
1 
 

Toward sensitive document release with privacy guarantees 

David Sáncheza, Montserrat Batetb, 1 

aUNESCO Chair in Data Privacy, Department of Computer Science and Mathematics,  

Universitat Rovira i Virgili, Avda. Països Catalans, 26, 43007 Tarragona (Spain) 

david.sanchez@urv.cat 
 

bInternet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya, 

Parc Mediterrani de la Tecnologia, Av. Carl Friedrich Gauss, 5, 08860, Castelldefels, (Spain) 

mbatetsa@uoc.edu 
 

Abstract   

Privacy has become a serious concern for modern Information Societies. The sensitive nature of much of the data 

that are daily exchanged or released to untrusted parties requires that responsible organizations undertake 

appropriate privacy protection measures. Nowadays, much of these data are texts (e.g., emails, messages posted in 

social media, healthcare outcomes, etc.) that, because of their unstructured and semantic nature, constitute a 

challenge for automatic data protection methods. In fact, textual documents are usually protected manually, in a 

process known as document redaction or sanitization. To do so, human experts identify sensitive terms (i.e., terms 

that may reveal identities and/or confidential information) and protect them accordingly (e.g., via removal or, 

preferably, generalization). To relieve experts from this burdensome task, in a previous work we introduced the 

theoretical basis of C-sanitization, an inherently semantic privacy model that provides the basis to the development 

of automatic document redaction/sanitization algorithms and offers clear and a priori privacy guarantees on data 

protection; even though its potential benefits C-sanitization still presents some limitations when applied to practice 

(mainly regarding flexibility, efficiency and accuracy). In this paper, we propose a new more flexible model, named 

(C, g(C))-sanitization, which enables an intuitive configuration of the trade-off between the desired level of 

protection (i.e., controlled information disclosure) and the preservation of the utility of the protected data (i.e., 

amount of semantics to be preserved). Moreover, we also present a set of technical solutions and algorithms that 

provide an efficient and scalable implementation of the model and improve its practical accuracy, as we also 

illustrate through empirical experiments. 
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1. Introduction 

Information Technologies have paved the way for global scale data sharing. Nowadays, companies, 

governments and subjects exchange and release large amounts of electronic data on daily basis. However, 

in many occasions, these data refer to personal features of individuals (e.g., identities, preferences, 

opinions, salaries, diagnoses, etc.), thus causing a serious privacy threat. To prevent this threat, 

appropriate data protection measures should be undertaken by responsible parties in order to fulfill with 

current legislations on data privacy [1, 2].  

 

Because of the enormous amount of data to be managed and the burden and cost of manual data 

protection [3], many automated methods have been proposed in recent years under the umbrella of 

Statistical Disclosure Control (SDC) [4]. These methods aim at masking input data in a way that either 

identity or confidential attribute disclosure are minimized. The former deals with the protection of 

information that can re-identify an individual (e.g., a social security number or unique combinations of 

several attributes, such as the age, job and address), and it is usually referred to as anonymization, 

whereas the latter deals with the protection of confidential data (e.g., salaries or diagnosis). To do so, 

protection methods remove, distort or coarse input data while balancing the trade-off between privacy and 

data utility: the more exhaustive the data protection is, the higher the privacy but the less useful the 

protected data becomes as a result of the applied distortion, and vice-versa. In addition to data protection 

methods, the computer science community has proposed formal privacy models [5], within the area of 

Privacy-Preserving Data Publishing (PPDP) [6] and Data Mining (PPDM) [7, 8]. In comparison to the 

ad-hoc masking of SDC methods, in which the level of protection is empirically evaluated a posteriori for 

a specific dataset [5], privacy models attain a predefined notion of privacy and offer a priori privacy 

guarantees over the protected data (e.g., a probability of re-identification [9, 10]). This provides a clearer 

picture on the level of protection that is applied to the data, regardless the features or distribution of a 

specific dataset. Moreover, privacy models provide a de facto standard to develop privacy-preserving 

tools, which can be objectively compared by fixing the desired privacy level in advance.  

 

So far, most privacy models and protection mechanisms have focused on structured statistical databases 

[11], which present a regular structure (i.e., records refer to individuals that are described by a set of 

usually uni-valued attributes) and mostly contain numerical data. Privacy models such the well-known k-

anonymity notion relied on such regularities to define privacy guarantees: a data base is said to be k-

anonymous if any record is indistinguishable with regard to the attributes that may identify an individual 

from, at least, k-1 other records [9, 10].   
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However, many of the (sensitive) data that is exchanged in current data sharing scenarios is textual and 

unstructured (e.g., messages posted in social media, e-mails, medical reports, etc.). In comparison with 

structured databases, plain textual data protection entails additional challenges: 

- Due to their lack of structure, we cannot pre-classify input data according to identifying and/or 

confidential attributes, as most data protection mechanisms do [11]; in fact, for plain text, any 

combination of textual terms of any cardinality may produce disclosure.  

- In comparison with the usually numerical attributes found in structured databases, plain textual 

data cannot be compared and transformed by means of standard arithmetical operators. In fact, 

since textual documents are interpreted by data producers and consumers (and also potential 

attackers) according to the meaning of their contents, linguistic tools and semantic analyses are 

needed to properly protect them [12]. 

 

Because of the above challenges, the protection of plain textual documents has not received enough 

attention in the current literature [13-15]. As we discuss in the next section, most of the current methods 

and privacy models for textual data protection are naïve, unintuitive, require from a significant 

intervention of human experts and/or limit the protection to predefined types of textual entities.  

1.1.   Background on plain textual data protection 

Traditionally, plain textual data protection has been performed manually, in a process by which several 

experts detect and mask terms that may disclose identities and/or confidential information, either directly 

(e.g., names, SS numbers, sensitive diseases, etc.) or by means of semantic inferences (e.g., treatments or 

drugs that may reveal sensitive diseases, readings that may suggest political preferences or habits that can 

be related to religion or sexual orientations) [16]. In this context, data semantics are crucial because they 

define the way by which humans (sanitizers, data analysts and also potential attackers) understand and 

manage textual data.  

