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Abstract

The growing influence of wire delay in cache design has meant that access
latencies to last-level cache banks are no longer constant. Non-Uniform
Cache Architectures (NUCAs) have been proposed to address this problem.
Furthermore, an efficient last-level cache is crucial in chip multiprocessors
(CMP) architectures to reduce requests to the offchip memory, because of
the significant speed gap between processor and memory. Therefore, a bank
replacement policy that efficiently manages the NUCA cache is desirable.
However, the decentralized nature of NUCA has eliminated the effectiveness
of replacement policies because banks operate independently of each other,
and hence their replacement decisions are restricted to a single NUCA bank.
In this paper, we propose three different techniques to deal with replacements
in NUCA caches.

Keywords: D-NUCA, replacement, CMP

1. Introduction

Non-Uniform Cache Architecture (NUCA) caches often migrate accessed
lines closer to the core that requested them. Consequently, the most
frequently accessed lines are stored in the banks that are closer to the
requesting cores, termed hot banks. A replacement in a hot bank, however,
evicts a line whose probabilities of being accessed farther in the program are
much higher than that of a line stored in other bank in the NUCA cache.
Moreover, as banks in the NUCA cache work independently of each other,
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Figure 1: Performance results assuming one-copy and zero-copy replacement
policies.

none of the less used banks can even know that a hot bank is constantly
evicting data blocks that are being reused. Thus, a more sophisticated
replacement policy that allows all banks in the NUCA cache to take part
in data-replacement decisions is desirable. Evicted lines from the hot banks
can be relocated to other banks in the NUCA cache, instead of being evicted
from the NUCA cache permanently.

Unfortunately, most previous works have ignored the replacement issue
or have adopted a replacement scheme that was originally designed for use
in uniprocessors/uniform-caches. Kim et al. [1] proposed two replacement
policies for NUCA caches in a uniprocessor environment: zero-copy and
one-copy policies. For a zero-copy policy, the evicted line in the NUCA
cache is sent back to the upper level of the memory hierarchy (the main
memory in our studies). For a one-copy policy, the evicted line is demoted
to a more distant bank. This policy gives a second chance to the evicted
lines to stay within the NUCA cache. We have adapted these policies to
work in our CMP simulation framework. Our version of the one-copy policy
for CMP gives a second chance to the evicted lines by randomly relocating
them to another bank in the NUCA cache where they can be mapped.

Figure 1 shows that the one-copy replacement policy improves
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performance compared to the baseline configuration1. One-copy, however,
is considered a blind replacement policy because it does not take into
account the current cache state before relocating the evicted data to another
NUCA bank. Thus, this approach may cause unfair data replacements that
negatively impact performance.

This paper presents three approaches for dealing with replacements in
NUCA caches:

• Last Bank : this policy utilizes an extra bank that acts as a victim cache
by catching all evictions that happen in the regular NUCA banks.

• LRU-PEA: this replacement policy utilizes novel data block categories
in order to make the replacement decision. The categories assumed in
the LRU-PEA rely on the last migration action taken by a particular
data block (e.g. promoted, demoted or none).

• The Auction: this replacement framework spreads replacement
decisions from a single bank to all banks in the NUCA cache. Thus,
other banks can take part in deciding which is the most appropriate
data to evict within the whole NUCA cache.

The remainder of this paper is structured as follows. Section 2 describes
the baseline configuration assumed in this paper. Section 3 presents our
experimental methodology. Sections 4, 5 and 6 present and analyze the Last
Bank policy, the LRU-PEA replacement policy, and The Auction policy,
respectively. Related work is discussed in Section 7, and concluding remarks
are given in Section 8.

2. Baseline NUCA cache architecture

We assume an inclusive fully-shared L2 cache with a NUCA, derived
from the Dynamic NUCA (D-NUCA) design by Kim et al. [1]. As in their
original proposal we partition the address space across cache banks which are
connected via a 2D mesh interconnection network. As illustrated in Figure 2,
the NUCA storage is partitioned into 128 banks. D-NUCA allows migration
of data towards the cores that use it the most. This technique may reduce
the access latency for future accesses to the same data.

1The experimental methodology is described in Section 3.
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Figure 2: Baseline architecture layout.

Ideally, a data block would be mapped onto any cache bank in order to
maximize placement flexibility. However, the overhead of locating a data
block in this scenario would be increased as each bank would have to be
searched, either through a centralized tag store or by broadcasting the tag to
all banks. To mitigate this, the NUCA cache is treated as a set-associative
structure, called banksets, with each bank holding one “way” of the set.
Thus, data blocks can be mapped to any bank within a single bankset. The
NUCA banks that make up a bankset are organized into bankclusters within
the cache (the dotted boxes in Figure 2). Each bankcluster consists of a
single bank from each bankset. As an example, the darker shaded NUCA
banks in Figure 2 compose a bankset. As shown in Figure 2, we assume a
16-way bankset associative NUCA cache, organized in 16 bankclusters. The
eight bankclusters that are located closest to the cores compose the local
banks, and the other eight in the center of the NUCA cache are the central
banks. Therefore, a data block has 16 possible placements in the NUCA
cache (eight local banks and eight central banks). Note that a particular
bank in the NUCA cache is still set-associative.

The behaviour of a NUCA cache is determined by the following four
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policies: placement, access, replacement and migration. In order to fully
describe the baseline architecture, we show how it behaves in each of the
NUCA policies.

2.1. Placement policy

This policy determines where a particular data block can be mapped
in the NUCA cache, as well as its initial location when it arrives from the
off-chip memory. As previously mentioned, the NUCA cache implements a
bankset organization to limit the potential banks where a data block can be
mapped. In this case, a data block can be stored in 16 possible banks in
the NUCA cache (eight local banks and eight central banks). An incoming
data block from the off-chip memory is mapped to a specific bank within the
cache. This is statically predetermined based on the lower bits from the data
block’s address.

2.2. Access Policy

Dynamic features provided by D-NUCA, like having multiple candidate
banks store a single data block and migration movements, make access policy
a key constraint in NUCA caches. The baseline D-NUCA design uses a
two-phase multicast algorithm that is known as partitioned multicast [2].
Figure 3 shows the two steps of this algorithm for a request started from core
0. First, it broadcasts a request to the closest local bank to the processor
that launched the memory request, and to the eight central banks (see Figure
3a). If all nine initial requests miss, the request is sent in parallel, to the
remaining seven banks from the requested bankset (see Figure 3b). Finally,
if the request misses all 16 banks, the request would be forwarded to the
off-chip memory.

