of the FRV 

𝐹𝑿̃(𝑥) = 𝑃(𝑿̃ ≤ 𝑥). 

Concretely, if we symbolize as 𝐹𝑿(𝛼)(𝑥) and 𝐹𝑿(𝛼)(𝑥), ∀ ∈ [0,1], the distribution functions 

of the RVs 𝑿(𝛼) and 𝑿(𝛼) obtained from 𝑿̃, we define the couple of the distribution 

functions of the RVs infima and suprema for that membership level, 𝐹𝑿̃(𝑥)𝛼 =

{𝐹𝑿̃(𝑥)𝛼 , 𝐹𝑿̃(𝑥)𝛼}  , as: 

𝐹𝑿̃(𝑥)𝛼 = 𝑃(𝑿(𝛼) ≤ 𝑥) = 𝐹𝑿(𝛼)(𝑥) (5a) 

𝐹𝑿̃(𝑥)𝛼 = 𝑃(𝑿(𝛼) ≤ 𝑥) = 𝐹𝑿(𝛼)(𝑥) (5b) 

Likewise, we can define the -quantile of 𝑿̃, 𝑄𝜀(𝑿̃), as the minimum quantity that allows 

𝐹𝑿̃ (𝑄
𝜀(𝑿̃)), i.e. 𝑄𝜀(𝑿̃) = 𝐹𝑿̃

−1(𝜀). Again, with the RVs 𝑿(𝛼) and 𝑿(𝛼) obtained from 𝑿̃, 

∀ ∈ [0,1], we bound the -quantile with the couple 𝑄𝜀(𝑿̃)
𝛼
= {𝑄𝜀(𝑿̃)

𝛼
, 𝑄𝜀(𝑿̃)

𝛼
}, where: 

𝑄𝜀(𝑿̃)
𝛼
= {min 𝑥|𝐹𝑿(𝛼)(𝑥)}     (6a) 

𝑄𝜀(𝑿̃)
𝛼
= {min 𝑥| 𝐹𝑿(𝛼)(𝑥)}    (6b) 

The mathematical expectation of a FRV is a FN 𝐸(𝑿̃)  whose -cuts are 𝐸(𝑿̃)
𝛼
=

[𝐸 (𝑿(𝛼)) , 𝐸 (𝑿(𝛼))]. To obtain its defuzzified value (e.g. to rank FRVs from their 

mathematical expectations), López-Díaz and Gil (1998) propose using the concept of 

expected value of a FN, developed by Campos and González (1989), given its desirable 

properties for fuzzy decision problems. López-Díaz and Gil (1998) show that the 

fundamentals of the fuzzy utility function can be established by means of an axiomatic 

development of the fuzzy expected utility. 
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The variance measure of a FRV admits a fuzzy definition, in the same way as the 

expectation (Kruse and Meyer (1987)) or a real value (Körner (1997), Näther (2000) and 

Feng et al. (2001)). Following Couso and Dubois (2009) considerations, Andrés-Sánchez 

and González-Vila (2012) propose using the definition in Feng et al. (2001) for the pricing 

of life contingencies. In this paper the variance of 𝑿̃, 𝑉(𝑿̃), is defined as: 

𝑉(𝑿̃) =
1

2
∫ [𝑉 (𝑿(𝛼)) + 𝑉 (𝑿(𝛼))]
1

0
𝑑𝛼  (7) 

where 𝑉(·) of RVs stands for the usual variance operator. Of course, the standard deviation 

is 𝑆𝐷(𝑿̃) = √𝑉(𝑿̃). 

Let us examine some results when the outcomes of the FRVs are STFNs, i.e., the 𝑗th 

outcome is 𝑋̃𝑗 = (𝑋𝑗 , 𝑟𝑋𝑗). If we symbolize as X the RV whose realizations are the centers of 

𝑋̃𝑗 , i.e. 𝑋𝑗 , and as 𝒓𝑿 the RV that can be built up from the spreads, 𝑟𝑋𝑗 , ∀𝑗 = 1,2, … , 𝑛, the 

FRV 𝑿̃ can be represented as 𝑿̃ = (𝑿, 𝒓𝑿). 

 

Example 1: Let us consider a probability space defined by (, 𝒜, 𝑃) where  is a discrete 

space of elementary events {1,2}. We define the FRV 𝑿̃ as follows: 

𝑿̃:   𝐹()

   1  𝑿̃(1) = (2, 0.01) = 𝑋̃1 

   2  𝑿̃(2) = (3, 0.005) = 𝑋̃2

 

being the -cuts of these FNs, considering (1): 

𝑋1𝛼 = [2 − 0.01(1 − 𝛼), 2 + 0.01(1 − 𝛼)] 

𝑋2𝛼 = [3 − 0.005(1 − 𝛼), 3 + 0.005(1 − 𝛼)] 

As explained above, 𝑿̃ defines, ∀ ∈ [0,1], an infima RV 𝑿(𝛼) and a suprema RV 𝑿(𝛼), 

whose realizations are, respectively,  {2 − 0.01(1 − 𝛼), 3 − 0.005(1 − 𝛼)}  and 

{2 + 0.01(1 − 𝛼), 3 + 0.005(1 − 𝛼)}. 

Furthermore, it is possible to define the RVs X and 𝒓𝑿  , whose realizations are, respectively, 

{2, 3} and {0.01,0.05} and, in this way, the FRV can be represented by 𝑿̃ = (𝑿, 𝒓𝑿). 

 

From this representation of this FRV, whose outcomes are a STFN, it follows that the lower 

and upper RVs for a given -level are:  

𝑿(𝛼) = 𝑿 − 𝒓𝑿(1 − 𝛼) 

𝑿(𝛼) = 𝑿 + 𝒓𝑿(1 − 𝛼) 



8 

As discussed above, the -cuts of the mathematical expectation of the FRV 𝑿̃ can be 

obtained from 𝐸 (𝑿(𝛼))  and 𝐸 (𝑿(𝛼)) . Since 𝐸 (𝑿(𝛼)) = 𝐸(𝑿) − 𝐸(𝒓𝑿)(1 − 𝛼) , with 

similar expression for 𝐸 (𝑿(𝛼)), it turns out that the mathematical expectation of 𝑿̃ is also 

a STFN with: 

𝐸(𝑿̃) = (𝐸(𝑿), 𝐸(𝒓𝑿)) 

And consequently, considering, (2), the expected value of the mathematical expectation is: 

𝐸𝑉(𝐸(𝑿̃); ) = 𝐸(𝑿) + 𝐸(𝒓𝑿) (−
1

2
)    (8) 

For the variance, from (7) we can write: 

𝑉(𝑿̃) =
1

2
∫[𝑉(𝑿 − 𝒓𝑿(1 − 𝛼)) + 𝑉(𝑿 + 𝒓𝑿(1 − 𝛼))]𝑑𝛼

1

0

=
1

2
∫ {𝐸 [(𝑿 − 𝒓𝑿(1 − 𝛼))

𝟐
− (𝐸(𝑿) − 𝐸(𝒓𝑿)(1 − 𝛼))

2
]

1

0

+ 𝐸 [(𝑿 + 𝒓𝑿(1 − 𝛼))
𝟐
− (𝐸(𝑿) + 𝐸(𝒓𝑿)(1 − 𝛼))

2
]} 𝑑𝛼 = 𝑉(𝑿) +

1

3
𝑉(𝒓𝑿) 

           (9) 

 

Example 2: Consider that in example 1 the probabilities are 𝑝(1) = 0.6 and 𝑝(2) = 0.4. 

The mathematical expectation of 𝑿̃  is 𝐸(𝑿̃) = (2.4,0.008)  and its variance 𝑉(𝑿̃) =

0.240002. 

 

Note that in this section, as well as throughout the paper, an RV is denoted with a bold 

letter and a FN with a non-bold letter with the superscript “”. Thus, a FRV is denoted with 

a bold and superscripted letter.  

 

3. PRESENT VALUE WITH SYMMETRICAL TRIANGULAR FUZZY NUMBERS 

In this section we describe how to compute the present value of a stream of cash flows 

when they and the interest rate are given by a STFN. Let us begin with the crisp set of cash 

flows 𝐹1, 𝐹2, … , 𝐹𝑛 ≥ 0 whose maturities are 𝑡1, 𝑡2, … , 𝑡𝑛 years, respectively. To value them 

we use the interest rate 𝑖 ≥ 0. If we denote by 𝐹 = (𝐹1, 𝐹2, … , 𝐹𝑛), the present value of 𝐹 is 

the function: 

𝑃𝑉(𝐹, 𝑖) = ∑ 𝐹𝑗(1 + 𝑖)
−𝑡𝑗𝑛

𝑗=1     (10) 

with: 

𝜕𝑃𝑉(𝐹,𝑖)

𝜕𝐹𝑗
= (1 + 𝑖)−𝑡𝑗 > 0    (11a) 
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𝜕𝑃𝑉(𝐹,𝑖)

𝜕𝑖
= −

∑ 𝐹𝑗𝑡𝑗(1+𝑖)
−𝑡𝑗𝑛

𝑗=1

1+𝑖
< 0   (11b) 

Actuaries are familiar with asset-liability management (ALM) (see for example Luckner et 

al. (2003)) as a bunch of techniques to protect surplus against changes in interest rates. 

The essential idea is to measure the price sensitivity to interest rate changes of both 

liabilities and the assets supporting them. Macauley duration is one of the measures of this 

sensitivity. It is defined as the weighted average term to maturity of the cash flows from an 

asset or liability portfolio. It can also be interpreted as the elasticity of the present value 

(10) to changes in current interest rates. By measuring and equating asset and liability 

durations (with any of the possible tools of immunization), the price sensitivity of surplus 

to interest rates becomes small and thereby the risk interest is reduced. 

As far as we are concerned, due to the importance of considering the duration in the ALM, 

the introduction of this measure in our approach may be very useful. 