 

In general, plain textual data protection consists of two main tasks: i) identify textual terms that may 

disclose sensitive information according to a privacy criterion (e.g., names, addresses, authorship, 

personal features, etc.); and ii) mask these terms to minimize disclosure by means of an appropriate 

protection mechanism (e.g., removal, generalization, etc.). The community refers to the act of removing 

or blacking-out sensitive terms as redaction, whereas sanitization usually consists in coarsening them via 
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generalization (e.g., AIDS can be replaced by a less detailed generalization such as disease) [3]. The latter 

approach, which we use in this paper, better preserves the utility of the output.  

 

To relieve human experts from the burden of manual sanitization, the research community has proposed 

mechanisms to tackle specific data protection needs. On the one hand, we can find works that aim at 

inferring sensitive information, such as the authorship of a resource (e.g., documents, emails, source code, 

etc.) [17] or the profile of the author (e.g., gender) [18]; on the other hand, other works aim at preventing 

disclosure by masking the data that may disclose that authorship [19, 20]. In the healthcare context, we 

can find ad-hoc data protection approaches that focus on detecting protected health information (PHI, 

such as ages, e-mails, locations, dates or social security numbers) [21], which are data that, according to 

the HIPAA “Safe Harbor” rules, must be eliminated before releasing electronic healthcare records to third 

parties. Most of these application-specific approaches exploit the regularities of the lexico-syntactic 

regularities of the entities to be detected (e.g., use of capitalizations for proper names, structure of dates or 

e-mails, etc.) to define patterns or employ machine learning techniques such as trained classifiers. 

However, the applicability of these methods is limited to the use case they consider, and they do not offer 

robust guarantees against disclosure outside the entities in which they focus.   

 

General-purpose privacy solutions for plain text are scarce and they only focus on the protection of 

sensitive terms, which are assumed to be manually identified beforehand. We can find two privacy 

models that reformulate the notion of k-anonymity for documents rather than data bases: K-safety [22] 

and K-confusability [23]. Both approaches assume the availability of a large and homogenous collection 

of documents, and require each sensitive entity mentioned in each document of the collection to be 

indistinguishable from, at least, K-1 other entities in the collection. To do so, terms are generalized (so 

that they become less diverse and, hence, indistinguishable) in groups of K documents. However, 

documents cannot be sanitized individually and, due to the need to generalize terms to a common 

abstraction, data semantics will be hampered if the contents of the collection are not perfectly 

homogenous.  

 

In [15], a privacy model named t-plausibility that also relies on the generalization of manually identified 

sensitive terms was presented. A document is said to fulfill t-plausibility if, at least, t different plausible 

documents can be derived from the protected document by specializing sanitized entities; that is, the 

protected document generalizes, at least, t documents obtained by combining specializations of the 

sanitized terms. Even though this approach allows sanitizing documents individually, it is noted that 

setting the t-plausibility level is not intuitive and that one can hardly predict the results of a given t, 
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because they would depend on the document size, the number of sensitive entities and the number of 

available generalizations and specializations.  

 

To tackle the limitations of the above-described solutions, in [13] we presented an inherently semantic 

privacy model for textual data: C-sanitization. Its goal is to mimic and, hence, automatize the analysis of 

semantic inferences that human experts perform for document sanitization. Informally, the disclosure risk 

caused by semantic inferences is assessed by answering to this question: does a term or a combination of 

terms in a document to be released allow to univocally inferring and, thus, disclosing a sensitive entity 

defined in C? According to such vision, the privacy guarantees offered by the model state that a C-

sanitized document should not contain any term that, individually or in aggregate, univocally reveals the 

semantics of the sensitive entities stated in C. In accordance with current privacy legislations, C may 

contain the entities that legal frameworks define as sensitive, such as religious and political topics or 

certain diseases [24]. For example, an AIDS-sanitized medical record should not contain terms that enable 

a univocal inference of AIDS, such as HIV or closely related symptoms or treatments.  

 

In [13], C-sanitization is formalized according to the following elements: (1) D: the document to be 

protected. (2) C: the set of sensitive entities that should be protected from univocal disclosure in D (e.g., 

C could be a set of sensitive diseases or religious or political topics and D a medical record or a message 

to be posted in a social network). (3) T: whatever group of terms of any cardinality occurring in D that 

could be used by an attacker to unambiguously infer any of the sensitive entities in C (e.g., if C is a 

sensitive disease, T could be a synonym or a lexicalization, or a combination of treatments, drugs or 

symptoms that univocally refers to C). (4) K: the knowledge that potential attackers can exploit to 

perform the semantic inferences. The larger and the more complete the knowledge K is assumed to be, the 

stricter and the more realistic the assessment of disclosure risks will be and, hence, the more robust the 

privacy protection will be. C-sanitization relies on the evaluation of the disclosure risk that terms in D 

cause with regard to C according to the background knowledge K. Moreover, the privacy guarantees 

offered by C-sanitization ensure that univocal semantic inferences/disclosure of any of the entities in C 

are prevented. Formally, it is defined as follows. 

  

Definition 1. (C-sanitization). Given an input document D, the background knowledge K and a set of 

sensitive entities C to be protected, D’ is the C-sanitized version of D if D’ does not contain any term t or 

group of terms T that, individually or in aggregate, univocally disclose any entity in C by exploiting K. 
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The enforcement of C-sanitization relies on the foundations of the Information Theory to assess and 

quantify the semantics to be protected (defined by C) and those disclosed by the terms appearing in the 

document to be protected, much like humans experts do [3]. The implementation of the C-sanitization can 

provide the following advantages over the above-described works: i) automatic detection of terms that 

may cause disclosure of sensitive data via semantic inferences, a task that has been identified as one of 

the most difficult and time-consuming for human experts [3, 16], ii) utility-preserving sanitization based 

on accurate term generalization, iii) intuitive definition of the a priori privacy guarantees by means of 

linguistic labels (i.e., the set C of entities to be protected), instead of the abstract numbers used in all the 

former privacy models, and iv) individual and independent protection of documents (rather than 

homogenous document collections), regardless their content or structure.  