2.3. Replacement Policy

Upon a replacement in a NUCA bank, this policy determines which data
block should be evicted from a particular bank (data eviction policy) and
the position that the incoming data block will occupy in the LRU-stack
(data insertion policy). In addition, this policy also determines the final
destination of the evicted data block (data target policy). Regarding the
baseline configuration, the replacement policy assumed within the NUCA
banks is LRU, and the incoming data block is set as the MRU line in the
bank. Moreover, the evicted data block is directly sent to the off-chip memory
(zero-copy replacement policy [1]).
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(a) First step (b) Second step

Figure 3: Scheme of the access algorithm used in the baseline configuration.

2.4. Migration Policy

Once the data block is in the NUCA cache, the migration scheme
determines its optimal position. As a migration policy, we assume gradual
promotion that has been widely used in the literature [2, 1]. This states
that upon a hit in the cache the requested data block should move one-step
closer to the core that initiated the memory request. Figure 4 illustrates an
example to better understand how this migration policy works in the baseline
configuration. In this example, core 0 accesses a data block which is stored
in the local bank of core 6 (this is the most pessimistic situation). Then, the
requested data block moves one step towards the requesting core, and thus
stays in a central bank near core 6. After core 0 accesses the same data block
for the second time, it leaves core 6 influence area, and arrives to the central
bank of core 0. If the same data is accessed again by the core 0, it moves
towards core 0 arriving at the optimal location in terms of access latency for
accesses from core 0.

3. Methodology and Experimental Framework

We use the full-system execution-driven simulator, Simics [3], extended
with the GEMS toolset [4]. GEMS provides a detailed memory-system timing
model that enables us to model the NUCA cache architecture. Furthermore,
it accurately models the network contention introduced by the simulated
mechanisms. The simulated architecture is structured as a single CMP made
up of eight in-order cores with CPI equal to one for non-memory instructions.
During the simulation, when a memory instruction appears, Simics stalls,
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Figure 4: Scheme of the migration algorithm used in the baseline
configuration (accesses from core 0).

and GEMS takes control of execution. It provides the number of cycles the
core must stall due to the memory request. The processor cores emulate
the UltraSPARC IIIi ISA. Each core is augmented with a split first-level
cache (data and instruction). The second level of the memory hierarchy is
the NUCA cache. This is inclusive and shared among all cores integrated
into the chip. In order to exploit cache capacity, replications are not allowed
in the NUCA (L2) cache. However, we used MESI coherence protocol to
maintain coherency in all private L1 cache memories. Each cache line in the
NUCA cache keeps track of which L1 cache has a copy of the stored data.
This information moves, as with the whole data block, along the NUCA
cache with migration movements. In case of replacement of clean data in the
L1 cache, silent replacement is assumed. In other words, the NUCA cache
will not be notified that a private L1 cache has evicted a non-dirty data
block. Consequently, L1 caches could receive invalidation messages from the
NUCA cache even when not having the data. With regard to the memory
consistency model, we assume sequential consistency.

Table 1 summarizes the configuration parameters used in our studies. The

7



access latencies of the memory components are based on the models made
with the CACTI 6.0 [5] modeling tool. This is the first version of CACTI
that enables NUCA caches to be modeled.

Processors 8 - UltraSPARC IIIi
Frequency 1.5 GHz
Integration Technology 45 nm
Block size 64 bytes
L1 Cache (Instr./Data) 32 KBytes, 2-way
L2 Cache (NUCA) 8 MBytes, 128 Banks
NUCA Bank 64 KBytes, 8-way
L1 Latency 3 cycles
NUCA Bank Latency 4 cycles
Router Latency 1 cycle
Avg Offchip Latency 250 cycles

Table 1: Configuration parameters.

The methodology we used for simulation involved first skipping both
the initialization and thread creation phases, and then fast-forwarding while
warming all caches for 500 million cycles. Finally, we performed a detailed
simulation for 500 million cycles. As a performance metric, we used
the aggregate number of user instructions committed per cycle, which is
proportional to the overall system throughput [6].

3.1. Energy Model

In this paper, we also evaluated the energy consumed by the NUCA cache
and the off-chip memory. To do so, we used a similar energy model to that
adopted by Bardine et al. [7]. This allowed us to also consider the total
energy dissipated by the NUCA cache and the additional energy required to
access the off-chip memory. The energy consumed by the memory system is
computed as follows:

Etotal = Estatic + Edynamic

Estatic = ES noc + ES banks + ES mechanism

Edynamic = ED noc + ED banks + ED mechanism + Eoff−chip

We used models provided by CACTI [8, 9] to evaluate static energy
consumed by the memory structures (ES banks and ES mechanism). CACTI has
been used to evaluate dynamic energy consumption as well, but GEMS [4]
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support is required in this case to ascertain the dynamic behavior in the
applications (ED banks and ED mechanism). GEMS also contains an integrated
power model based on Orion [10] that we used to evaluate the static and
dynamic power consumed by the on-chip network (ES noc and ED noc). Note
that the extra messages introduced by the mechanism that is being evaluated
into the on-chip network are accurately modeled by the simulator. The
energy dissipated by the off-chip memory (Eoff−chip) was determined using
the Micron System Power Calculator [11] assuming a modern DDR3 system
(4GB, 8DQs, Vdd:1.5v, 333 MHz). Our evaluation of the off-chip memory
focused on the energy dissipated during active cycles and isolated this from
the background energy. Our study shows that the average energy of each
memory access is 550 pJ.

As an energy metric we used the energy consumed per memory access.
This is based on the energy per instruction (EPI) [12] metric which is
commonly used for analysing the energy consumed by the whole processor.
This metric works independently of the amount of time required to process
an instruction and is ideal for throughput performance.