Of course, the Macaulay duration can also be understood as a function of 𝐹 and 𝑖 as: 

𝐷(𝐹, 𝑖) =
∑ 𝐹𝑗𝑡𝑗(1 + 𝑖)

−𝑡𝑗𝑛
𝑗=1

∑ 𝐹𝑗(1 + 𝑖)
−𝑡𝑗𝑛

𝑗=1

= −

𝜕𝑃𝑉(𝐹, 𝑖)
𝜕𝑖

(1 + 𝑖)

𝑃𝑉(𝐹, 𝑖)
 

𝜕𝑃𝑉(𝐹,𝑖)

𝜕𝑖
= −𝑃𝑉(𝐹, 𝑖)

𝐷(𝐹,𝑖)

1+𝑖
    (11c) 

Financial mathematics with fuzzy parameters was developed in the late 1980s and early 

‘90s by such authors as Kaufmann (1986), Buckley (1987) and Li Calzi (1990). The 

problem consists, primarily, in evaluating the basic expression of the present value (10) 

(and also the accumulated value function) when interest rate(s) and cash flows are FNs. 

In our case, we evaluate the net present value of fuzzy cash flows 𝐹̃𝑗 , 𝑗 = 1,2, … , 𝑛, where 

𝐹̃𝑗 = (𝐹𝑗 , 𝑟𝐹𝑗) and the fuzzy interest rate 𝑖̃ = (𝑖, 𝑟𝑖). Likewise, we denote 𝐹̃ = (𝐹̃1, 𝐹̃2, … , 𝐹̃𝑛) 

and name by 𝐹𝐶 = (𝐹1, 𝐹2, … , 𝐹𝑛)  and 𝑟𝐹 = (𝑟𝐹1 , 𝑟𝐹2 , … , 𝑟𝐹𝑛)  the vectors comprising the 

centers and radios of 𝐹̃𝑗 , 𝑗 = 1,2, … , 𝑛, respectively. So, the fuzzy present value is the FN 𝑃𝑉̃ 

induced by 𝐹̃ and 𝑖̃ through the function 𝑃𝑉(·), i.e. 𝑃𝑉̃ = 𝑃𝑉(𝐹̃, 𝑖̃). Its -cuts representation 

is, from (3) and (10): 

𝑃𝑉𝛼 = [𝑃𝑉(𝛼), 𝑃𝑉(𝛼)] = 

= [∑[𝐹𝑗 − 𝑟𝐹𝑗(1 − 𝛼)] (1 + 𝑖 + 𝑟𝑖(1 − 𝛼))
−𝑡𝑗

𝑛

𝑗=1

,∑[𝐹𝑗 + 𝑟𝐹𝑗(1 − 𝛼)] (1 + 𝑖 − 𝑟𝑖(1 − 𝛼))
−𝑡𝑗

𝑛

𝑗=1

] 

(12) 

So, 𝑃𝑉̃ does not maintain the STFN shape. In this sense, authors like Jiménez and Rivas 

(1998) or Grzegorzewski and Pasternak-Winiarska (2014) consider relevant using 

triangular approximations since this kind of FNs have a more intuitive interpretation and 

likewise they are easier to handle in subsequent quantitative analysis. So, bearing (4) and 

(11) in mind, we can approximate the fuzzy present value as 𝑃𝑉̃(𝑃𝑉(𝐹𝐶 , 𝑖), 𝑟𝑃𝑉) where: 
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𝑃𝑉(𝐹𝐶 , 𝑖) = ∑ 𝐹𝐶(1 + 𝑖)
−𝑡𝑗𝑛

𝑗=1      (13a) 

𝑟𝑃𝑉 =  𝑃𝑉(𝑟𝐹 , 𝑖) + 𝑃𝑉(𝐹𝐶 , 𝑖)
𝐷(𝐹𝐶,𝑖)

1+𝑖
𝑟𝑖     (13b) 

The above result is very appealing from a financial perspective. The most reliable value of 

the approximation for 𝑃𝑉̃ is obtained by evaluating the present value in the most possible 

values of cash flows and interest rates. The uncertainty of the present value, 𝑟𝑃𝑉   , comes 

from two sources: the uncertainty of cash flows, 𝑟𝐹 , and the spread of the interest rate. The 

contribution of cash flow spreads in the uncertainty of the approximation of 𝑃𝑉̃ is its own 

present value with the most reliable interest rate. Likewise, the uncertainty  that comes 

from the variability of interest rate is calculated with the Macaulay duration, as it is very 

usual in fixed income analysis (see for example Fabozzi and Fong (1994, p. 45)). 

Let us to evaluate in an example the closeness of the proposed STFN approximation to 

(12). Table 1 shows the -cuts of the present value of the cash flows 𝐹̃1 = (1000,50), 

𝐹̃2 = (1500,75), 𝐹̃3 = (2000,100) and 𝐹̃4 = (2500,100), whose maturities are 1, 2, 3 and 4 

years, respectively. The interest rate is 𝑖̃ = (0.02, 0.005). We define the errors: 

𝑒𝑟𝑟(𝛼) =
|𝑃𝑉(𝛼) − 𝑃𝑉′(𝛼)|

𝑃𝑉(𝛼)
 

𝑒𝑟𝑟(𝛼) =
| 𝑃𝑉(𝛼) − 𝑃𝑉′(𝛼)|

 𝑃𝑉(𝛼)
 

being 𝑃𝑉(𝛼), 𝑃𝑉(𝛼) the extremes of the -cuts obtained with (12) and 𝑃𝑉′(𝛼) and 𝑃𝑉′(𝛼) 

these extremes in the STFN approximation of 𝑃𝑉̃ in (13). Notice that the error increases 

when 𝛼 decreases because the Taylor expansion is developed from 𝛼 = 1 to lower levels 

(0 ≤ 𝛼 < 1). In any case, they are never greater than 0.1% which suggests that the 

proposed approximation is quite accurate2 in this case. 

 

Table 1. Comparison of the -cuts of the fuzzy present value and its STFN approximation 
 𝑃𝑉̃ (𝑃𝑉(𝐹, 𝑖), 𝑟𝑃𝑉)   

𝛼 𝑃𝑉(𝛼) 𝑃𝑉(𝛼) 𝑃𝑉′(𝛼) 𝑃𝑉′(𝛼) 𝑒𝑟𝑟(𝛼) 𝑒𝑟𝑟(𝛼) 

1 6616.40 6616.40 6616.40 6616.40 0.00% 0.00% 

0,75 6516.80 6716.64 6516.49 6716.32 0.00% 0.00% 

0,5 6417.84 6817.52 6416.57 6816.24 0.02% 0.02% 

0,25 6319.50 6919.04 6316.65 6916.15 0.05% 0.04% 

0 6221.79 7021.22 6216.74 7016.07 0.08% 0.07% 

 

Now, let us symbolize the present value of a stream of unitary cash flows as: 

                                                            
2 If the value of the parameters changes, the value of the errors may vary but usually may be not great. For example, when 

the variability of the interest rate increases, the duration performs worse the sensibility of the present value and so, the 
errors of the proposed STFN approximation are greater. In our example, if interest rate spread respect to the 2% is 1% 
instead 0.5% (i.e. 𝑖̃ = (0.02, 0.01)), we will find that 𝑒𝑟𝑟(0) = 0.19% and 𝑒𝑟𝑟(0) = 0.17%, i.e., they are still very small. 
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𝑃𝑉(𝑖) = ∑ (1 + 𝑖)−𝑡𝑗𝑛
𝑗=1     (13c) 

and its duration as: 

𝐷(𝑖) =
∑ 𝑡𝑗(1+𝑖)

−𝑡𝑗𝑛
𝑗=1

𝑃𝑉(𝑖)
     (13d) 

Table 2 shows the expressions of the present value and the Macaulay duration for unitary 

financial and life contingencies structures. Notice that Li and Panjer (1994) generalize the 

concept of duration under several yield rate regimes in life insurance pricing with 

deterministic mortality. Furthermore, whole life contracts are included by considering 

𝑛 =  − 𝑥 + 1, with  the maximum attainable age in the mortality table, and non-

deferred liabilities are also evaluated by taking 𝑚 = 0. 

 

Table 2. Present value and duration of several unitary financial and life contingency 
structures 

 
Present value of unitary 

payments 
Macaulay duration of the unitary payments 

Discount factor 𝑣𝑡= (1 + 𝑖)−𝑡 𝐷(𝑣𝑡) = 𝑡 

𝑛-term annuity- 
immediate 𝑎𝑛| =

1 − 𝑣𝑛

𝑖
 𝐷(𝑎𝑛|) =

(1 +
1
𝑖
− 𝑛)𝑎𝑛| −

𝑛
𝑖

𝑎𝑛|
 

Deferred 𝑚 years 𝑛-
term annuity-due 

𝑎̈𝑚| 𝑛| = ∑ (1 + 𝑖)−𝑡
𝑚+𝑛−1

𝑡=𝑚

= 

= 𝑎𝑛|𝑣
𝑚−1 

𝐷( 𝑎̈𝑚| 𝑛|) =
[(𝑚 +

1
𝑖
− 𝑛)𝑎𝑛| −

𝑛
𝑖
] 𝑣𝑚−1

𝑎̈𝑚 𝑛|̅̅̅𝑖

 

𝑛-year pure 
endowment for a 

person aged 𝑥 

𝐴 1
𝑥:𝑛̅|

= 𝑣𝑛 𝑝𝑛 𝑥 𝐷 (𝐴 1
𝑥:𝑛̅|

) = 𝑛 

𝑛-year life insurance 
deferred 𝑚 years for a 

person aged 𝑥 
𝐴1
𝑥:𝑛̅|

𝑚| = ∑ 𝑣𝑡 𝑞𝑡−1| 𝑥

𝑚+𝑛

𝑡=𝑚+1

 𝐷 ( 𝐴1
𝑥:𝑛̅|

𝑚| ) =
∑ 𝑡𝑣𝑡 𝑞𝑡−1| 𝑥
𝑚+𝑛
𝑡=𝑚+1

𝐴1
𝑥:𝑛̅|

𝑚|

 

𝑛-year endowment 
insurance deferred 𝑚 

years for a person 
aged 𝑥 

𝐴𝑚| 𝑥:𝑛| = 𝐴 1
𝑥:𝑚+𝑛̅̅ ̅̅ ̅̅ ̅|

+ 𝐴1
𝑥:𝑛̅|

𝑚|  𝐷( 𝐴𝑚| 𝑥:𝑛|) =
(𝑚 + 𝑛)𝑣𝑚+𝑛 𝑝 𝑚+𝑛 𝑥 + ∑ 𝑡𝑣𝑡 𝑞 𝑡−1| 𝑥

𝑚+𝑛
𝑡=𝑚+1

𝐴𝑚| 𝑥:𝑛|

 

Deferred 𝑚 years 𝑛-
term life annuity-due 
for a person aged 𝑥 

𝑎̈𝑥:𝑛|𝑚| = ∑ 𝑣𝑡 𝑝𝑡 𝑥

𝑚+𝑛−1

𝑡=𝑚

 𝐷( 𝑎̈𝑥:𝑛|𝑚| ) =
∑ 𝑡𝑣𝑡 𝑝𝑡 𝑥
𝑛𝑚+𝑛−1
𝑡=𝑚

𝑎̈𝑥:𝑛|𝑚|

 

 
Notes: * 𝑝𝑛 𝑥  is the probability that the insured, aged 𝑥, survives at age 𝑥 + 𝑛. 