1.2.   Contributions and plan of this paper 

In spite of its potential benefits, C-sanitization still presents some limitations when applied to practical 

settings. In this paper, we tackle three main aspects. First, with C-sanitization the degree of protection is 

fixed: all the entities in C are protected in the same way according to a fixed criterion of strict non-

univocal disclosure. This may be too rigid and even insufficient in scenarios in which a stricter protection 

is needed: not only the entities in C should not be univocally disclosed, but also the ambiguity of the 

inferences should be large, so that we avoid plausible (even though non-univocal) disclosure. To solve 

this issue, we propose a new privacy model (which we name (C, g(C))-sanitization) that offers additional 

guarantees of disclosure limitation on top of those offered by the plain C-sanitization. The additional 

parameter of the (C, g(C))-sanitization enables to seamlessly configure the trade-off between the 

additional protection and the preservation of semantics, in a similar way that the k or t parameters do for 

k-anonymity or t-plausibility, respectively; but, we use intuitive linguistic labels (rather than abstract 

numbers) that give the user a clearer idea of the expected degree of protection and of semantic 

preservation. In this regard, our goal is to improve the flexibility and adaptability of the model 

instantiation to heterogeneous scenarios and privacy/utility preservation needs without impairing the 

intuitiveness of its instantiation and of the privacy guarantees it offers. 

 

Second, like any other model that tries to balance the trade-off between privacy protection and data utility 

preservation, the enforcement of (C, g(C))-sanitization is NP-hard in its optimal form [13]. To render the 

implementation practical and scalable, in this paper we also propose several heuristics that carefully 

consider data semantics to guide the sanitization process. Moreover, we also propose a flexible greedy 

algorithm incorporating these heuristics and providing a practical and scalable implementation of the 
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proposed model. The algorithm also provides parameters to configure its behavior towards maximizing its 

scalability or the protection accuracy. 

 

Third, as it will be discussed in the fourth section, the enforcement of both C-sanitization and (C, g(C))-

sanitization relies on an accurate assessment of the informativeness of terms, which is used to quantify 

the semantics they disclose. Being able to perform such assessment in a generic way is not trivial [25, 26], 

and natural language-related problems (i.e., language ambiguity) may severely hamper its accuracy. To 

tackle this issue we also propose an accurate, scalable and generic mechanism to measure the 

informativeness of terms by using the Web as general-purpose corpora.  

 

Finally, we illustrate the applicability and flexibility of (C, g(C))-sanitization (in comparison with the 

former C-sanitization, which we use as evaluation baseline) by means of an empirical study. In this study, 

we also test the improvements related to protection accuracy and efficiency brought by the technical 

solutions we propose here with respect to the former work [13]. 

 

The rest of the paper is organized as follows. The second section presents the new (C, g(C))-sanitization, 

which provides improved flexibility and configurability. The third section discusses the issues related to 

the practical enforcement of the model, proposes several heuristics to guide the protection process and 

presents a customizable and scalable algorithm. The fourth section discusses the issues related to the 

computation of term informativeness and proposes a generic solution that exploits the Web for that 

purpose. The fifth section reports and discusses the results of an empirical analysis of the model’s 

implementation against the baseline work in [13]. The final section depicts the conclusions and presents 

some lines of future research. 

2.   A flexible privacy model for textual documents 

In this section, we present a flexible privacy model for textual documents that allows configuring the 

trade-off between privacy protection (on top of the disclosure limitation guarantees of plain C-

sanitization) and data utility preservation. As mentioned above, a C-sanitized document D’ will offer the 

guarantee of a non-univocal disclosure (i.e., no unambiguous inference) of any entity in C. However, this 

guarantee could be too rigid in some scenarios. In practice, it is quite common to consider unacceptable 

the disclosure of a significant amount of the sensitive semantics because attackers may correctly infer the 

sensitive entities with a low ambiguity/high probability (even though not univocally). In these cases, we 

require of a mechanism to configure the trade-off between the additional degree of protection to be 
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applied (i.e., a level of uncertainty in the semantic inferences larger than the strict non-univocal 

disclosure) and the preservation of data semantics allowed by such degree of protection.  

 

The model we propose, named (C, g(C))-sanitization, allows configuring this trade-off on top of the 

privacy guarantees stated by C-sanitization, and without hampering the intuitiveness of the model 

instantiation. To do so, we define a (linguistic) parameter g(C) that allows to straightforwardly specify the 

maximum amount of allowed information/semantics disclosure of each entity c in C. To do so, we rely on 

the fact that the generalizations of an entity c disclose a strict subset of the semantics of c. According to 

this, we can lower the maximum level of semantic disclosure allowed for c (and, thus, force a stricter 

protection), by using an appropriate generalization g(c) as the threshold for risk assessment (instead of 

just c). Moreover, by defining a specific generalization for each c, we can independently and finely tune 

the allowed level of disclosure for each sensitive entity. This improves the flexibility of the model 

instantiation, which can be adapted to heterogeneous entities and privacy needs, as follows.  

 

Definition 2. ((C, g(C))-sanitization) Given an input document D, the background knowledge K, an 

ordered set of sensitive entities C to be protected and an ordered set of their generalizations g(C), we say 

that D’ is the (C, g(C))-sanitized version of D if D’ does not contain any term t or group of terms T that, 

individually or in aggregate, can disclose more semantics of any entity c in C, than those provided by 

their respective generalization g(c) in g(C) by exploiting K. 