4. Last Bank

Cache memories take advantage of the temporal and spatial data locality
that applications usually exhibit. However, the whole working set does not
usually fit into cache memory, causing capacity and conflict misses. These
misses mean that a line that may be accessed later has to leave the cache
prematurely. As a result, evicted lines that are later reused return to the
cache memory in a short period of time. This is more pronounced in a NUCA
cache memory because data movements within the cache are allowed, so the
most recently accessed data blocks are concentrated in a few banks rather
than evenly spread over the entire cache memory. Therefore, we propose
adding an extra bank to deal with data blocks that have been evicted from
the NUCA cache, similar to the victim cache [13]. This extra bank, called
Last Bank, provides evicted data blocks a second chance to come back to the
NUCA cache without leaving the chip.

Last Bank, which is as large as a single bank in the NUCA cache, acts as
the last-level cache between the NUCA cache and the off-chip memory. It is
physically located in the center of the chip at about the same distance to all
cores. When there is a hit on Last Bank, the accessed data block leaves the
Last Bank and returns to the corresponding bank in the NUCA cache.
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Figure 5: Performance improvement achieved with Last Bank

Figure 5 illustrates the performance results achieved when introducing the
Last Bank to the baseline architecture. We observe that such small storage is
not able to hold evicted data blocks before they are accessed again. Thus, the
performance benefits of this proposals are negligible in most of the simulated
applications. Assuming a Last Bank of 64 MBytes, however, we achieve an
overall performance improvement of 11% and up to 75% with canneal. There
are three main reasons that prevent the small version of Last Bank from
being so effective as the 64-MByte configuration: cache pollution, potential
bottleneck and size of the cache. Last Bank indistinctively catches all evicted
data blocks from the regular NUCA banks, but only a small portion of them
are going to be effectively reused further in the program. In the best case,
the data blocks that are no longer accessed by the program would be directly
sent to the upper-level memory. However, the reality is that Last Bank does
not know whether an evicted data block is going to be accessed further by the
program. This pollutes the Last Bank and provokes other data blocks that
may be reused to be evicted from the Last Bank before they are accessed.
Moreover, our design assumes a single Last Bank for the whole NUCA cache.
Although this could be a potential bottleneck when executing applications
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with large working sets that provoke lots of replacements, this design provides
similar response latency to all the cores. Our evaluation also shows that a
Last Bank of 64 KBytes is not large enough to hold all evictions from 128
NUCA banks, thus we conclude that the benefits of this approach are limited
by the size of the Last Bank.

4.1. Last Bank Optimizations

This section describes two optimizations for the Last Bank approach.
They exploit some of the drawbacks of the mechanism and allow it to achieve
higher performance benefits at low implementation cost.

4.1.1. Selective Last Bank

Last Bank is not large enough to deal with all the evicted data blocks
from the entire NUCA cache. So, Last Bank is polluted with useless data
blocks that will not be accessed again and that provoke the eviction of useful
data blocks from Last Bank before they are accessed. This fact leads us to
propose a selection mechanism in Last Bank called Selective Last Bank. This
selection mechanism allows evicted data blocks to be inserted into Last Bank
by way of a filter.

Migration movements in D-NUCA cache make most accessed data blocks
concentrate in the NUCA banks that are close to the cores (local banks).
Consequently, the probabilities of a data block that have been evicted from
a local bank to return to the NUCA cache are much higher than if it were
evicted from a central bank. Therefore, we propose a filter that allows only
the evicted data blocks that resided in a local bank before eviction to be
cached.

4.1.2. LRU prioritising Last Bank

Because of the high locality found in most applications, the vast majority
of evicted lines that return to the NUCA cache, do it at least twice. Thus,
we propose modifying the data eviction algorithm of the NUCA cache in
order to prioritise the lines that enter the NUCA cache from Last Bank. We
call this LRU prioritising Last Bank (LRU-LB). LRU-LB gives the lines that
have been stored by the Last Bank and return to the NUCA cache an extra
chance. Therefore, they remain in the on-chip cache memory longer. This
requires storing an extra bit, called the priority bit, to each line in the NUCA
cache.
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(a) (b) (c)

Figure 6: LRU prioritising Last Bank (LRU-LB) scheme. (a) A priority
line is in the LRU position. (b) The priority line resets its priority bit and
updates its position to the MRU; the other lines move one position forward
to the LRU. (c) The line in the LRU position is evicted since its priority is
clear.

The LRU-LB eviction policy works as follows. When an incoming line
comes to the NUCA cache memory from Last Bank, its priority bit is set.
Figure 6a shows how this policy works when a line with its priority bit set
is in the LRU position. The line that currently occupies the LRU position
clears its priority bit and updates its position to the MRU. Thus, the other
lines in the LRU stack move one position towards the LRU (Figure 6b).
Finally, as the line that is currently in the LRU position has its priority bit
cleared, it is evicted from the NUCA cache (Figure 6c). If the line that ends
in the LRU position has its priority bit set, the algorithm described above is
applied again until the line in the LRU position has its priority bit cleared.

4.2. Results and analysis

This section analyses the performance results obtained with the two
optimizations for the Last Bank proposed in Section 4.1, Selective Last Bank
and LRU prioritising Last Bank (LRU-LB). With Selective Last Bank, the
filter only allows blocks that have been evicted from a local bank to be cached.

As mentioned in Section 4, the potential performance improvement of
this mechanism is strictly limited by the size of the Last Bank, however, we
found that both optimizations could exploit the Last Bank features to achieve
some performance improvement compared to the baseline configuration (by
2%). Figure 7 shows that the Selective approach outperforms Last Bank in
almost all simulated applications. The reduction of pollution in the Last
Bank allows data blocks to stay longer in the Last Bank. Thus, the hit rate
in the Last Bank increases, and consequently it performs better.

With regard to the LRU-LB optimization, giving an extra chance to
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Figure 7: Speed-up achieved with Last Bank optimizations.

reused addresses before being evicted from the NUCA cache has two direct
benefits. First, if accessed, they are closer to cores, which means lower access
latency. Second, the number of reused addresses stored in the NUCA cache
is higher. This translates into an overall performance improvement of 2%.
Moreover, LRU-LB also outperforms the regular Last Bank configuration
with most of simulated applications.

4.3. Summary

Last Bank is a simple mechanism that acts as victim cache for the
regular NUCA banks. Moreover, we have also presented two optimizations
for the Last Bank that exploit the features of this mechanism, resulting in
performance benefits. However, our performance results show that a small
Last Bank (64 KBytes) achieves negligible performance improvements while a
larger (but expensive) implementation of 64 MBytes outperforms the baseline
configuration by 11%.