** 𝑞𝑛| 𝑥 is the probability that the insured, aged 𝑥, dies within the 𝑛th year. 

 

Let us define the fuzzy unitary payment by means of a FN of “approximately 1 monetary 

unit (m.u.)”, which will be symbolized as 𝑢.̃ If it is a STFN, then 𝑢̃ = (1, 𝑟𝑢) where 𝑟𝑢 ≤ 1 . Of 

course, we can generate any other fuzzy positive quantity by using any scalar 𝐹 ≥ 0, 

𝐹̃ = 𝐹𝑢̃. In our opinion, fuzzy monetary amounts may be suitable for modeling situations 

in which they are linked to the evolution of an economic index or when we are evaluating 

not only claimed quantities, but also future expenses associated with them that are not 

known exactly (e.g. settlement costs). In this situation, fuzzy unitary cash-flows cover the 
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case where the cash flows are “approximately constant”. In any case, all the results can be 

extended to fuzzy variable cash-flows. 

For a fuzzy interest rate 𝑖̃ = (𝑖, 𝑟𝑖), the present value of the stream of fuzzy unitary 

quantities is the FN 𝑃𝑉̃ and using the STFN approximation 𝑃𝑉̃(𝑃𝑉(𝑖), 𝑟𝑃𝑉), where, 

considering (13): 

𝑃𝑉(𝑖) = ∑ (1 + 𝑖)−𝑡𝑗𝑛
𝑗=1     (14a) 

𝑟𝑃𝑉 = 𝑟𝑢𝑃𝑉(𝑖) + 𝑃𝑉(𝑖)
𝐷(𝑖)

 1+𝑖
𝑟𝑖 = 𝑃𝑉(𝑖) (𝑟𝑢 +

𝐷(𝑖)

1+𝑖
𝑟𝑖)  (14b) 

Next, we approximate with STFN several classical financial and actuarial structures with 

fuzzy interest rates and payments. To do so, we use the results in Table 2, (4) and (14). 

Notice that the four last expressions contained in the first column of Table 2 can be 

obtained from classical approach to life contingencies valuation, which Wolthuis and van 

Hoek (1986, p. 218) name as classical deterministic model for life contingencies. So, in 

these expressions each possible outcome of the insured contingency and its probability is 

replaced for its expected value. This is the approach used in Lemaire (1990), Ostaszewski 

(1993) and Betzuen et al. (1997). In this way, evaluating life insurances and annuity 

contracts is reduced to evaluating (10) with fuzzy parameters as we have just shown 

above. The results are not STFNs, though. 

 For a fuzzy unitary payment 𝑢̃ = (1, 𝑟𝑢), where 𝑟𝑢 ≤ 1 ,  and for an interest rate 

𝑖̃ = (𝑖, 𝑟𝑖) the discount factor,  is: 

𝑣̃𝑡 = 𝑢̃(1 + 𝑖̃)−𝑡 

and by using the STFN approximation 𝑣̃𝑡(𝑣𝑡 , 𝑟𝑣𝑡) 

𝑣𝑡 = (1 + 𝑖)−𝑡 

𝑟𝑣𝑡 = 𝑣
𝑡 (𝑟𝑢 +

𝑡

1 + 𝑖
𝑟𝑖) 

 In the case of a deferred 𝑚 years 𝑛-term annuity-due the fuzzy present value 𝑎̃̈𝑚| 𝑛|
 

is: 

𝑎̃̈𝑚| 𝑛|
= 𝑢̃ ∑ (1 + 𝑖̃)

−𝑡
𝑚+𝑛−1

𝑡=𝑚

 

and it can be approximated by 𝑎̃̈𝑚| 𝑛|
≈ ( 𝑎̈𝑚| 𝑛|, 𝑟 𝑎̈𝑚| 𝑛|

), where, by using (14): 

𝑎̈𝑚| 𝑛| =
1 − 𝑣𝑛

𝑖
𝑣𝑚−1 

𝑟
𝑎̈𝑚| 𝑛|

= 𝑎̈𝑚| 𝑛|
(𝑟𝑢 + 

𝐷 ( 𝑎̈𝑚| 𝑛|
)

1 + 𝑖
𝑟𝑖) 
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 The fuzzy mathematical expectation of the present value of an 𝑛-year pure 

endowment for a person aged 𝑥 is:  

𝐴̃ 1
𝑥:𝑛̅|

= 𝑣̃𝑛 𝑝𝑛 𝑥 

and 𝐴̃ 1
𝑥:𝑛̅|

≈ (𝐴 1
𝑥:𝑛̅|

, 𝑟𝐴 1
𝑥:𝑛̅|

), being: 

𝐴 1
𝑥:𝑛̅|

= 𝑣𝑛 𝑝𝑛 𝑥     (15a) 

𝑟𝐴 1
𝑥:𝑛̅|

= 𝐴 1
𝑥:𝑛̅|

(𝑟𝑢 + 
𝑛

1+𝑖
𝑟𝑖)   (15b) 

 In the case of an 𝑛-year life insurance deferred 𝑚 years for a person aged 𝑥 and 

fuzzy unitary payments, the fuzzy mathematical expectation value is: 

𝐴̃1
𝑥:𝑛̅|

𝑚| = 𝑢̃ ∑ 𝑣̃𝑡
𝑚+𝑛

𝑡=𝑚+1

𝑞𝑡−1| 𝑥 

So, 𝐴̃1
𝑥:𝑛̅|

𝑚| ≈ ( 𝐴1
𝑥:𝑛̅|

𝑚| , 𝑟
𝐴1
𝑥:𝑛̅|

𝑚|
), where: 

𝐴1
𝑥:𝑛̅|

𝑚| = ∑ 𝑣𝑡 𝑞𝑡−1| 𝑥
𝑚+𝑛
𝑡=𝑚+1     (16a) 

𝑟
𝐴1
𝑥:𝑛̅|

𝑚|
= 𝐴1

𝑥:𝑛̅|
𝑚| (𝑟𝑢 +

𝐷( 𝐴1
𝑥:𝑛̅|

𝑚| )

1+𝑖
𝑟𝑖)    (16b) 

 In the case of an 𝑛-year endowment insurance deferred 𝑚 years for a person aged 

𝑥, we have 𝐴𝑚| 𝑥:𝑛| = 𝐴 1
𝑥:𝑚+𝑛̅̅ ̅̅ ̅̅ ̅|

+ 𝐴1
𝑥:𝑛̅|

𝑚| . So we have only to sum two SFTNs to obtain the 

approximation of 𝐴̃𝑚| 𝑥:𝑛| ≈ ( 𝐴𝑚| 𝑥:𝑛|, 𝑟 𝐴𝑚| 𝑥:𝑛|
), with: 

𝐴𝑚| 𝑥:𝑛| = 𝐴 1
𝑥:𝑚+𝑛̅̅ ̅̅ ̅̅ ̅|

+ 𝐴1
𝑥:𝑛̅|

𝑚|     (17a) 

𝑟
𝐴𝑚| 𝑥:𝑛|

= 𝐴 1
𝑥:𝑚+𝑛̅̅ ̅̅ ̅̅ ̅|

(𝑟𝑢 + 
𝑚 + 𝑛

1 + 𝑖
𝑟𝑖) + 𝐴1

𝑥:𝑛̅|
𝑚|

(

 
 
𝑟𝑢 +

𝐷( 𝐴1
𝑥:𝑛̅|

𝑚| )

1 + 𝑖
𝑟𝑖

)

 
 
= 

= 𝐴𝑚| 𝑥:𝑛| (𝑟𝑢 +
𝐷( 𝐴𝑚| 𝑥:𝑛|)

1+𝑖
𝑟𝑖)   (17b) 

 Finally, regarding a deferred 𝑚 years 𝑛-term life annuity-due for a person aged 𝑥, 

the fuzzy mathematical expectation value is: 
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𝑎̃̈𝑥:𝑛|𝑚| = ∑ 𝑣̃𝑡 𝑝𝑡 𝑥

𝑚+𝑛−1

𝑡=𝑚

 

And so, 𝑎̃̈𝑥:𝑛|𝑚| ≈ ( 𝑎̈𝑥:𝑛|𝑚| , 𝑟
𝑎̈𝑥:𝑛|𝑚|

) where: 

𝑎̈𝑥:𝑛|𝑚| = ∑ 𝑣𝑡𝑚+𝑛−1
𝑡=𝑚 𝑝𝑡 𝑥   (18a) 

𝑟
𝑎̈𝑥:𝑛|𝑚|

= 𝑎̈𝑥:𝑛|𝑚| (𝑟𝑢 +
𝐷( 𝑎̈𝑥:𝑛|𝑚| )

1+𝑖
𝑟𝑖)   (18b) 

Whereas Table 3a shows the approximated fuzzy mathematical expectation for several 

types of life contingencies, Table 3b shows its defuzzified value with the concept of 

expected value of a FN contained in (2). 