 

For example, if we apply an (AIDS, chronic disorder)-sanitization over a document, we are stating that 

the protected version will reveal an amount of semantics of AIDS that, at most, corresponds to those of its 

generalization, chronic disorder; that is, any conclusions resulting from a semantic inference more 

specific than that will be uncertain. On the contrary, an AIDS-sanitized document (i.e., according to 

Definition 1), even though would not univocally reveal the concrete disease, AIDS, may disclose more 

specific semantics that could enable to infer that the document is referring about a disorder of the immune 

system, a conclusion that may be risky in some scenarios. In general, the more abstract the generalizations 

g(C) used as thresholds are (e.g, g(AIDS)=condition), the more the ambiguity we add in the attacker’s 

inferences and the less specific or certain his conclusions will be. Indeed, this lowers the actual disclosure 

risk at the cost of data semantics preservation, because a larger number of plausible solutions exists (e.g., 

in an (AIDS, condition)-sanitized document, conditions other than AIDS are as plausible as AIDS). Notice 

that, according to Definition 2, if several entities should be protected for a certain document, an ordered 

set of sensitive entities and their corresponding generalizations should be provided, such as ({AIDS, 

HIV}, {Condition, Virus}). 
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The disclosure assessment of C-sanitization is based on an information theoretical characterization of the 

semantics of terms. The underlying idea is that the semantics encompassed by a term can be quantified by 

the amount of information it provides, that is, its Information Content (IC), as it is widely accepted by the 

semantic community [25, 27]. By applying the notion of IC to each sensitive entity c in C, it turns that 

IC(c) is measuring the amount of sensitive information (of c) that should be protected because the 

disclosure of this information in the output document is what univocally reveals the semantics of c. Under 

the same premise, the amount of semantics of c revealed by individual terms t or groups of terms T 

appearing in the document D can be measured according to their overlap of information, that is, their 

Point-wise Mutual Information (PMI).  

 

On the one hand, the IC of a textual term t can be computed as the inverse of its probability of occurrence 

in corpora (which, in our case, represents the knowledge K available to potential attackers). 

 

( ) log ( )IC t p t= −
          (1) 

 

On the other hand, the PMI between a term t and a sensitive entity c can be computed as the difference 

between the normalized probability of co-occurrence of the two entities, given their joint and marginal 

distributions in corpora [28]: 

 

( ) log
( ) ( )
( , );PMI c

p c p t
p c tt =          (2) 

 

Fig. 1 (left) shows how PMI measures the amount of information overlap between two entities.  
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Fig. 1. Greyed area: on the left, amount of information/semantics that t discloses from c (and vice-versa); 

on the right: amount of semantics/information of c disclosed by the co-occurrence of t1 and t2. 

 

Likewise, the semantic disclosure of c caused by the aggregation of a group of co-occurring terms 

T={t1,…,tn} can be computed as follows:  

( ) log
( ) ( )
( , ,..., );

,...,
1 n

1 n

PMI c
p c p
p c t tT

t t
=         (3) 

 

As shown in Fig. 1 (right), in this case, PMI is measuring the disclosure of c as the union of the individual 

disclosures caused by each element ti in the group T={t1, t2}.  

 

Numerically, PMI is maximum if, in the underlying corpora that represents the knowledge K, a single t or 

a combination T always co-occurs with c, thus resulting in PMI(c;t)=IC(c) and PMI(c;T)=IC(c), 

respectively. This states that c is completely disclosed by t or T because the semantics of the former can 

be univocally inferred from the latter (i.e., there is no ambiguity in the semantic inference).  

 

Thus, to satisfy Definition 1, those individual terms t or groups of terms T in D whose PMI with regard to 

each c in C is equal to the IC(c), should be sanitized or redacted (i.e., generalized or removed) from the 

output document D’.  

 

By relying on the information theoretic characterization of data semantics depicted above, we propose 

enforcing (C, g(C))-sanitization (Definition 2) as follows. First, instead of using IC(c) as the threshold 

stating the maximum allowed disclosure during the assessment of risks, we use IC(g(c)); in this way, the 
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maximum amount of information/semantics of c that is allowed to be disclosed in the protected document 

are lowered until those of g(c), which is strictly less informative than c. This is formalized in Definition 3. 

 

Definition 3. (Information Theoretic (C, g(C))-sanitization). Given an input document D, the corpora that 

represents the knowledge K, an ordered set of sensitive entities C to be protected and an ordered set of 

their generalizations g(C), we say that D’ is the (C, g(C))-sanitized version of D if, for all c in C, D’ does 

not contain any term t or group of terms T so that, according to corpora, PMI(c;t)>IC(g(c)) or 

PMI(c;T)>IC(g(c)), respectively. 

 

Graphically, as shown in Fig. 2 (right), the use of a generalization g(c) as disclosure threshold for c 

(boldface circled area) lowers the amount of information/semantics that terms t or groups of terms T can 

disclose about c (greyed area). Compared to the basic C-sanitization (Fig. 2 (left), in which IC(c) acts as 

the threshold and for which t is not risky), (C,g(C))-sanitization forces the system to implement a stricter 

sanitization (see Fig.2 (right), in which IC(g(c)) is the threshold and for which t is risky); this will provide 

a better protection at the cost of the preservation of data semantics.  

 
Figure 2. Left: C-sanitization; Right: (C,g(C))-sanitization. Boldface circled areas represent the 

thresholds used by each model for assessing disclosure risks. 