Although this mechanism works well with small caches [14], Last Bank
requires expensive hardware overheads to get significant benefits when a
larger configuration is assumed. We now move on with additional proposals

13



that require similar hardware than the Last Bank, but obtain higher benefits
in terms of both performance and energy consumption.

5. LRU-PEA

When an incoming data block enters into the NUCA cache, the placement
policy determines in which NUCA bank it will be placed. Then, the
replacement policy determines (1) which data block must be evicted from the
bank to leave space for the new data (data eviction policy), and (2) which
position within the replacement stack the incoming data will occupy (e.g.
MRU or LRU). This decision is known as data insertion policy. Replacement
policies in traditional cache memories are composed by these two sub-policies.
However, D-NUCA incorporates one last decision to determine the final
destination of the evicted data block, termed data target policy.

In this section we introduce the Least Recently Used with Priority Eviction
Approach (LRU-PEA) replacement policy. This policy focuses on optimizing
the performance of applications on a CMP-NUCA architecture by analyzing
data behaviour within the NUCA cache and trying to keep the most accessed
data in cache as long as possible. We now describe the two sub-policies that
the LRU-PEA modifies: data eviction policy and data target policy. With
regard to data insertion policy, the incoming data block will occupy the MRU
position in the replacement stack.

5.1. Data Eviction Policy

Being able to apply migration movements within the cache is one of the
most interesting features of NUCA cache memories. This enables recently
accessed data to be stored close to the requesting core in order to optimize
access response times for future accesses. We classify data into promoted,
demoted, and none categories.

Figure 8 shows the percentage of resued and non-reused evicted addresses
that belonged to each of these three categories at the moment of their
replacement. We observe that the probabilities of a data block to return
to the NUCA cache are higher if it belongs to the promoted category.

Based on this observation, LRU-PEA statically prioritizes the three
categories, and evicts from the NUCA cache the data block that belongs
to the lowest category. Having a static prioritization, however, could cause
the highest-category data to monopolize the NUCA cache, or even cause
a simple data block to stay in the cache forever. In order to avoid these
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Figure 8: Distribution per categories of resued and non-reused evicted
addresses at the moment of their replacement.

+ Promoted
Priority None

- Demoted

Table 2: Prioritization for LRU-PEA.

situations, we restrict the category comparison to the two last positions in
the LRU-stack. In this way, even data with the lowest category will stay in
the cache until it arrives at the LRU-1 position in the LRU-stack.

Figure 9 gives an example of how the LRU-PEA scheme works. First,
we define the prioritization of the data categories. Based on the results
showed in Figure 8, the final prioritization is as Table 2 outlines. When the
LRU-PEA eviction policy is applied, the last two positions of the LRU-stack
compete to find out which one is going to be evicted (see Figure 9b). Thus,
we can compare their categories. If they are different, the data with the
lower category is evicted. But, if both have the same category, the line that
currently occupies the LRU position is evicted. Finally, the data that has
not been evicted updates its position within the LRU-stack (see Figure 9c).
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(a) (b) (c)

Figure 9: LRU-PEA scheme. (a) Initial state of the LRU-stack. (b) The
last two positions of the LRU-stack compete to avoid being evicted. (c) The
lowest category data has been evicted.

5.2. Data Target Policy

There are two key issues when a Dynamic-NUCA (D-NUCA) architecture
[1] is considered: 1) a single data can be mapped onto multiple banks within
the NUCA cache, and 2) the migration process moves the most accessed data
to the banks that are closer to the requesting cores. Therefore, bank usage in
a NUCA cache is heavily imbalanced, and a capacity miss in a heavily-used
NUCA bank could cause constantly accessed data to be evicted from the
NUCA cache while other NUCA banks are storing less frequently accessed
data. The LRU-PEA addresses this problem by defining a data target policy
that allows the replacement decision to be spread across all banks in the
NUCA cache where evicted data can be mapped.

We propose Algorithm 1 as a data target policy for the LRU-PEA. The
main idea of this algorithm is to find a NUCA bank whose victim data belongs
to a lower priority category than that which is currently being evicted. In this
way, while the target NUCA bank is not found, all NUCA banks where the
evicted data can be mapped are sequentially accessed in an statically defined
order. In our evaluation we use the following order: Local Bank Corei →
Central Bank Corei → Local Bank Corei+1 → Central Bank Corei+1 → ...

The algorithm finishes when one of the following occurs: 1) the evicted
data belongs to the lowest priority category, 2) all NUCA banks where the
evicted data can be mapped have been already visited, and 3) the evicted
data has been relocated to another NUCA bank. Then, whether the evicted
data could not be relocated to another bank in the NUCA cache, it is written
back to upper-level memory.

By using sequential access, the accuracy of the LRU-PEA is restricted
to the NUCA banks that have been visited before finding a target bank.
To address this problem, we introduce the on cascade mode. When this
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Input: initial bank: Bank that started the replacement process
Input: ev data: Evicted data
Output: Final data to be evicted from the cache
begin

final = false;
if Category(initial bank, ev data) == LOWEST CATEG then

return ev data;
end

next bank = NextBank(initial bank);
ev bank = initial bank;
while !final and next bank 6= initial bank do

may evict data = ApplyLRU-PEA(next bank, ev data);
if Category(ev bank, ev data) > Category(next bank, may evict data) then

InsertIntoBank(next bank, ev data);
ev data = may evict data;
ev bank = next bank;
if IsCascadeModeEnabled() == false then

final = true;
else if Category(ev bank, ev data) > LOWEST CATEG then

next bank = NextBank(next bank);
else

final = true;
end

else
next bank = NextBank(next bank);

end

end

return ev data;
end

Algorithm 1: LRU-PEA scheme

mode is enabled, the algorithm does not finish when the evicted data finds a
target bank. Instead, it uses the data that has been evicted from the target
bank as evicted data. Thus, after visiting all NUCA banks we can assure
that the current evicted data belongs to the current lowest priority category.
In Section 5.4, we consider both configurations, with the on cascade mode
enabled or disabled.