 

Table 3a. Approximated fuzzy mathematical expectation of the present value of several life 
contingencies 

 
𝐹 · 𝐴̃1

𝑥:𝑛̅|
𝑚|  𝐹 · 𝐴̃𝑚| 𝑥:𝑛| 𝐹 · 𝑎̃̈𝑥:𝑛|𝑚|  

𝑥 
𝐹 · 𝐴1

𝑥:𝑛̅|
𝑚|  𝐹 · 𝑟

𝐴1
𝑥:𝑛̅|

𝑚|
 𝐷 ( 𝐴1

𝑥:𝑛̅|
𝑚| ) 𝐹 · 𝐴𝑚| 𝑥:𝑛| 𝐹 · 𝑟

𝐴𝑚| 𝑥:𝑛|
 𝐷( 𝐴𝑚| 𝑥:𝑛|) 𝐹 · 𝑎̈𝑥:𝑛|𝑚|  𝐹 · 𝑟

𝑎̈𝑥:𝑛|𝑚|
 𝐷( 𝑎̈𝑥:𝑛|𝑚| ) 

25 326.01 94.09 54.79 820.61 56.57 9.98 34374.28 4646.69 24.47 

35 394.87 95.57 45.29 820.88 56.52 9.97 30863.17 3710.70 21.41 

45 476.24 93.68 36.05 821.94 56.31 9.90 26713.92 2789.71 18.19 

55 567.82 87.90 27.50 824.22 55.87 9.75 22042.86 1939.60 14.83 

65 668.34 77.70 19.64 828.74 55.00 9.46 16917.07 1203.92 11.38 

75 775.85 62.71 12.41 843.43 52.16 8.54 11433.78 624.45 7.97 

85 872.96 46.06 6.68 884.77 44.08 6.08 6482.19 259.88 4.94 

95 933.82 34.18 3.39 934.47 34.13 3.37 3367.70 100.54 2.71 

 
Notes: * 𝑖̃ = (0.02, 0.005), 𝑢̃ = (1, 0.02) and F=1000 m.u. The life contingency probabilities are taken from 

the mortality tables of the Spanish population for both males and females in the year 2010 included 

in the Human Mortality Database (http://www.mortality.org), and obtained as explained in Wilmoth 

et al. (2007). 

** In all cases, life contingencies are not deferred, i.e. 𝑚 = 0  and both life insurance and annuities are 

whole life, i.e. 𝑛 =  − 𝑥 + 1 . On the other hand, for the endowment insurance we have 

considered 𝑛 = 10. 

Table 3b. Expected value for the fuzzy mathematical expectation of the present value of 
life contingencies in Table 3a 

 
𝐸𝑉 (1000 · 𝐴̃1

𝑥:𝑛̅|
𝑚| ; 𝜆) 𝐸𝑉(1000 · 𝐴̃𝑚| 𝑥:𝑛|; 𝜆) 𝐸𝑉(1000 · 𝑎̃̈𝑥:𝑛|𝑚| ; 𝜆) 

𝑥   0 0.5 1 0 0.5 1 0 0.5 1 

25 278.97 326.01 373.06 792.33 820.61 848.90 32050.94 34374.28 36697.63 

35 347.09 394.87 442.66 792.62 820.88 849.14 29007.82 30863.17 32718.52 

45 429.40 476.24 523.08 793.79 821.94 850.10 25319.07 26713.92 28108.78 

55 523.87 567.82 611.77 796.29 824.22 852.16 21073.06 22042.86 23012.66 

65 629.49 668.34 707.19 801.24 828.74 856.24 16315.11 16917.07 17519.03 

http://www.mortality.org/
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75 744.50 775.85 807.21 817.35 843.43 869.51 11121.56 11433.78 11746.01 

85 849.93 872.96 895.99 862.73 884.77 906.81 6352.25 6482.19 6612.13 

95 916.73 933.82 950.91 917.41 934.47 951.54 3317.43 3367.70 3417.97 

 

 

4. PRICING LIFE CONTINGENCIES WITH FUZZY RANDOM VARIABLES 

In the previous section we calculated the present value of several life contingency 

structures by “fuzzifying” the classical deterministic model of life contingencies. This 

approach has the disadvantage that all the information providing a complete statistical 

description of the present values of life contingent liabilities is lost. To avoid this, we 

propose adapting the stochastic approach to life insurance and annuities to the case of 

fuzzy unitary cash flows and fuzzy discount interest rate by using the concept of FRV. Our 

developments here are based on Andrés-Sánchez and González-Vila (2012, 2014). In these 

papers, the authors present a general formulation for the fair value and risk of individual 

contracts by means of FRVs. However, they do not assume any shape for fuzzy interest 

rates a priori and, consequently no closed expressions for these magnitudes are 

developed. Likewise, crisp unitary amounts are considered. 

In the case that the interest rate and the unitary cash flows are STFN, any kind of life 

contingency policy produces for the insurer a FRV present value of life contingencies, 𝒁̃, 

whose realizations can be approximated by STFNs. Following the developments in the 

previous sections, we can write  𝒁̃(𝒁, 𝒓𝒁). Furthermore, we denote the 𝑗th outcome of 𝒁̃ 

as 𝑃𝑉̃𝑗(𝑖) = (𝑃𝑉𝑗(𝑖), 𝑟𝑃𝑉𝑗(𝑖)), where 𝑃𝑉𝑗(𝑖) denotes the present value of 1 m.u. or a unitary 

annuity whereas 𝑟𝑃𝑉𝑗(𝑖) is, from (14): 

𝑟𝑃𝑉𝑗(𝑖) = 𝑃𝑉𝑗(𝑖) (𝑟𝑢 +
𝐷𝑗(𝑖)

1 + 𝑖
𝑟𝑖) 

Thus, we can find the mathematical expectation of the FRV present value of life 

contingencies as: 

𝐸(𝒁̃) = (𝐸(𝒁), 𝐸(𝒓𝒁)) 

where: 

𝐸(𝒁) =∑𝑃𝑉𝑗(𝑖)𝑝𝑗
𝑗

 

𝐸(𝒓𝒁) = ∑ 𝑟𝑃𝑉𝑗(𝑖)𝑗 𝑝𝑗 = ∑ 𝑃𝑉𝑗(𝑖) (𝑟𝑢 +
𝐷𝑗(𝑖)

1+𝑖
𝑟𝑖)𝑗 𝑝𝑗   (19) 

and 𝑝𝑗  is the probability of the 𝑗th outcome. 

For the variance of 𝒁̃, taking into account (9), we can obtain: 

V(𝒁̃) = 𝑉(𝒁) +
1

3
𝑉(𝒓𝒁) 
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being: 

𝑉(𝒁) = 𝐸(𝒁2) − (𝐸(𝒁))
2
=∑(𝑃𝑉𝑗(𝑖))

2
𝑝𝑗 −

𝑗

(∑𝑃𝑉𝑗(𝑖)𝑝𝑗
𝑗

)

2

 

(20a) 

and: 

𝑉(𝒓𝒁) = 𝐸((𝒓𝒁)
2) − (𝐸(𝒓𝒁))

2
= 

=∑[𝑃𝑉𝑗(𝑖) (𝑟𝑢 +
𝐷𝑗(𝑖)

1 + 𝑖
𝑟𝑖)]

2

𝑗

𝑝𝑗 − (∑𝑃𝑉𝑗(𝑖) (𝑟𝑢 +
𝐷𝑗(𝑖)

1 + 𝑖
𝑟𝑖)

𝑗

𝑝𝑗)

2

 

(20b) 

Notice that using a STFN approximation to outcomes simplifies the treatment of the FRV 

“present value of life contingencies” initially proposed in Andrés-Sánchez and González-

Vila (2012, 2014). Indeed, under their approach, to obtain numerical results, it is 

necessary to discretize the membership level  (in the abovementioned papers the 

exampes are developed for 𝛼 = 1, 0.75, 0.5, 0.25, 0) to obtain for each insured event a 

lower and upper present value by using (3) and (10). In such a way, 𝒁̃ will finally be 

characterized, for each of the predefined values of 𝛼, by an infima and suprema 

conventional RV. So, under the hypothesis about fuzzy amounts and interest rates 

assumed in our paper, and this discretization of , 𝒁̃ will be characterized by 10 RV3. 

However, with our introduced STFN approach the number of RV that have to be used to 

determine 𝒁̃ is reduced to only two: a mode and a spread. 

 

In a life insurance contract, the randomness derives from the maturity of the payment of 

the insured amounts. So, we will symbolize as 𝑻 the discrete RV “payment maturity”. If 

there is no insured money for some death ages, then the outcome of 𝑻 is ∞ years. So, in 

any contract of this kind, the FRV 𝒁̃ can be expressed as: 

𝒁̃ = 𝑣̃𝑻 (21a) 

In terms of a STFN approximation (21a) can be written as: 

𝒁̃(𝒁, 𝒓𝒁) = (𝑣
𝑻, 𝑣𝑻 (𝑟𝑢 + 

𝑻

1+𝑖
𝑟𝑖)) (21b) 

Similarly, in a life annuity the randomness derives from the number of terms to be paid by 

the insurer. We symbolize as 𝑵 the discrete RV “number of terms” for a life annuity-due. In 

this case we can express 𝒁̃ as: 

𝒁̃ = ∑ 𝑣̃𝑗−1𝑵
𝑗=1  (22a) 

                                                            
3 In the case of more discrete values of the membership grade 𝛼, the number of RV would be greater. In 
general, if the membership level 𝛼 is discretized by 𝑛 values, 𝒁̃ will be characterized with 2𝑛 RV. 
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That under the STFN approximation of this paper can be written as: 

𝒁̃(𝒁, 𝒓𝒁) = ( 𝑎̈𝑚| 𝑵̅|
, 𝑎̈𝑚| 𝑵̅|

(𝑟𝑢 + 
𝐷( 𝑎̈𝑚| 𝑵̅|

)

1+𝑖
𝑟𝑖)) (22b) 

From this general setting, below we study some actuarial structures by applying the 

stochastic approach to life insurance and annuities to the case of fuzzy unitary cash flows 

and fuzzy discount interest rate. 