 

The g(c) parameter in the proposed model allows configuring the inherent trade-off between privacy 

protection and data utility preservation, similarly to what the numerical parameters of other models (e.g., 

k-anonymity, t-plausibility) do. For example, the larger the k we specify when instantiating the k-

anonymity model, the more homogenous (i.e., indistinguishable) the protected data become and, thus, the 
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better the protection is but the lower the utility will be. In (C,g(C))-sanitization, the more abstract the 

generalizations g(C) are, the less informative but the more protected D’ becomes. Even though the 

possibility of balancing this trade-off is common to most privacy models available in the literature [11], 

all of them rely on abstract numerical parameters (k-anonymity, l-diversity, t-closeness, ε-differential 

privacy, t-plausibility, K-confusability, K-safety) whose practical influence in the protected output is, in 

most cases, difficult to understand and even more difficult to predict [13, 15]. On the contrary, the use of 

generalizations as thresholds of disclosure in our model is very intuitive because it provides a clear 

understanding on the amount of semantics that external entities (whether they are readers, data analysts or 

attackers) can learn of each c in the protected document. Moreover, as discussed above and contrary to 

numerically-oriented privacy models, these linguistic parameters enable a seamless adaptation of the 

model instantiation to current legislations on data privacy, whose rules about the topics that should be 

protected and up to which degree are also expressed linguistically; for example, locations more specific 

than counties should be protected according to the HIPAA [1], information that could reveal the specific 

race or religion of an individual is sensitive according to the EU Data Protection Regulation, etc. This 

greatly facilitates the model instantiation and, as far as we know, provides the first privacy model by 

which practitioners can directly enforce the guidelines stated in current legal frameworks. 

3.   Towards scalable and utility-preserving sanitization of risky terms 

In order to be utility preserving, document sanitization should protect risky terms by replacing them by 

generalizations, rather than just removing or blacking them out. Generalizing risky terms t (e.g., AIDS) by 

privacy-preserving generalizations g(t) (e.g., disease), which are less specific (i.e., 

IC(disease)<IC(AIDS)), will decrease the level of disclosure of c while still retaining a subset of the 

semantics of t (i.e., we still know that t is a disease). Thus, in our approach, once a term t is found to be 

risky according to the model instantiation, it is replaced with an appropriate generalization g(t) retrieved 

from a Knowledge Base (KB) that fulfills the privacy guarantee as defined in Definition 3; considering 

that the sanitized document D’ must not contain any term t so that PMI(c;g(t)) >IC(g(c)), we replace 

terms by generalization so that PMI(c;g(t)) ≤ IC(g(c)), where PMI(c;g(t)) represents the information 

retained of t (and disclosed of c) when t is replaced by a generalization g(t).  

 

Fig.3 illustrates this process: a term t, which discloses more information about c (whole greyed area) than 

that allowed by the threshold g(c) (boldface circle) is replaced by g(t) (dashed circle), which lowers the 

disclosed information low enough below the threshold but still retains some semantics (dark greyed area).   
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Fig. 3. (C,g(C))-sanitization of t via utility-preserving generalization: t is replaced by g(t). 

 

From the perspective of the preservation of data utility, the optimal generalization g(t) replacing a term t 

should retain the maximum semantics of t as possible, while fulfilling the guarantees of the model 

instantiation; in other words, g(t) should be the generalization, from those available in the KB, with the 

highest IC(g(t)) that fulfills PMI(c;g(t)) ≤ IC(g(c)). As introduced above, like any other model that tries to 

balance the trade-off between privacy protection and data utility (e.g., k-anonymity, t-plausibility) 

selecting these generalizations in an optimal way (with respect to data utility preservation) is NP-hard; 

thus, it could compromise the applicability of the model. In this section, we discuss this issue and propose 

several technical solutions to make the model implementation scalable. 

 

On the one hand, it is important to note that the selected generalization g(t) (from those available in the 

KB) of a certain t should fulfill the privacy criterion for all of the sensitive entities cj in C. Formally: 

 

( ) |( ( ; ( )) ( ( )), )
( ) arg max ( ( ( )))

i j i j j
i

g t KB PMI c g t IC g c c C
g t IC g t

∀ ∈ ≤ ∀ ∈
=       (4) 

 

On the other hand, in the most general case of groups of terms T of any cardinality, the optimal 

sanitization (i.e., the combination of generalizations of each ti in T that, in aggregate, retains the 

maximum amount of semantics while fulfilling the privacy criterion) is certainly NP-hard because the 

order in which terms in D are evaluated influences the order in which the groups of terms T are analyzed 

and sanitized, if needed. Hence, an optimal utility-preserving sanitization requires evaluating all possible 

combinations of T in D of any cardinality and any possible generalization of each ti in T, and picking up 

the combination of T that fulfills the privacy criterion while optimizing the preservation of semantics. 
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To render the sanitization process practical, we propose the following efficient greedy algorithm that 

relies on several utility-preserving heuristics to provide a scalable implementation of the model. 

 

Algorithm 1.  
Input:  D  //the input document  

        KBs  //the knowledge bases used to retrieve generalizations 

  C //the ordered set of entities to be protected 

  g_C //the ordered set of generalizations of the entities to be protected 

  MAX //maximum cardinality of the combinations of terms (A2) 

Output: D’   //the sanitized document 

  

1  D’=D; 

2  for each (di ⊆ D) do //for each context di defined in the document D (A1) 

3  n=1; //cardinality of the combination of terms to evaluate (H1)     

4  Term_seti=getSortedTerms(di); //terms in the context di sorted by their IC (H2) 

5    while (n≤|Term_seti| and n<MAX) do //create combinations up to MAX cardinality(A2) 

6      Combin=getComb(Term_seti, n); //ordered set of combinations with cardinality n  

7      while (not(empty(Combin))) do //evaluate each combination 

8        Tj=first(Combin); 

9        remove(Tj, Combin);   

10       risky =false; 

11       ck=first(C); //obtain the first sensitive entity to evaluate  

12       g_ck=first(g_C); //get the corresponding generalization 

13       while (not(risky) and ck ≠ null) do //evaluate all sensitive entities 

14         if (PMI(ck;Tj)>IC(g_ck)) then //privacy criterion according to Def.4 

15           risky =true; 

16         else 

17           ck=next(C); //get the next sensitive entity  

18           g_ck=next(g_C); //get the corresponding generalization 

19         end if 

20       end while 

21       if (risky) then //if the combination was risky 

22         Gen_setj=getSortedGen(Tj, KBs); //ordered sets of generalizations of Tj (H3)   

23         g_Tj=first(Gen_setj);    