Figure 10 shows an example of how the LRU-PEA’s data target policy
works. In this example, the algorithm starts in a central bank and the evicted
data belongs to the none category, so the priority of the evicted data is 2
(see Table 2). First, the algorithm checks whether the evicted data can be
relocated in the local bank of the next core (step 1 in Figure 10). However,
the priority of the victim data in the current bank is higher than the evicted
data, so the LRU-PEA tries to relocate the evicted data into the next bank.
In the second step, it visits another central bank. In this case, the category
of the victim data in the current bank is the same as the evicted data, and so
the next bank needs to be checked. Finally, in the third step, the category of
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Figure 10: Example of how LRU-PEA behaves.

the evicted data has higher priority than the victim data of the current bank.
Thus, the evicted data is relocated to this current bank. If the on cascade
mode is enabled, the algorithm continues with the 4th step (see Figure 10),
but uses the data that has been evicted from the current bank as evicted
data. Otherwise, this data is directly evicted from the NUCA cache and sent
back to the upper-level memory.

5.3. Additional Hardware

This mechanism requires the introduction of some additional hardware
to the NUCA cache. In order to determine the data’s category, we add two
bits per line (there are three categories). Then, assuming that an 8 MByte
NUCA cache described in Section 3 is used, LRU-PEA will need to add 32
KBytes, which is less than 0.4% of the hardware overhead. Furthermore, the
proposed mechanism can be implemented without significant complexity.
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No Cascade
Cascade Enabled

Direct Provoked

1 message 64 54 20
2 messages 12 7 7
3 messages 4 2 4
4 messages 3 2 4
5 messages 3 2 3
6 messages 2 1 4
7 messages 2 1 3
8 messages 2 1 4
9 messages 1 1 3
10 messages 1 1 4
11 messages 1 1 3
12 messages 1 1 6
13 messages 1 1 6
14 messages 1 1 30
15 messages 3 21 -

Values in percentage (%)

Table 3: Number of extra messages introduced by both configurations of
LRU-PEA to satisfy replacements.

5.4. Results and analysis

This section analyses the impact of the LRU-PEA as a replacement policy.
Table 3 shows the average number of extra messages introduced by the
LRU-PEA to satisfy a single replacement. When the on cascade mode is
disabled, the communication overhead introduced by LRU-PEA is very low.
On average, close to 80% of replacements are satisfied by adding up to 3
extra messages into the on-chip network. By enabling the on cascade mode,
however, a significant percentage of replacements add the maximum number
of messages into the network (the number of banks where the evicted data
can be mapped minus one). The difference between the two modes can
be explained by the high-accuracy provided by the LRU-PEA when the
on cascade mode is enabled. In general, the data in NUCA banks have
higher priority, and it is much more difficult to find a victim data with lower
priority than the evicted data. In the following sections we analyze how the
LRU-PEA behaves in terms of performance and energy consumption.

5.4.1. Performance Analysis

Figure 11 shows the performance improvement achieved when using the
LRU-PEA as replacement policy in the NUCA cache. On average, we find
that the LRU-PEA outperforms the baseline configuration by 8% if the
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Figure 11: IPC improvement with LRU-PEA.

on cascade mode is enabled, and by 7% when it is disabled. In general,
we find that the LRU-PEA significantly improves performance with most
PARSEC applications, obtaining about 20% improvement in three of them
(canneal, freqmine and streamcluster). On the other hand, 4 of the 13
PARSEC applications do not show perfomance benefits when using the
LRU-PEA (blackscholes, facesim, raytrace and swaptions). We also observe
that although the LRU-PEA is not harmful to performance either.

Figure 12 shows the NUCA misses per 1000 instructions (MPKI) with
the three evaluated configurations: baseline, LRU-PEA and LRU-PEA with
on cascade mode enabled. On average, we observed a significant reduction in
MPKI when using the LRU-PEA, and even more when the on cascade mode
is enabled. In general, we found that PARSEC applications that provide
performance improvements, also significantly reduce MPKI. Moreover, we
saw that canneal, freqmine and streamcluster (the applications that provide
the highest performance improvement with LRU-PEA) also have the highest
MPKI. In contrast, applications with an MPKI close to zero do not usually
improve performance when the LRU-PEA is used.

Regarding those applications where the LRU-PEA does not improve
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Figure 12: Misses per thousand instructions with LRU-PEA.

performance, blackscholes and swaptions are financial applications with
small working sets, so their cache requirements are restricted. On the
other hand, raytrace and facesim have very big working sets, but they are
computationally intensive and mainly exploit temporal locality.

5.4.2. Energy Consumption Analysis

The energy consumption is analysed by using the Energy per Instruction
(EPI) metric. Figure 13 shows that, on average, the LRU-PEA reduces the
energy consumed per instruction compared to the baseline architecture by
5% for both configurations (with and without the on cascade mode enabled).
In particular, the LRU-PEA significantly reduce energy consumption in
PARSEC applications with large working sets, such as canneal, freqmine and
streamcluster. Moreover, with the exception of blackscholes and swaptions,
EPI was always reduced by the LRU-PEA.

As we can see in Figure 13, EPI is heavily influenced by static energy.
Figure 14 shows the normalized EPI without taking into consideration the
static energy consumed. We find that when on cascade mode is enabled,
the dynamic energy consumed is 10% higher than the baseline configuration.
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Figure 13: Normalized average energy consumed per each executed
instruction.

However, the LRU-PEA with on cascade mode disabled still reduces EPI by
more than 15%. This difference in EPI between the two LRU-PEA modes
corresponds to the number of extra messages introduced into the on-chip
network by each of them (see Table 3).

Finally, we highlight that although LRU-PEA increases the on-chip
network contention, the average energy consumed per instruction is still
reduced due to the significant performance improvement that this mechanism
provides.

6. The Auction

The Auction is an adaptive mechanism designed for the replacement policy
of NUCA architectures in CMPs. It provides a framework for globalizing the
replacement decisions in a single bank, and thus enables the replacement
policy to evict the most appropriate data from the NUCA cache. Moreover,
unlike the one-copy policy [1] or LRU-PEA (described in Section 5) which
blindly relocate evicted data to other bank within the NUCA cache, The
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Figure 14: Normalized average dynamic energy consumed per each
instruction.

Auction enables evicted data from a NUCA bank to be relocated to the
most suitable destination bank at any particular moment. Thus, it takes
into consideration the current load of each bank in the NUCA cache. This
section describes in detail how the auction mechanism works.