 

 Let us consider an 𝑛-year pure endowment for a person aged 𝑥. In this case, it is 

supposed that the liability is 𝑢̃ m.u. if the insured survives 𝑛 years and no payment 

otherwise. From the mortality tables we can deduce the RV “payment maturity” 

𝑻 = {𝑛, } with probabilities4 { 𝑝𝑛 𝑥 , 𝑞𝑛 𝑥}. A fuzzy random approach to this kind of 

insurance for any shape of fuzzy interest rates can be found in Andrés-Sánchez and 

González-Vila (2014). In our particular case, where the outcomes are approximated with 

STFNs, the FRV present value of the pure endowment, which we symbolize as 𝑨̃ 1
𝑥:𝑛̅|

, can be 

represented as the pair  𝑨̃ 1
𝑥:𝑛̅|

(𝑨 1
𝑥:𝑛̅|

, 𝒓𝑨 1
𝑥:𝑛̅|

) where, from (21b): 

(𝑨 1
𝑥:𝑛̅|

, 𝒓𝑨 1
𝑥:𝑛̅|

) = {
0 with probability  𝑞𝑛 𝑥

(𝑣𝑛, 𝑣𝑛  (𝑟𝑢 +
𝑛

1+𝑖
𝑟𝑖)) with probability 𝑝𝑛 𝑥

 (23) 

So, 𝐸 (𝑨̃ 1
𝑥:𝑛̅|

) = (𝐸 (𝑨 1
𝑥:𝑛̅|

) , 𝐸 (𝒓𝑨 1
𝑥:𝑛̅|

)) = 𝐴̃ 1
𝑥:𝑛̅|

≈ (𝐴 1
𝑥:𝑛̅|

, 𝑟𝐴 1
𝑥:𝑛̅|

), i.e. (15a) and (15b). 

Now, let us obtain the variance 𝑉 (𝑨̃ 1
𝑥:𝑛̅|

). Following (9) and (20) it can be obtained as: 

𝑉 (𝑨̃ 1
𝑥:𝑛̅|

) = 𝑉 (𝑨 1
𝑥:𝑛̅|

) +
1

3
𝑉 (𝒓𝑨 1

𝑥:𝑛̅|

) 

It is easy to show that: 

𝑉 (𝑨 1
𝑥:𝑛̅|

) = (𝑣𝑛)2 𝑝𝑛 𝑥 − (𝐴 1
𝑥:𝑛̅|

)

2

=𝑣2𝑛 𝑝𝑛 𝑥 𝑞𝑛 𝑥 

𝑉 (𝒓𝑨 1
𝑥:𝑛̅|

) = (𝑟𝑢 + 
𝑛

1 + 𝑖
𝑟𝑖)

2

𝑣2𝑛 𝑝𝑛 𝑥 − (𝑟𝐴 1
𝑥:𝑛̅|

)

2

= (𝑟𝑢 + 
𝑛

1 + 𝑖
𝑟𝑖)

2

𝑣2𝑛 𝑝𝑛 𝑥 𝑞𝑛 𝑥 

and so: 

                                                            
4 In this kind of insurances, the insured person does not receive any amount if he dies within the 
first n years of the contract. It is equivalent to consider the maturity t , since in this case the 
present value of any amount is also 0. 
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𝑉 (𝑨̃ 1
𝑥:𝑛̅|

) = [1 +
1

3
(𝑟𝑢 + 

𝑛

1 + 𝑖
𝑟𝑖)

2

] 𝑣2𝑛 𝑝𝑛 𝑥 𝑞𝑛 𝑥 

 Now, let us take an  𝑛-year life insurance, deferred 𝑚 years, for a person aged 𝑥. Of 

course, if it were a whole life insurance policy, 𝑛 would be  − 𝑥 + 1. The insured party 

aged 𝑥 will receive the STFN 𝑢̃ m.u. at the end of the year of his death, if he dies between 

the ages 𝑥 +𝑚 and 𝑥 + 𝑚 + 𝑛 and otherwise he does not receive anything. So, the RV 

“maturity of the benefits”, 𝑻 , has as its outcomes {𝑚 + 1,𝑚 + 2,… ,𝑚 + 𝑛,∞}  with 

probabilities { 𝑞𝑚| 𝑥 , 𝑞𝑚+1| 𝑥 , … , 𝑞𝑚+𝑛−1| 𝑥 , 𝑝𝑚+𝑛 𝑥 + 𝑞𝑚 𝑥}. The FRV present value of the life 

insurance, 𝑨̃𝟏
𝒙:𝒏̅|

𝒎| , developed for a more general shape of discount rates in Andrés-

Sánchez and González-Vila (2014), can be represented with our STFN approximation as 

𝑨̃𝟏
𝒙:𝒏̅|

𝒎| ( 𝑨𝟏
𝒙:𝒏̅|

𝒎| , 𝒓
𝑨𝟏
𝒙:𝒏̅|

𝒎|
)  where, from (21b): 

( 𝑨𝟏
𝒙:𝒏̅|

𝒎| , 𝒓
𝑨𝟏
𝒙:𝒏̅|

𝒎|
) =

= {

0 with probability 𝑝𝑚+𝑛 𝑥 + 𝑞𝑚 𝑥

(𝑣𝑡 , 𝑣𝑡  (𝑟𝑢 +
𝑡

1 + 𝑖
𝑟𝑖)) with probability 𝑞𝑡−1| 𝑥 , 𝑡 = 𝑚 + 1,𝑚 + 2,… ,𝑚 + 𝑛 

 

(24) 

So, 𝐸 ( 𝑨̃𝟏
𝒙:𝒏̅|

𝒎| ) = (𝐸 ( 𝑨𝟏
𝒙:𝒏̅|

𝒎| ) , 𝐸 (𝒓
𝑨𝟏
𝒙:𝒏̅|

𝒎|
)) = 𝐴̃1

𝑥:𝑛̅|
𝑚| ≈ ( 𝐴1

𝑥:𝑛̅|
𝑚| , 𝑟

𝐴1
𝑥:𝑛̅|

𝑚|
) i.e. (16a) and 

(16b). 

Considering (9), it turns out that: 

𝑉 ( 𝑨̃𝟏
𝒙:𝒏̅|

𝒎| ) = 𝑉 ( 𝑨𝟏
𝒙:𝒏̅|

𝒎| ) +
1

3
𝑉 (𝒓

𝑨𝟏
𝒙:𝒏̅|

𝒎|
) 

and from the definition of 𝑨̃𝟏
𝒙:𝒏̅|

𝒎| , (20) and Table 2 we find: 

𝑉 ( 𝑨𝟏
𝒙:𝒏̅|

𝒎| ) = ∑ 𝑣2𝑡 𝑞𝑡−1| 𝑥

𝑚+𝑛

𝑡=𝑚+1

− ( 𝐴1
𝑥:𝑛̅|

𝑚| )

2

 

𝑉 (𝒓
𝑨𝟏
𝒙:𝒏̅|

𝒎|
) = ∑ 𝑣2𝑡 (𝑟𝑢 +

𝑡

1 + 𝑖
𝑟𝑖)

2
𝑚+𝑛

𝑡=𝑚+1

𝑞𝑡−1| 𝑥 − (𝑟 𝐴1
𝑥:𝑛̅|

𝑚|
)

2

 

 For an 𝑛 -year endowment insurance, deferred 𝑚 years, linked to a person aged 𝑥 

years, the outcomes of the RV “maturity of the benefits”, 𝑻 , are {∞,𝑚 + 1,𝑚 + 2,… ,𝑚 +

𝑛 − 1,𝑚 + 𝑛} with probabilities { 𝑞𝑚 𝑥 , 𝑞𝑚| 𝑥 , 𝑞𝑚+1| 𝑥 , … , 𝑞𝑚+𝑛−1| 𝑥 , 𝑝𝑚+𝑛 𝑥}. As all the benefits 

are considered as STFN, the fuzzy RV present value of liabilities, 𝑨̃𝒎| 𝒙:𝒏|, that was exposed 
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for any kind of fuzzy interest rate in Andrés-Sánchez and González Vila (2014), can be 

approximated, following our STFN, by ( 𝑨𝒎| 𝒙:𝒏|, 𝒓 𝑨𝒎| 𝒙:𝒏|
) where, bearing in mind (21b): 

( 𝑨𝒎| 𝒙:𝒏|, 𝒓 𝑨𝒎| 𝒙:𝒏|
) =

=

{
 
 

 
 

0 with probability 𝑞𝑚 𝑥

(𝑣𝑡 , 𝑣𝑡 (𝑟𝑢 +
𝑡

1 + 𝑖
𝑟𝑖)) with probability 𝑞𝑡−1| 𝑥 , 𝑡 = 𝑚 + 1,𝑚 + 2,… ,𝑚 + 𝑛

(𝑣𝑚+𝑛, 𝑣𝑚+𝑛 (𝑟𝑢 +
𝑚 + 𝑛

1 + 𝑖
𝑟𝑖)) with probability 𝑝𝑚+𝑛 𝑥

 

 (25) 

In this case 𝐸( 𝑨̃𝒎| 𝒙:𝒏|) = (𝐸( 𝑨𝒎| 𝒙:𝒏|), 𝐸 (𝒓 𝑨𝒎| 𝒙:𝒏|
)) = 𝐴̃𝑚| 𝑥:𝑛|  so, considering (17), 

𝐸( 𝑨𝒎| 𝒙:𝒏|) ≈ 𝐴𝑚| 𝑥:𝑛| and 𝐸 (𝒓
𝑨𝒎| 𝒙:𝒏|

) ≈ 𝑟
𝐴𝑚| 𝑥:𝑛|

. 

To obtain the variance 𝑉( 𝑨̃𝒎| 𝒙:𝒏|) = 𝑉( 𝑨𝒎| 𝒙:𝒏|) +
1

3
𝑉 (𝒓

𝑨𝒎| 𝒙:𝒏|
), we have to take into 

account that, from (20): 

𝑉( 𝑨𝒎| 𝒙:𝒏|) = ∑ 𝑣2𝑡 𝑞𝑡−1| 𝑥 +

𝑚+𝑛

𝑡=𝑚+1

𝑣2(𝑚+𝑛) 𝑝𝑚+𝑛 𝑥 − ( 𝐴𝑚| 𝑥:𝑛|)
2

 

𝑉 (𝒓
𝑨𝒎| 𝒙:𝒏|

) =  ∑ 𝑣2𝑡 (𝑟𝑢 +
𝑡

1 + 𝑖
𝑟𝑖)

2

𝑞𝑡−1| 𝑥 +

𝑚+𝑛

𝑡=𝑚+1

𝑣2(𝑚+𝑛) (𝑟𝑢 +
𝑚 + 𝑛

1 + 𝑖
𝑟𝑖)

2

𝑝𝑚+𝑛 𝑥 − (𝑟 𝐴𝑚| 𝑥:𝑛|

)

2

 

 Finally, regarding a deferred 𝑚 years 𝑛 -term life annuity-due for a person aged 𝑥 

the randomness will derive from the number of terms to be paid by the insurer. For this 

reason, the discrete RV “number of terms”, 𝑵, has to be considered. Its outcomes are 

{0,1,2, … , 𝑛 − 1, 𝑛} where their probabilities are { 𝑞𝑚 𝑥 , 𝑞𝑚| 𝑥 , 𝑞𝑚+1| 𝑥 , … , 𝑞𝑚+𝑛−2| 𝑥 , 𝑝𝑚+𝑛−1 𝑥}. 