           //check if the generalization set g_Tj fulfills Def. 4 for all ck in C 

24         while (not(PMI(ck;g_Tj)<(IC(g_ck)) ∀ ck ϵ C)) do  

25           g_Tj=next(Gen_setj); 

26         end while 

27         sanitize(Tj, g_Tj, D’); //replace terms in Tj by generalizations in g_Tj 
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28         replaceGenTerms(Tj, g_Tj, Term_seti); //also in the set of terms to evaluate 

29       end if   

30     end while   

31     n++; //evaluate longer combinations of terms 

32   end while 

33 end for   

34 return D’; 

 

Three heuristics are proposed to guide the protection process towards maximizing the preservation of data 

semantics: 

- H1: evaluate first the groups of terms T with lowest cardinality |T|. The idea is to avoid starting 

the analysis with large sets of terms because, in case of disclosure of any c in C, we cannot 

discern which of the terms ti in T are indeed causing that disclosure (because of their strong 

relationship with c) from those that are irrelevant (and that could be even removed from T without 

significantly altering the disclosure assessment). Thus, to avoid unnecessary sanitizations of non-

related or slightly related terms when combined with highly related ones, we start the analysis 

with individual terms (i.e., |T|=1, line 3 in Algorithm 1). In case of disclosure, these individual 

terms will be sanitized and, from that moment, they will be replaced by the appropriate 

generalizations in further iterations of the analysis (line 28 in Algorithm 1). Only once all 

individual terms have been evaluated for disclosure (and eventually replaced by generalizations), 

the process continues with groups of two terms, and so on (line 32 in Algorithm 1).   

- H2: at each iteration of the analysis, evaluate first those terms with the highest informativeness 

(line 4 in Algorithm 1). Terms t with high IC(t) reveal more information; thus, if t is semantically 

related with the entities C to be protected (most textual terms are in fact related up to some degree 

[14]), those terms with a higher informativeness are more likely to disclose a larger amount of the 

C’s semantics. In this manner, the most potentially risky terms and the combinations in which 

they are involved are evaluated (and sanitized) first (line 6 in Algorithm 1). With this, we 

contribute to minimize the amount of unnecessary sanitizations, because we avoid combining 

highly informative (and thus potentially risky) terms with those with low informativeness, which 

may not need to be protected. 

- H3: once a combination of terms T is found to be risky according to the privacy criterion, the 

sanitization process is performed by: i) picking all the possible generalizations g(ti) for all the 

terms ti in T, ii) generating all the possible combinations of generalizations, iii) sorting these 

combinations according to the aggregated informativeness of their elements (line 22 in Algorithm 
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1) and, according to such order, iv) selecting the first one that fulfills the privacy criterion (line 24 

in Algorithm 1).   

 

We can see that the combination of these heuristics in the greedy algorithm guides the protection towards 

minimizing the number of unnecessary sanitizations. Moreover, in order to make the practical 

enforcement more scalable (especially for large documents) two additional parameters have been also 

incorporated into the algorithm:  

- A1: allows splitting the input document D in several textual contexts di ⊆ D (line 2 in Algorithm 

1) so that the analysis of groups of terms is limited to the words framed in a subset of the 

document and, thus, a smaller amount of term combinations shall be considered. This relies on 

the assumption that, in general, the strength of the semantic relationships between terms co-

occurring in a document tends to decrease as they are more distant in the text [29], as it does the 

disclosure risk. This approach is usually considered by other sanitization mechanisms available in 

the literature, which define textual contexts as paragraphs, sentences or just adjacent words [15]. 

- A2: limits the maximum cardinality of the groups of terms. As above, with this action we achieve 

analyzing a smaller number of combinations (line 5 in Algorithm 1). In the most extreme case, 

only individual terms may be considered, thus solving the problem in linear time with respect to 

the number of terms in the document. However, this action may hamper the accuracy of the 

disclosure assessment because larger combinations of terms will be omitted. To compensate this 

issue, more abstract generalizations g(C) may be defined as sanitization thresholds, so that a 

stricter (but more scalable) sanitization is applied in practice.  

4.   Corpora selection and probability calculation 

The information theoretic enforcement of (C, g(C))-sanitization extensively relies on the probabilities of 

(co-)occurrence of terms (eqs. (1)(2)(3)) to measure term semantics. The accuracy of the probability 

calculation is thus crucial to ensure the consistency of the model enforcement; however, this is also a 

challenging task, because language ambiguity may hamper this calculation [26, 30]. On the other hand, 

the selection of the corpus from which to compute probabilities is also important to make K (i.e., the 

knowledge we assume is available for attackers) a faithful representation of the semantics as they are 

understood and used by humans (i.e., sanitizers, data analyst and potential attackers). In this section, we 

discuss these two important issues and propose a general approach to accurately compute probabilities. 
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The first author proposing the use of IC to quantify the semantics of concepts was Resnik [25], in a work 

that seminally inspired many other semantic researchers [31-35]. Probabilities were computed from 

tagged textual corpora, in which term appearances were manually associated to their conceptualizations 

(i.e., meanings) that were modeled in a reference knowledge base; for example, the occurrence of the 

word “virus” referring to a malicious computer program was associated to the concept “(computer) 

virus”, whereas the occurrence of the word “virus” referring to an infectious microorganism was 

associated to the concept “(biological) virus”. In this manner concept occurrences were properly 

disambiguated and, thus, their probabilities were not affected by the potential ambiguity (i.e., synonymy 

or polysemy) inherent to the terms (and their lexicalizations) used to refer to the concepts. Moreover, the 

probability calculation was made consistent with the taxonomic structure of the conceptualizations used 

to perform the annotation (e.g., (biological) virus → microorganism → organism): the probability of a 

concept c (e.g., microorganism) considers all the explicit appearances of the lexicalizations of c (i.e., 

synonyms or acronyms, such as micro-organism) and also all of their specializations (i.e., hyponyms, 

such as virus, bacteria, pathogen, etc.). Formally: 

 

( )
( )

( ) h
h

c hyponyms c
occurrences c

p c
N

∈
∑

=  ,       (5) 

where hyponyms(c) includes the concept c and all of its specializations, and N is the total number of 

occurrences of concepts in the corpus.  