6.1. Roles and components

In order to explain how the auction works, we will first introduce three
roles that operate in the mechanism:

• Owner: It owns the item but wants to sell it, thus starting the auction.
The bank in the NUCA cache that evicts the line then acts as the owner
and the evicted line is the item to sell.

• Bidders: They can bid for the item that is being sold in the auction. In
the NUCA architecture, the bidders are the banks in the NUCA cache
where the evicted line can be mapped. They are the other NUCA banks
from the owner’s bankset.
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Figure 15: Percentage of non-started auctions when using up to four auction
slots per NUCA bank.

• Controller: It stores the item while the auction is running. It also
receives the bids for the item from the bidders and manages the auction
in order to sell the item to the highest bidder.

The auction controller introduces a set of auction slots that are
distributed among all banks in the NUCA cache. Each auction slot manages
a single active auction by storing the evicted line that is being sold, the
current highest bidder and the remaining time. When the auction finishes
the corresponding auction slot is deallocated and becomes available for
forthcoming auctions. Therefore, the number of active auctions per NUCA
bank is limited by the number of auction slots. Figure 15 shows the
percentage of auctions that cannot be started because there are no auction
slots available when having up to four auction slots per NUCA bank.
Assuming one auction slot per bank, just 2.3% of evicted lines can not
be relocated. Moreover, we find that using more auction slots per NUCA
bank, the percentage of non-started auctions dramatically decreases. At this
point, the challenge is to determine the optimal number of auction slots that
provides high accuracy without introducing prohibitive hardware overhead.
In the remainder of the paper, we assume having two auction slots per NUCA
bank. This configuration provides a good trade-off between auction accuracy
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and hardware requirements.

6.2. How The Auction works

Figure 16 shows the three steps of the auction. It starts when there is a
replacement in a bank in the NUCA cache and it has at least one auction
slot available. Otherwise the auction can not be started and the evicted line
is directly sent to the main memory. The bank that is replacing data (the
owner) moves the evicted line (the item) to the controller (the corresponding
auction slot) and sets the auction deadline (Figure 16a). At the same time,
the owner invites the other banks from the bankset (the bidders) to join the
auction and bid for the item. Recall that an address maps to a bankset and
can reside within any bank of the bankset. Thus, in our baseline architecture
the evicted line can only be mapped to 16 banks. When a bidder finds out
that a data block has been evicted from the NUCA cache, it decides whether
to bid for it (Figure 16b). If the bidder is interested in getting the evicted
data, it notifies the controller who manages the auction. Otherwise, the
bidder ignores the current auction. Finally, when the auction time expires
(Figure 16c), the controller determines the final destination of the evicted
data based on the received bids and the implemented heuristic. It then sends
it to the winning bidder. Moreover, in order to avoid recursively starting
auctions, even if relocating the evicted data provokes a replacement in the
winning bank, it will not start a new auction. In contrast, if none of the
bidders bid for the evicted data when the auction time expires, the controller
sends it to main memory.

Note that The Auction describes how to proceed when a replacement
occurs in a bank in the NUCA cache. This is, therefore, a generic algorithm
that must be customized by defining the decisions that each role can take on
during the auction.

6.3. Hardware Implementation and Overhead

As described in Section 6.1, the auction mechanism introduces two
auction slots per NUCA bank in order to manage the active auctions. Each
auction slot requires 66 bytes (64 bytes to store the evicted line, 1 byte to
identify the current highest bidder and 1 byte to determine the remaining
time). The hardware overhead of this configuration is 33 KBytes (which
is less than 0.4% of the total hardware used by the NUCA cache). Apart
from hardware overheads, the auction also introduces extra messages onto
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(a) Owner starts the auction (b) Bids for the item

(c) Item is sold!

Figure 16: The three steps of the auction mechanism.

the on-chip network (i.e. messages to join the auction and bids). The impact
of introducing these messages onto the network is analysed in Section 6.5.

6.4. Implementing an Auction Approach

The Auction algorithm defines how the owner and the controller behave
while an auction is running, however, it does not define whether a bidder
should bid for the evicted data block or not. The generality of this scheme
opens a wide area to explore in which architects may use The Auction
framework to implement smart auction-like replacement policies. This
section describes two examples of auction approaches, termed bank usage
imbalance (AUC-IMB) and prioritising most accessed data (AUC-ACC), that
enable the determination of the quality of data during the auction, and thus
enable bidders to compare the evicted data that is being sold with their own
data.

Providing a significant number of bids per auction to the controller is
crucial to having higher auction accuracy (i.e. the goodness of its final
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decision). Thus, increasing the number of bits per auction, an auction-like
replacement policy will provide controller more options to determine the most
appropriate destination bank for the evicted data within the NUCA cache,
and reduce the number of auctions that finish without receiving any bid.

6.4.1. Bank Usage Imbalance (AUC-IMB)

There are two key issues when a Dynamic-NUCA (D-NUCA) architecture
[1] is considered. First, single data can be mapped in multiple banks within
the NUCA cache. Second, the migration process moves the most accessed
data to the banks that are closer to the requesting cores. Therefore, bank
usage in a NUCA cache is heavily imbalanced, and a capacity miss in a
heavily-used NUCA bank could cause constantly accessed data to be evicted
from the NUCA cache, while other NUCA banks are storing less frequently
accessed data.

We propose an auction approach that measures the usage rate of each
bank. Thus, least accessed banks could bid for evicted data from banks that
are being constantly accessed. We use the number of capacity replacements
in each set of NUCA banks as our bank usage metric.

When a replacement occurs in a NUCA bank, the owner notifies the
bidders that the auction has started, and sends them the current replacement
counter. When a bidder receives the message from the owner, it checks
whether its current replacement counter is lower than the counter attached
to the message. If it is lower, the current bank bids for the evicted data by
sending the controller the bank identifier and its replacement counter. At
the same time, the controller that manages the auction is storing the current
winner and its replacement counter. When a bid arrives to the controller, it
checks if the replacement counter from the bid is lower than the one from the
current winner. If so, the incoming bid becomes the current winner, otherwise
the bid is discarded. Finally, when the auction time expires, controller sends
the evicted data to the bidder with the lowest replacement counter.