For any shape of discount rates, a general present value formulation of the annuity can be 

found in de Andrés-Sánchez and González-Vila (2012) but, once again, if we consider that 

the outcomes of the FRV present value of the annuity are approximated by STFNs, this 

present value can be represented as 𝒂̃̈𝒙:𝒏|𝒎|  ( 𝒂̈𝒙:𝒏|𝒎| , 𝒓
𝒂̈𝒙:𝒏|𝒎|

). 

Therefore, following (22b): 

( 𝒂̈𝒙:𝒏|𝒎| , 𝒓
𝒂̈𝒙:𝒏|𝒎|

) =

=

{
 
 
 
 

 
 
 
 

0 with probability  𝑞𝑚 𝑥

( 𝑎̈𝑚| 𝑗̅|
, 𝑎̈𝑚| 𝑗̅|

(𝑟𝑢 + 
𝐷 ( 𝑎̈𝑚| 𝑗̅|

)

1 + 𝑖
𝑟𝑖)) with probability 𝑞𝑚+𝑗−1| 𝑥 , 𝑗 = 1,2, … , 𝑛 − 1

( 𝑎̈𝑚| 𝑛̅|
, 𝑎̈𝑚| 𝑛̅|

(𝑟𝑢 + 
𝐷 ( 𝑎̈𝑚| 𝑛̅|

)

1 + 𝑖
𝑟𝑖)) with probability 𝑝𝑚+𝑛−1 𝑥
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 (26) 

Furthermore, 𝐸( 𝒂̃̈𝒙:𝒏|𝒎| ) = 𝑎̃̈𝑥:𝑛|𝑚|  ( 𝑎̈𝑥:𝑛|𝑚| , 𝑟
𝑎̈𝑥:𝑛|𝑚|

), where 𝑎̈𝑥:𝑛|𝑚|  and 𝑟
𝑎̈𝑥:𝑛|𝑚|

 can be 

obtained with the expressions contained in (18). 

The determination of the variance requires considering the relation: 

𝑉( 𝒂̃̈𝒙:𝒏|𝒎| ) = 𝑉( 𝒂̈𝒙:𝒏|𝒎| ) +
1

3
𝑉 (𝒓

𝒂̈𝒙:𝒏|𝒎|
) 

where: 

𝑉( 𝒂̈𝒙:𝒏|𝒎| ) = ∑ ( 𝑎̈𝑚| 𝑗̅|
)
2

𝑛−1

𝑗=1

𝑞𝑚+𝑗−1| 𝑥 + ( 𝑎̈𝑚| 𝑛̅|
)
2

𝑝𝑚+𝑛−1 𝑥 − ( 𝑎̈𝑚| 𝑛̅|
)
2

 

𝑉 (𝒓
𝒂̈𝒙:𝒏|𝒎|

) =  ∑ ( 𝑎̈𝑚| 𝑗̅|
)
2

𝑛−1

𝑗=1

(𝑟𝑢 + 
𝐷 ( 𝑎̈𝑚| 𝑗̅|

)

1 + 𝑖
𝑟𝑖)

2

𝑞𝑚+𝑗−1| 𝑥 + 

+( 𝑎̈𝑚| 𝑛̅|
)
2
(𝑟𝑢 + 

𝐷 ( 𝑎̈𝑚| 𝑛̅|
)

1 + 𝑖
𝑟𝑖)

2

𝑝𝑚+𝑛−1 𝑥 − (𝑟 𝑎̈𝑥:𝑛|𝑚|
)
2

 

Table 4 shows the standard deviation of the present value of the same life contingencies as 

those presented in Table 3a. 

Table 4. Standard deviation of the present value of life contingencies in Table 3a 
 1000 · 𝑨̃𝟏

𝒙:−𝒙+𝟏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |

 
1000 · 𝑨̃𝒙:𝟏𝟎| 1000 · 𝒂̃̈𝒙:−𝒙+𝟏| 

𝑥 (1) (2) (3) (1) (2) (3) (1) (2) (3) 

25 93.81 5.02 93.85 5.24 1.03 5.28 4782.24 1156.03 4828.59 

35 106.55 6.79 106.62 7.31 1.43 7.36 5432.41 1111.38 5470.17 

45 117.97 10.58 118.13 12.66 2.48 12.74 6016.22 1012.33 6044.55 

55 120.98 14.05 121.25 19.70 3.86 19.83 6170.71 844.53 6189.95 

65 113.97 16.11 114.35 28.31 5.55 28.49 5815.99 632.11 5827.43 

75 98.85 16.48 99.31 43.01 8.45 43.29 5046.75 411.42 5052.34 

85 73.01 13.83 73.44 55.32 11.02 55.69 3738.57 217.17 3740.67 

95 46.29 8.94 46.58 42.40 8.72 42.70 2238.69 93.88 2239.35 

 
Notes: * Life contingencies and technical basis are the same as in Table 3a. So, the mathematical expectation 

for the present value of liabilities is contained in this table. 

** (1) stands for the standard deviation of the RV defined by the centers, (2) for the standard deviation 

of the RVs whose outcomes are the spreads and (3) is the standard deviation of the FRV present 

value. 

 

5. PRICING PORTFOLIOS OF FUZZY UNITARY LIFE CONTINGENCIES 

Given that the mathematical expectation and the variance of FRVs have similar properties 

to analogous indicators for conventional RVs, computing the mathematical expectation 
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and the variance for the whole portfolio, under the hypothesis of independence of 

mortality between policies, is straightforward. This hypothesis implies, following Wolthuis 

and van Hoek (1986, p.233), that the policies are considered stochastically independent; 

for instance, the portfolio does not contain more than one policy on a single life. 

If we symbolize the present value of the 𝑗th liability of the portfolio as 𝒁̃𝒋 = (𝒁𝒋, 𝒓𝒁𝒋), the 

present value of a portfolio made up of 𝐽 contracts is a FRV 𝑳̃ where: 

𝑳̃ = ∑  𝒁̃𝒋

𝐽

𝑗=1

 

And so, 𝑳̃ = (𝑳, 𝒓𝑳) with: 

(𝑳, 𝒓𝑳) = (∑𝒁𝒋

𝐽

𝑗=1

,∑𝒓𝒁𝒋

𝐽

𝑗=1

) 

The rules for the expectation of RVs are identical to those for FRV. So, for 𝐸(𝑳̃) =

(𝐸(𝑳), 𝐸(𝒓𝑳))  we immediately derive: 

𝐸(𝑳) =∑𝐸(𝒁𝒋)

𝐽

𝑗=1

 

𝐸(𝒓𝑳) =∑𝐸 (𝒓𝒁𝒋)

𝐽

𝑗=1

 

Likewise, given that we are dealing with independent RVs, to obtain 𝑉(𝑳̃) we have to 

compute: 

𝑉(𝑳) =∑𝑉(𝒁𝒋)

𝐽

𝑗=1

 

𝑉(𝒓𝑳) =∑𝑉 (𝒓𝒁𝒋)

𝐽

𝑗=1

 

And so, 𝑉(𝑳̃) = 𝑉(𝑳) +
1

3
𝑉(𝒓𝑳). 

On the other hand, under our hypothesis that the cost of claims and discount rates are 

STFN, we can extend the results in Andrés-Sánchez and González-Vila (2012, 2014) to 

compute the quantiles of the present value of liabilities which are commonly used to 

measure the risk of the life contingencies insurance portfolio (see, for example, Alegre and 

Claramunt (1995)). 

If the group of policies can be divided into large homogeneous sets of liabilities, a suitable 

way to approach 𝒁̃ is by using a fuzzy normal RV with a fuzzy mean 𝐸(𝒁̃) =
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(𝐸(𝒁), 𝐸(𝒓𝒁)) and a crisp standard deviation 𝑆𝐷(𝒁̃). Fuzzy normal RVs have been used in 

the financial context for portfolio selection (Inuiguchi and Ramik (2000)) and to obtain 

value-at-risk in a fuzzy environment (Zmeskal (2005)). In an actuarial context, Shapiro 

(2009) suggests their use in practical applications. 

When the set of liabilities cannot be divided into broad groups of homogeneous policies, 

Andrés-Sánchez and González-Vila (2012, 2014) propose using statistical simulation to 

obtain empirically the FRV “present value of the portfolio’s life contingencies”. In these 

papers, the authors adapt the schema proposed in Pitacco (1986) to the fact that the 

outcomes are FNs. The steps that have to be taken to obtain the percentiles of the present 

value are presented below. 

Step 1 Simulate 𝑆 times for each of the 𝐽 policies the RV “payment maturity” (𝑻) in 

insurance contracts and “number of terms” (N) in annuity policies. 

Step 2. By applying (23), (24), (25) or (26) to the 𝑠th simulation of the 𝑗th life contingency 

contract, we obtain a STFN that quantifies the fuzzy present value of this policy in the 𝑠th 

simulation. Notice that the use of the STFN approximation reduces notably the calculations 

that have to be implemented to obtain simulated fuzzy present values respect to Andrés-

Sánchez and González-Vila (2012, 2014). In fact, in our paper, the quantification of the 

present value that derives from the 𝑠th simulation for the 𝑗th policy only requires the 

calculation of one crisp present value (that is the mode of the fuzzy present value) and a 

variability margin (the spread of this FN) closely linked to the Macaulay duration of this 

present value. On the other hand, in those papers, given that the present value calculations 

are based on the 𝛼-cuts of discount rates, if 𝑛 values of 𝛼 were considered, the fuzzy 

present value of the 𝑠th simulation for the 𝑗th policy would require calculating 2𝑛 values. 

So, the reduction in the computations is obvious.  