 

With this approach, it is ensured that the probability of concepts monotonically increase as one moves up 

in the taxonomy of concepts (e.g., p((biological) virus) ≤ p(microorganism) ≤ p(organism)) which, in 

turn, ensures that the IC of a concept is lower than that of its hyponyms (e.g., IC((biological) virus) ≥ 

IC(microorganism) ≥ IC(organism)) [25]. This provides consistency to the IC as an assessor of the 

semantics of concepts because, as stated in section 3, generalizations must provide a strict subset of the 

semantics of their specializations. In fact, we recall that the sanitization implemented by our model 

extensively relies on the fact that, by replacing sensitive terms by appropriate generalizations, the amount 

of semantics disclosed is effectively reduced in order to fulfill the privacy model. 

 

Unfortunately, since tagged corpora are commonly annotated manually, their size and coverage are 

limited, especially for domain-specific terms (e.g., technical or scientific terminology), named-entities 

(e.g., organization names) or newly minted terms (e.g., a new electronic device), which are the usual 

targets of document sanitization due to their high specificity/informativeness. Thus, the probability 



 

18 
 

calculation may be hampered by data sparseness, which is obviously more prone to appear when 

computing the co-occurrences of several terms in which the PMI calculation relies.  

 

To tackle these limitations, it is possible to use massive raw electronic corpora instead of tagged text. 

Contrary to tagged corpora, electronic raw resources are largely accessible in the Web and cover most 

domains of knowledge. In fact, the corpus of resources offered by the Web is so large and heterogeneous 

that it is said to be a faithful representation of the information distribution at a social scale [36]; this 

argument has been supported by recent works focusing on privacy-protection [14, 37], which considered 

the Web as a realistic proxy for social knowledge. In this respect, the Web provides a good representation 

of the background knowledge K that attackers may exploit to infer sensitive data [37] and, thus, we 

propose to use it for probability calculations; that is, we assume that a perfectly knowledgeable attacker is 

such that has the whole knowledge provided by the Web available. Moreover, within the Web context, 

occurrence and co-occurrence probabilities can be efficiently computed by querying terms in a publicly 

available Web Search Engine (WSE) and retrieving the resulting page count [38]; specifically, the IC of 

an entity and the PMI of a pair can be computed from the Web information distribution as follows: 
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where W is the number of web resources indexed by the web search engine. 

 

Likewise, to evaluate the disclosure that groups of terms T (where T={t1,…,tn} without ordering) cause 

with regard to a sensitive entity c, we can compute their PMI as follows: 
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A limitation of this calculation is the fact that probabilities computed from the WSE page count can be 

severely affected by language ambiguity [30]. When the words used to refer to a concept are polysemic 

(e.g., virus), the probability computed from the web page count will overestimate the actual probability of 
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the underling concept (e.g., (biological) virus), because the count includes all the appearances of the word 

in the Web, regardless of the concept (i.e., meaning) to which they refer to; in this case, the concept will 

be considered less informative than what it truly is. Likewise, if a concept can be referred by means of 

different synonyms (e.g., the terms HIV and human immunodeficiency virus refer to the same disease) or 

entities referred in a discourse are not explicitly included in text due to ellipsis, the resulting probabilities 

will be lower and, thus, the informativeness will be overestimated. Even more important, and also related 

to language ambiguity, the monotonicity of the IC calculation with regard to the taxonomic subsumption 

will be hardly ensured. For example, querying HIV in Google provides 55 million results, whereas 

querying microorganism, which is a generalization of HIV, produces roughly 1.5 millions because many 

appearances of HIV do not explicitly mention microorganism due to ellipsis and synonymy. Taking these 

values independently would result in HIV having much lower informativeness than microorganism, which 

is inconsistent with respect to their taxonomic relationship (HIV is a specialization of microorganism). If 

not solved, this inconsistency will seriously hamper the applicability of our model, in which the 

informativeness of the generalizations (e.g., retrovirus→ virus → microorganism) is used as thresholds to 

configure the allowed disclosure of the semantics of the sensitive entities (e.g., HIV). 

 

To minimize the problems related to language ambiguity and to ensure the monotonicity of the IC 

calculation in which our disclosure assessment relies, in the following we propose a mechanism to 

contextualize WSE queries of sensitive entities within the scope of the generalizations defined in the (C, 

g(C))-sanitization instantiation. The main idea is that, by forcing the co-occurrence of a term referring to 

an entity (e.g., virus, as an infectious microorganism) and the generalization that is adequate to the 

meaning of the entity (e.g., microorganism), the effect of ambiguity in the resulting page count is 

minimized while the monotonicity of the IC calculation between the specialization and the generalization 

is fulfilled. On the one hand, polysemy is minimized because word occurrences rarely refer to different 

senses within the same document: if virus and microorganism co-occur in a document it is very unlikely 

that the former refers to a computer program. Likewise, since only explicit co-occurrences of the term 

and its generalization are considered, the potential ellipses of the latter are omitted from the probability 

assessment, thus fulfilling the monotonicity of the IC calculation (i.e., page_count(“virus” AND 

“microorganism”) < page_count(“microorganism”) and, thus, IC(virus & microorganism) > 

IC(microorganism)). The only drawback is the fact that the explicit contextualization of term occurrences 

will constraint the size of the sample considered in the calculation of probabilities (i.e., all the 

appearances of a (biological) virus alone are omitted). However, the size and redundancy of the Web 

helps to minimize the effect of this handicap, which, in any case, is preferable to the negative influence of 

language ambiguity and the lack of monotonicity [26]. 
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In practice, to contextualize the page count resulting from the queries performed to the WSE, the 

appropriate generalization will be attached to the term to be queried by using a logic operator supported 

by the WSE, such as AND or +. This contextualization is applied to all the queries evaluating the 

disclosure risk of the sensitive entity c, so that the PMI calculation is made numerically coherent with the 