Migration movements make most frequently accessed data to be stored in
local banks, thus if the controller receives bids from both types of banks, local
and central, it will always prefer to send the item to the central bank. If the
first bid that arrives to the controller comes from a central bank, the auction
finishes and the item is directly sent to the bidder. If the first bidder is a
local bank, however, the controller sets the auction deadline to 20 cycles and
waits for other bids from central banks. We have experimentally observed
that most bids arrive at the controller in 20 cycles from the arrival of the
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first bid.
Unfortunately, this approach is not affordable without restricting the

number of bits used by each replacement counter. Therefore, in addition
to restricting the bits dedicated to the replacement counter, we implement a
reset system that initializes the replacement counters of other NUCA banks
when one of them arrives at the maximum value. If this is not done, when
a replacement counter overflows, it could not be compared with the other
counters. Thus, when a replacement counter arrives at its maximum value,
the owner sends the bidders the reset signal with the message that notifies
that an auction has started.

We evaluate this approach by assuming an 8-bit replacement counter per
cache-set in all NUCA banks. We have chosen this size on the basis of the
following issues: additional hardware introduced (bits for the replacement
counter and comparators), accuracy obtained, and reset frequency.

Hardware implementation and overheads: This approach requires
the introduction of 8 bits in every cache set and auction slot. Thus,
assuming the baseline architecture described in Section 2, this means adding
an additional 16.5 KBytes to the hardware overhead required by The Auction
(33 KBytes). Then, this approach requires introducing 49.5 Kbytes to the
8 MByte NUCA cache, which is less than 0.6% of the hardware overhead.
Because these messages need to include the 8-bit replacement counter, they
increase the size of both kind of auction messages, auction invitations and
bids. The auction invitation message sent by the owner also requires one bit
more for the reset signal. We take this overhead into account when evaluating
this approach.

6.4.2. Prioritising most accessed data (AUC-ACC)

This auction approach focuses on keeping the most accessed data in the
NUCA cache. When the bidder receives the auction start notification, it
checks whether the evicted data has been accessed more times than the data
that is currently occupying the last position in the LRU-stack. If this is
the case, it bids for the evicted data by sending to the controller the bank
identifier and the access counter of the LRU data block. As in AUC-IMB,
when a bid arrives to the controller, it compares the access counter that comes
with the incoming bid to the access counter of the current winner. If it is
lower, then the incoming bid becomes the current winner. Finally, when the
auction time expires, controller sends the evicted data to the bidder whose
LRU data block has the lowest access counter. Note that as with AUC-IMB,
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the auction deadline is set when the auction starts and then modified when
the first bid arrives.

This approach assumes that each line in the NUCA cache has an access
counter. It only keeps information regarding accesses made to the NUCA
cache, which is updated just after a hit in this cache. However, as in the
previous approach, having an unbounded counter per line is not affordable,
thus we assume a 3-bit saturated counter per line. We choose this size for
the counter because it is sufficiently accurate, and the additional hardware
introduced is still affordable.

Hardware implementation and overheads: This approach requires
the introduction of 3 bits per cache line and auction slot. Thus, assuming
the baseline architecture described in Section 2, it adds 49.5 KBytes to
the basic auction scheme. So, the overall hardware requirements of this
auction approach in the 8 MBytes NUCA cache is 82.5 KBytes. As in the
previous proposal, the auction messages are larger. In this case, the size
of the messages is increased by 3 bits. These overheads are also considered
when evaluating this approach.

6.5. Results and analysis

This section analyses the impact on performance and energy consumption
of using different auction approaches (AUC-IMB and AUC-ACC) as
replacement policies in the baseline architecture. Unfortunately, none of
the mechanisms previously proposed for NUCA caches on CMPs properly
addresses data target policy. Thus they could complement the improvements
achieved by The Auction framework. As previously mentioned, Kim et al. [1]
proposed two different approaches, zero-copy and one-copy. However, these
alternatives were proposed in a single-processor environment. Therefore, in
order to compare them with the auction we have adapted them our the CMP
baseline architecture. Moreover, we evaluate the baseline architecture with
an extra bank that acts as a victim cache [13]. This mechanism does not
show performance improvements on its own and it does introduce the same
additional hardware as the auction approach.

6.5.1. Performance analysis

Figure 17 shows the performance improvement achieved when using The
Auction for the replacement policy in the NUCA cache. On average, we find
that both auction approaches outperform the baseline configuration by 6-8%.
In general, we observe the auction performs significantly well with most of the
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Figure 17: Performance improvement.

PARSEC applications. Three of them had improved performance by more
than 15% (canneal, streamcluster and vips). On the other hand, assuming the
multi-programmed environment (SPEC CPU2006 in Figure 17), the auction
approaches increase performance on average by 4%.

One-copy replacement policy always relocates evicted data without taking
into consideration the current state of the NUCA cache. This enables
one-copy to improve performance in those PARSEC applications with large
working sets, such as canneal, streamcluster and vips. However, blindly
relocating evicted data can be harmful in terms of performance. For example,
if x264 is used, one-copy has a 2% performance loss. The Auction, on
the other hand, checks the current state of all NUCA banks from the
bankset where the evicted data can be mapped, and thus does not relocate
evicted data if no suitable destination bank has been found (i.e. if there
are no bidders). This makes the auction a harmless mechanism in terms
of performance even for applications with small working sets, such as
blackscholes and x264. Moreover, we have experimentally observed that the
performance benefits achieved using one-copy rely on the NUCA cache size,
whereas the auction approaches do not correlate with the size of the cache.
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Figure 18: Misses per 1000 instructions.

Figure 17 shows that, on average, both auction approaches outperform
one-copy by 2-4%. However, note that as a replacement policy, the
auction takes advantage of workloads with large working sets because
they lead to more data replacements. For example, the auction increases
performance benefits by 10%, 8% and 5% compared to one-copy for
benchmarks streamcluster, canneal, and vips, respectively. Unfortunately,
most of PARSEC applications have small-to-medium working sets, and thus
the average performance benefits achieved with a replacement policy are
restricted.