Step 3. The 𝑠th simulation of the whole portfolio of life contingencies is obtained as a STFN 

by summing the present value of the 𝐽 policies for that 𝑠th simulation. So, we have an 

approximation to the FRV present value of the portfolio, 𝑳̃, where each outcome has the 

same probability 1/𝑆. 

Step 4. From the 𝛼-cut representation of the approximation to 𝑳̃ we can obtain the bounds 

of their percentiles by using (6a) and (6b). 

Tables 5a and 5b describe a small set of non-deferred whole life insurances and show the 

99th and 95th percentiles of the present value of liabilities for segregated and aggregate 

subsets of contracts. Likewise, in Tables 6a and 6b we develop an analogous numerical 

application for a set of life annuities. Our examples have been performed with Microsoft 

Excel 2000® and we have done S=5000 simulations for the value of life contingencies 

portfolios. Likewise, to measure the simplification of our STFN approach, we have also 

developed the same examples with the method proposed in Andrés-Sánchez and 

González-Vila (2012, 2014) taking 𝛼 = 1, 0.75, 0.5, 0.25 and 0. Regarding the run time, we 

have found that it corresponds, essentially, to the simulation of T or N (step 1). So, we have 

not found any relevant difference between the two calculation methods of the present 

value of liabilities (steps 2 and 3). However, this does not follow in the weight of the files 

that contain the calculations. The weight of the Excel files made with our STFN approach is 
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less than half of those made with the developments in Andrés-Sánchez and González-Vila 

(2012, 2014). 

Table 5a. Portfolio of whole life insurances 1000·𝑨̃𝟏
𝒙:−𝒙+𝟏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |

 with several ages and contracts 

 

 

𝑳̃ 

Age Number of 
contracts 𝐸(𝑳) 𝐸(𝒓𝑳) 𝑆𝐷(𝑳̃) 

55 5 2839.09 439.52 271.12 

65 10 6683.37 776.95 361.61 

75 5 3879.23 313.53 222.06 

Whole portfolio 20 13401.70 1530.00 503.57 

 
Note:  * Whole life insurances and technical basis are the same as those considered in Tables 3a and 4. 

Table 5b. 99th and 95th percentiles of portfolio and sub-portfolios of whole life insurances 
in Table 5a 

 

Contract: 1000 · 𝑨̃ 𝟏
𝟓𝟓:−𝟓𝟓+𝟏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |

 

Number of contracts: 5 

Contract: 1000 · 𝑨̃ 𝟏
𝟔𝟓:−𝟔𝟓+𝟏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |

 

Number of contracts: 10 

𝛼 
𝑄0.99(𝑳̃)

𝛼
 𝑄0.99(𝑳̃)

𝛼
 𝑄

0.95(𝑳̃)
𝛼

 𝑄0.95(𝑳̃)
𝛼

 𝑄
0.99(𝑳̃)

𝛼
 𝑄0.99(𝑳̃)

𝛼
 𝑄

0.95(𝑳̃)
𝛼

 𝑄0.95(𝑳̃)
𝛼

 

1 3577.59 3577.59 3323.50 3323.50 7637.49 7637.49 7347.51 7347.51 

0.75 3492.02 3662.01 3229.71 3417.30 7476.46 7798.52 7175.04 7519.98 

0.5 3406.46 3745.89 3134.78 3511.10 7315.47 7959.54 7002.58 7692.58 

0.25 3320.89 3829.76 3037.86 3604.79 7154.49 8120.57 6830.11 7865.34 

0 3237.87 3913.64 2940.93 3698.41 6993.52 8281.59 6655.65 8038.11 

   

 

Contract: 1000 · 𝑨̃ 𝟏
𝟕𝟓:−𝟕𝟓+𝟏̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |

 

Number of contracts: 5 
Whole portfolio 

𝛼 
𝑄0.99(𝑳̃)

𝛼
 𝑄0.99(𝑳̃)

𝛼
 𝑄

0.95(𝑳̃)
𝛼

 𝑄0.95(𝑳̃)
𝛼

 𝑄
0.99(𝑳̃)

𝛼
 𝑄0.99(𝑳̃)

𝛼
 𝑄

0.95(𝑳̃)
𝛼

 𝑄0.95(𝑳̃)
𝛼

 

1 4379.39 4379.39 4227.66 4227.66 14911.43 14911.43 14477.85 14477.85 

0.75 4323.04 4436.62 4165.48 4292.05 14580.40 15242.46 14131.10 14824.65 

0.5 4266.54 4493.85 4103.80 4356.44 14249.40 15573.49 13784.57 15173.82 

0.25 4209.45 4551.09 4041.73 4420.77 13918.41 15904.52 13432.80 15525.92 

0 4153.06 4608.32 3978.06 4482.84 13590.51 16235.54 13082.85 15877.63 

 
Note:  * Whole life insurances and technical basis are the same as those considered in Tables 3a and 4. 

 

Table 6a. Portfolio of whole life annuities 1000 · 𝒂̃̈𝒙:−𝒙+𝟏| with several ages and contracts 

 

 

𝑳̃ 

Age Number of 
contracts 𝐸(𝑳) 𝐸(𝒓𝑳) 𝑆𝐷(𝑳̃) 

55 5 110214.28 9698.01 13841.14 

65 10 169170.68 12039.18 18427.94 

75 5 57168.89 3122.25 11297.37 

Whole portfolio 20 57168.89 3122.25 25667.04 
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Note:  * Whole life annuities and technical basis are the same as those considered in Tables 3a and 4. 

Table 6b. 99th and 95th percentiles of portfolio and sub-portfolios of whole life annuities in 
Table 6a 

 

Contract: 1000 · 𝒂̃̈𝟓𝟓:−𝟓𝟓+𝟏| 

Number of contracts: 5 

Contract: 1000 · 𝒂̃̈𝟔𝟓:−𝟔𝟓+𝟏| 

Number of contracts: 10 

𝛼 
𝑄0.99(𝑳̃)

𝛼
 𝑄0.99(𝑳̃)

𝛼
 𝑄0.95(𝑳̃)

𝛼
 𝑄0.95(𝑳̃)

𝛼
 𝑄0.99(𝑳̃)

𝛼
 𝑄0.99(𝑳̃)

𝛼
 𝑄0.95(𝑳̃)

𝛼
 𝑄0.95(𝑳̃)

𝛼
 

1 136297.47 136297.47 130500.05 130500.05 213630.32 213630.32 199509.08 199509.08 

0.75 132853.68 139741.26 127345.77 133665.07 209360.34 217900.30 195620.09 203300.79 

0.5 129409.88 143185.06 124191.48 136881.81 205090.36 222170.28 191769.42 207092.50 

0.25 125966.09 146628.85 121037.20 140098.56 200820.38 226440.26 187962.84 210884.20 

0 122522.30 150072.64 117882.91 143311.54 196550.40 230710.24 184156.64 214675.91 

   

 

Contract: 1000 · 𝒂̃̈𝟕𝟓:−𝟕𝟓+𝟏| 

Number of contracts: 5 
Whole portfolio 

𝛼 
𝑄0.99(𝑳̃)

𝛼
 𝑄0.99(𝑳̃)

𝛼
 𝑄0.95(𝑳̃)

𝛼
 𝑄0.95(𝑳̃)

𝛼
 𝑄0.99(𝑳̃)

𝛼
 𝑄0.99(𝑳̃)

𝛼
 𝑄0.95(𝑳̃)

𝛼
 𝑄0.95(𝑳̃)

𝛼
 

1 82582.50 82582.50 75146.83 75146.83 332116.81 332116.81 316496.67 316496.67 

0.75 81276.75 83888.26 74014.93 76278.78 325290.95 338942.66 310049.54 322946.50 

0.5 79970.99 85194.01 72884.71 77410.72 318465.10 345768.52 303651.51 329399.04 

0.25 78665.57 86499.77 71754.97 78544.03 311639.24 352594.37 297136.33 335848.24 

0 77360.20 87805.53 70625.22 79678.22 304716.27 359420.23 290618.21 342250.14 

 
Note:  * Whole life annuities and technical basis are the same as those considered in Tables 3a and 4. 

 

 

6. CONCLUSIONS 

In this paper we have extended the results reported in Andrés-Sánchez and González-Vila 

(2012, 2014), which model life contingency pricing with fuzzy random variables (FRVs), in 

two ways. First, we allow not only the discount rate(s), but also the amounts to be paid out 

by the insurance companies, to be fuzzy. Thus, our schema can be used when part of the 

cost of an insurance policy is not known with precision (e.g. when insured amounts are 

indexed or when future expenses such as settlement costs need to be taken into account). 

Second, under the hypothesis that those parameters are symmetrical triangular fuzzy 

numbers (STFNs), we have obtained several indicators that enable us to obtain the fair (or 

expected) price of life contingencies, the reasonable variability of this mathematical 

expectation and the variability of the present cost of these life contingencies (i.e. the 

solvency cost). 

Using the STFN approximation based on Dubois and Prade (1993, p. 131) to the present 

value with STFN parameters enable us to obtain interesting operational expressions that 

simplify the computational requirements of the results in Andrés-Sánchez and González-

Vila (2012, 2014). In fact, the calculation of the fuzzy present value is reduced to obtain 

the modal value with the centers of interest rate and cash flows. Likewise, the variability 

of the present value is intuitively (from a financial perspective) evaluated by aggregating 
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the present value of cash flow spreads and the variability that comes from interest rate 

uncertainty, which is linearly approximated, as is usual in standard financial mathematics, 

with the Macaulay duration. The use of FRVs with STFN outcomes allows us to describe 

the present value of life contingencies using just two conventional random variables: the 

centers and the spreads (i.e. the uncertainty) of the present value of insured amounts. 

Thus, the calculation of such magnitudes as mathematical expectation, standard deviation, 

quantiles, etc. for a contract (and, consequently, for a portfolio of policies) is relatively 

easy and intuitive. 

The results presented in this paper can, we believe, be readily extended to more general 

forms of fuzzy numbers. Moreover, in relation to life insurance policies, a slight 

generalization of our proposed developments can be derived from the consideration that 

the time when the insured amount is paid is not the end of the year of death, but any 

moment within that year and so, the payment maturity date is fuzzy. The latter may 

depend, for example, on the exact date of death, the delay before the heirs file their claim, 

or other factors. For example, if the insured dies in the 𝑟th year, the maturity payment may 

be the STFN (𝑟 +
1

2
,
1

2
), i.e. it is considered that the payment of the insured amount can be 

made in any moment within the rth year, the most reliable date being at the midpoint of 

this year. Other natural ways in which our findings can be extended include the use of the 

fuzzy, non-flat, temporal structure of interest rates, as proposed in Ostaszewski (1993) 

and in Andrés-Sánchez and Terceño (2003), or the introduction of fuzzy uncertainty in the 

future lifetime, as suggested Shapiro (2013). 

 

7. REFERENCES 

1. Alegre, A. and Claramunt, M. M. (1995). Allocation of solvency cost in group annuities: 
Actuarial principles and cooperative game theory. Insurance: Mathematics and 
Economics, 17(1), 19-34. 

2. Andrés-Sánchez, J. de (2014). Fuzzy claim reserving in non-life insurance. 
Computational. Science and Information Systems, 11 (2), 825-838. 
doi:10.2298/CSIS121225045A 

3. Andrés-Sánchez, J. de and González-Vila Puchades, L. (2012). Using fuzzy random 
variables in life annuities pricing. Fuzzy Sets and Systems, 188, 27-44. 
doi:10.1016/j.fss.2011.05.024 

4. Andrés-Sánchez, J. de and González-Vila Puchades, L. (2014). Pricing endowments with 
soft computing. Economic Computation and Economic Cybernetics Studies Research, 1, 
124-142. 

5. Andrés-Sánchez, J. de and Terceño, A. (2003). Applications of Fuzzy Regression in 
Actuarial Analysis. Journal of Risk and Insurance, 70, 665-699. doi:10.1046/j.0022-
4367.2003.00070.x 

6. Betzuen, A., Jiménez, M. and Rivas, J. A. (1997). Actuarial mathematics with fuzzy 
parameters. An application to collective pension plans. Fuzzy Economic Review, 2 (2), 
47-66. 

7. Buckley, J.J. (1987). The fuzzy mathematics of finance. Fuzzy Sets and Systems, 21, 257-
273. doi:10.1016/0165-0114(87)90128-X 

http://dx.doi.org/10.1016/j.fss.2011.05.024


26 

8. Buckley, J.J. and Qu, Y. (1990). On using  -cuts to evaluate fuzzy equations. Fuzzy Sets 
and Systems, 38, 309-312. doi:10.1016/0165-0114(90)90204-J 

9. Campos, L.M. and González, A. (1989). A subjective approach for ranking fuzzy 
numbers. Fuzzy Sets and Systems, 29, 145-153. doi:10.1016/0165-0114(89)90188-7. 

10. Couso, I. and Dubois, D. (2009). On the variability of the concept of variance for fuzzy 
random variables. Fuzzy Systems, IEEE Transactions, 17 (5), 1070-1080. 
doi:10.1109/TFUZZ.2009.2021617 

11. Cummins, J.D. and Derrig, R.A. (1997). Fuzzy financial pricing of property-liability 
insurance. North American Actuarial Journal, 1, 21-44. 
doi:10.1080/10920277.1997.10595640 

12. De Wit, G.W. (1982) Underwriting and uncertainty. Insurance: Mathematics and 
Economics, 1, 277-285. doi:10.1016/0167-6687(82)90028-2 

13. Derrig, R.A. and Ostaszewski, K. (1997). Managing the tax liability of a property 
liability insurance company. Journal of Risk and Insurance, 64, 695-711. 
doi:10.2307/253892 

14. Dubois, D. and Prade, H. (1993). Fuzzy numbers: an overview. In: Dubois, D., Prade, H. 
and Yager, R.R. (eds.) Readings on Fuzzy Sets for intelligent systems, 113-148. Morgan 
Kaufmann Publishers: San Mateo (California). 

15. Feng, Y., Hu, L. and Shu, H. (2001). The variance and covariance of fuzzy random 
variables and their application. Fuzzy Sets and Systems, 120, 487-497. 
doi:10.1016/S0165-0114(99)00060-3. 

16. Fabozzi, F. J. and Fong, H. G. (1994). Advanced fixed income portfolio management: the 
state of the art. Probus: Chicago. 

17. Grzegorzewski, P. and Mrówka, E. (2005). Trapezoidal approximations of fuzzy 
numbers. Fuzzy Sets and Systems, 153(1), 115-135. doi:10.1016/j.fss.2004.02.015 

18. Grzegorzewski, P. and Pasternak-Winiarska, K. (2014). Natural trapezoidal 
approximations of fuzzy numbers. Fuzzy Sets and Systems, 250, 90-109. 
doi:/10.1016/j.fss.2014.03.003 

19. Heberle, J. and Thomas, A. (2014) Combining chain-ladder reserving with fuzzy 
numbers. Insurance: Mathematics and Economics, 55, 96-104. 
doi:10.1016/j.insmatheco.2014.01.002 

20. Huang, T., Zhao, R. and Tang, W. (2009). Risk model with fuzzy random individual 
claim amount. European Journal of Operational Research, 192(3), 879-890. 
doi:10.1016/j.ejor.2007.10.035 

21. Inuiguchi, M. and Ramık, J. (2000). Possibilistic linear programming: a brief review of 
fuzzy mathematical programming and a comparison with stochastic programming in 
portfolio selection problem. Fuzzy Sets and Systems, 111(1), 3-28. doi:10.1016/S0165-
0114(98)00449-7 

22. Jiménez, M. and Rivas, J. A. (1998). Fuzzy number approximation. International Journal 
of Uncertainty, Fuzziness and Knowledge-Based Systems, 06 (1), 69-78. doi:10.1142/ 
S0218488598000057 

23. Kaufmann, A. (1986). Fuzzy subsets applications in OR and management. In: Fuzzy Sets 
Theory and Application, 257-300. Springer: Netherlands. 

24. Körner, R. (1997). On the variance of fuzzy random variables. Fuzzy Sets and Systems, 
92, 83-93. doi:10.1016/S0165-0114(96)00169-8 



27 

25. Krätschmer, V. (2001). A unified approach to fuzzy random variables. Fuzzy Sets and 
Systems, 123, 1-9. doi:10.1016/S0165-0114(00)00038-5 

26. Kruse, R. and Meyer, K.D. (1987). Statistics with Vague Data, volume 33. Reidel: 
Dordrecht. 

27. Kwakernaak, H. (1978). Fuzzy random variables I: Definitions and Theorems. 
Information Sciences, 15, 1-29. doi:10.1016/0020-0255(78)90019-1 

28. Kwakernaak, H. (1979). Fuzzy random variables II. Algorithms and examples for the 
discrete case. Information Sciences, 17(3), 253-278. doi:10.1016/0020-
0255(79)90020-3. 

29. Lemaire, J. (1990). Fuzzy insurance. Astin Bulletin, 20, 33-55. 
doi:10.2143/AST.20.1.2005482. 

30. Li Calzi, M. (1990). Towards a general setting for the fuzzy mathematics of finance. 
Fuzzy Sets and Systems, 35, 265-280. doi:10.1016/0165-0114(90)90001-M 

31. Li, D. X. and Panjer, H. H. (1994). Immunization measures for life contingencies. In: 4th 
AFIR Conference, 375-395. 

32. López-Diaz, M., and Gil, M. A. (1998). The λ-average value and the fuzzy expectation of 
a fuzzy random variable. Fuzzy Sets and Systems, 99(3), 347-352. doi:10.1016/S0165-
0114(97)00031-6. 

33. Luckner. W. R., Abbott, M. C., Backus, J. E.  et al. (2003) Asset-liability management. 
Society of Actuaries. 
https://www.soa.org/news-and-publications/publications/other-
publications/professional-actuarial-specialty-guides/pub-asset-liability-guide.aspx 

34. Näther, W. (2000). On random fuzzy variables of second order and their application to 
linear statistical inference with fuzzy data. Metrika, 51(3), 201-221. doi: 
10.1007/s001840000047 

35. Ostaszewski, K. (1993). An investigation into possible applications of fuzzy sets methods 
in actuarial science, Society of Actuaries: Schaumburg. 

36. Pitacco, E. (1986). Simulation in insurance. In: Goovaerts, M., de Vylder, F. and 
Haezendonck, J. Insurance and risk theory, 59-62. Reidel: Dordretch. 

37. Puri, M.L. and Ralescu, D.A. (1986). Fuzzy random variables. Journal of Mathematical 
Analysis and Applications, 114, 409-422. doi:10.1016/0022-247X(86)90093-4 

38. Shapiro, A. (2004). Fuzzy logic in insurance. Insurance: Mathematics and Economics, 
35, 399-424. doi:10.1016/j.insmatheco.2004.07.010 

39. Shapiro, A. (2009). Fuzzy random variables. Insurance: Mathematics and Economics, 
44, 307-314. doi:10.1016/j.insmatheco.2008.05.008 

40. Shapiro, A. (2013) Modeling future lifetime as a fuzzy random variable. Insurance: 
Mathematics and Economics, 53, 864-870. doi:10.1016/j.insmatheco.2013.10.007 

41. Viertl, R. and Hareter, D. (2004). Fuzzy information and stochastics. Iranian Journal of 
Fuzzy Systems, 1, 43-56. 

42. Wang, G. and Zhang, Y. (1992). The theory of fuzzy stochastic processes. Fuzzy Sets and 
Systems, 51(2), 161-178. doi:10.1016/0165-0114(92)90189-B 

43. Wilmoth, J.R., Andreev, K., Jdanov, D. et al. (2007). Methods protocol for the human 
mortality database. University of California, Berkeley, and Max Planck Institute for 
Demographic Research, Rostock. URL: http://mortality. org [version 31/05/2007] 



28 

44. Wolthuis, H. and Van Hoek, I. (1986). Stochastic models for life contingencies. 
Insurance: Mathematics and Economics, 5(3), 217-254. doi:10.1016/0167-
6687(86)90034-X 

45. Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338-353. doi:10.1016/S0019-
9958(65)90241-X 

46. Zmeskal, Z. (2005). Value at risk methodology under soft conditions approach (fuzzy-
stochastic approach). European Journal of Operational Research 161, 337-345. 
doi:10.1016/j.ejor.2003.08.048 

 