Figure 18 shows the NUCA misses per 1000 instructions (MPKI) with
both auction approaches (AUC-IMB and AUC-ACC). On average, we observe
that there is a significant reduction in MPKI by using the auction. In
general, we find that PARSEC applications that improve performance also
significantly reduce MPKI. Moreover, we should emphasize the fact that
canneal, streamcluster and vips are the applications that both provide the
highest performance improvement with the auction and have the highest
MPKI. In contrast, applications that have MPKI close to zero do usually
not significantly improve performance when using this mechanism. In the
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Figure 19: Received bids per auction.

multi-programmed environment, we find that the performance improvement
is also related to an MPKI reduction.

Figure 19 shows that almost every auction launched when using
AUC-IMB finishes with at least one bid. Assuming AUC-ACC, on the
other hand, 20% of auctions finish without bids. Moreover, we observe that
AUC-IMB achieves much higher auction accuracy than AUC-ACC. Actually,
one in every two auctions get two or more bids assuming AUC-IMB as
replacement policy, whereas only 10% of auctions get at least two bids with
AUC-ACC. In an auction, the more bids the controller receives the more
confident its final decision will be. Increasing the number of bids per auction,
however, also increases the number of messages introduced to the on-chip
network.

Figure 20 shows the auction message (auction invitation and bids)
overhead introduced by both auction approaches. We find that network
contention is a key constraint that prevents both auction approaches
from achieving higher performance results. On average, AUC-IMB and
AUC-ACC outperform the baseline configuration by 6% and 8%, respectively.
AUC-ACC outperforms the other auction approach in most of workloads
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Figure 20: Network traffic.

including those with large working sets like canneal, streamcluster and vips.
AUC-IMB is heavily penalized by the high on-chip network contention that
this approach introduces. Therefore, this prevents AUC-IMB from obtaining
higher performance results. Based on this observation, we conclude that
the big challenge to implement a high-performance auction-like replacement
policy is to balance auction accuracy and network contention.

6.5.2. Energy consumption analysis

In order to analyze the on-chip network contention introduced by the
auction approaches, Figure 20 shows the traffic of the on-chip network
normalized to the baseline configuration. On average, one-copy increases
on-chip network traffic by 7%, while the increase caused by the auction
is 8% for AUC-ACC, and 11% for AUC-IMB. Although both replacement
mechanisms relocate evicted data, they also reduce miss rate in the NUCA
cache compared to the baseline configuration. Therefore, increasing the
on-chip network traffic is not as high as previously expected. On the other
hand, the auction also introduces extra messages onto the on-chip network
(auction invitations and bids). Figure 20 shows that the auction messages
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Figure 21: Energy per memory access.

represents less than 5% of total on-chip network traffic in both auction
approaches.

Figure 21 shows that, on average, the auction reduces the energy
consumed per each memory access by 3-4% compared to the baseline
architecture. In particular, they significantly reduce energy consumption in
PARSEC applications with large working sets, such as canneal, freqmine,
streamcluster and vips. We find similar results for the multi-threaded
applications with an energy reduction up to 4%.

6.5.3. Summary

We conclude that as a replacement policy, this mechanism takes
advantage of workloads with the largest working sets because they lead to
more data replacements and launch more auctions. On the other hand, we
find that blindly relocating data in the NUCA cache without taking into
consideration the current state of the banks, as is the case with one-copy,
may cause unfair data replacements that can hurt performance.
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7. Related Work

Replacement policy brings together two decisions that can be seen as two
more policies: data insertion and data eviction. The former decides where to
place data and the latter decides which data to replace. Traditionally, caches
use the Most Recently Used (MRU) algorithm to insert data and the Least
Recently Used (LRU) algorithm to evict data [15, 16].

Modifications to the traditional LRU scheme have also been proposed.
Wong and Bauer [17] modified the standard LRU to maintain data that
exhibited higher temporal locality. Alghazo et al. [18] proposed a mechanism
called SF-LRU (Second-Chance Frequency LRU). This scheme combines both
the recentness (LRU) and frequency (LFU) of blocks to decide which blocks
to replace. Dybdahl et al. [19] also proposed another LRU approach based
on frequency of access in shared multiprocessor caches.

Kharbutli and Solihin [20] proposed a counter-based L2 cache
replacement. This approach includes an event counter with each line that is
incremented under certain circumstances. The line can be evicted when this
counter reaches a certain threshold.

Recently, several papers have revisited data insertion policy. Qureshi et
al. [21] propose Line Distillation, a mechanism that tries to keep frequently
accessed data in a cache line and to evict unused data. This technique
is based on the observation that, generally, data is unlikely to be used in
the lowest priority part of the LRU stack. They also proposed LIP (LRU
Insertion Policy), which places data in the LRU position instead of the MRU
position [22].

Dynamic NUCA cache memories also incorporate data target policy. This
determines the final destination of the evicted data block. Several works
have recently proposed in the literature to efficiently manage NUCA caches
[2, 23, 24, 1, 25]. However, none of them properly addresses replacement
policy in NUCA caches for CMPs.

8. Conclusions

The decentralized nature of NUCA prevents replacement policies
previously proposed in the literature from being effective in this kind of
cache. As banks operate independently from each other, their replacement
decisions are restricted to a single NUCA bank. Unfortunately, replacement
policy in NUCA-based CMP architectures has not been properly researched.
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Most of previous works have ignored the replacement issue or adopted a
replacement scheme that was originally designed for use with uniprocessors
or uniform-cache memories. This paper describes three different approaches
for dealing with replacements in D-NUCA achitectures on CMPs.

Last Bank mechanism introduces an extra bank into the NUCA cache
memory that catches evicted data blocks from the other banks. Although
this mechanism work well with small caches [14], Last Bank requires
non-affordable hardware overheads to get significant benefits when a larger
configuration is assumed. LRU-PEA, an alternative to the traditional LRU
replacement policy, aims to make more intelligent replacement decisions
by protecting these cache lines that are more likely to be reused in the
near future. We observe that, on average, the baseline configuration’s
performance is increased by 8% when using LRU-PEA as replacement
policy. Finally, we propose The Auction. This is a framework that allows
architects for implementing auction-like replacement policies in D-NUCA
cache architectures. The Auction spreads replacement decisions from a single
bank to the whole NUCA cache. This enables the replacement policy to select
the most appropriate victim data block from the whole NUCA cache. The
implemented auction approaches increase performance benefits by 6-8% and
reduce energy consumption by 4% compared to the baseline configuration.
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