IC of the generalization g(c) that acts as threshold for the (C, g(C))-sanitization instantiation. Indeed, the 

generalization g(c), which is picked up by the user of the model and that would correspond to the 

appropriate meaning of c, will implicitly disambiguate the occurrences of c. In this manner, only the 

occurrences of c that correspond to hyponyms of g(c), which are the appropriate ones to measure the 

disclosure, will be considered in the calculation. Formally, we propose computing the PMI between a 

sensitive entity c and a term t, contextualized by the generalization g(c) defined in (C, g(C))-sanitization, 

which we denote as PMIg(c)(c;t), as follows: 
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We apply this contextualized calculation to the disclosure risk assessment of (C, g(C))-sanitization 

(Definition 3), so that terms t or groups of terms T are risky if PMIg(c)(c;t)>IC(g(c)) or 

PMIg(c)(c;T)>IC(g(c)) for any c in C. Likewise, in case of disclosure and according to eq. (4), we replace t 

by the most informative generalization g(t) that fulfills PMIg(c)(c;g(t))<IC(g(c)) for all c in C. 

 

Probability contextualization ensures the semantic and, thus, numerical consistency of the IC/PMI 

calculus in which the model enforcement relies. As a consequence of this, we also enable that any 

generalization of c could be used as threshold for instantiating (C, g(C))-sanitization, because the 

contextualization fulfills PMIg(c)(c; g(c))=IC(g(c)), which is coherent with the notion of taxonomic 

subsumption; that is, g(c) is completely disclosed by c because the semantics of the former can be 

univocally inferred from the latter. 

5.   Empirical analysis 

In this section, we report and discuss a set of empirical results that show the suitability and benefits of (C, 

g(C))-sanitization and the technical solution presented above (i.e., the heuristic greedy algorithm and the 
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web-based contextualized probabilities) over the basic C-sanitization model, which we use as baseline. 

To evaluate the differences between both approaches (in terms of privacy protection accuracy and 

runtime), we configured the following set of scenarios by enabling or disabling the following features 

proposed in the current work: 

- Model parameterization. As proposed in section 2, the (C, g(C))-sanitization instantiation can be 

tailored to specific privacy/utility needs by using the parameter g(c) (i.e., a generalization g(c) for 

each entity c to be protected) that states the maximum level of disclosure. To analyze the benefits 

of this parameter in the protected outcome, we defined several generalizations for the different 

entities considered in the evaluation and compared the results they obtained against those 

obtained against the (non-parameterized) C-sanitization [13].    

- Analysis of groups of terms. As discussed above, the evaluation of combinations of terms of 

unbounded cardinality can be costly when dealing with large contexts and/or documents, because 

of the number of possible combinations to analyze. In our proposal, the cardinality of the groups 

of terms to be analyzed can be limited by means of the MAX parameter incorporated into 

Algorithm 1 (section 3), which allows reducing the number of elements to analyze. To evaluate 

the influence of this parameter both in the sanitized output and in the run time of the sanitization 

process, we performed different executions by fixing its value to 1 and 2. Due to the tight 

discourses of the evaluated documents (see details below), the whole text has been considered as 

a unique context. 

- Contextualization of probabilities. In section 4, we discussed the issues related to the calculation 

of concept probabilities from the page count of a web search engine, and we proposed a way to 

minimize the effects of language ambiguity while ensuring that probabilities are coherent with the 

notion of taxonomic subsumption. To measure the benefits of this calculation methodology, we 

evaluated the sanitized output resulting from the standard probabilities (as done in [13]) and from 

the contextualized version we propose here. In all cases, we used the Bing 

(http://www.bing.com/) web search engine.  

 

Our experimental case study is based on the privacy requirements stated in U.S. federal laws on medical 

data privacy [24], which mandate hospitals and healthcare organizations to protect medical concepts that 

are considered confidential before releasing patient records to, for example, insurance companies, in 

response to Worker’s Compensation or Motor Vehicle Accident claims, or a judge, in case of malpractice 

litigation [3]. In particular, all references to Sexually Transmitted Diseases (STDs) or HIV status should 
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be redacted or sanitized. To do so, terms explicitly referring to these diseases and those semantically 

related ones such as drugs, treatments or symptoms should be identified and protected [3].    

 

Coherently with the healthcare scope, we used the Wikipedia articles describing the sensitive entities 

(STD and HIV) as the input documents to be protected. Wikipedia articles are commonly used by 

researchers on document sanitization [13, 14, 37, 39-42] because they are considered authoritative sources 

of information and also because of their semantically tight discourses, which configure a specially 

challenging scenario for data protection. 

 

We have instantiated the (C, g(C))-sanitization parameters in accordance with the semantics of the 

entities to be protected and according to the knowledge modeled in a standard knowledge base (WordNet 

[43]), which has been also used as the KB to retrieve the generalizations used to replace (sanitize) risky 

terms. We used Virus and Infection as the generalizations of the two senses of HIV (an infectious agent 

and an infectious disease) and Disease as the generalization of STD. Moreover, we also considered the 

case in which no generalizations are stated, as expressed in Definition 1 [13] .  

 

The evaluation of the sanitized output has been carried out by comparing the former with the sanitization 

performed by a human expert that our proposal tries to mimic. To do so, the expert was requested to 

manually remove terms or groups of terms that, individually or in aggregate, may disclose the entity to be 

protected. Hereinafter, we refer as H to this set of manually removed terms, and as S to the set of terms 

detected by our proposal. The evaluation is performed by comparing the sets H and S according to the 

standard measures of precision, recall and F-measure.  

 

Precision (eq. 4) quantifies the percentage of terms identified as sensitive by our proposal (S), which have 

been removed by the human expert (Η). The higher the precision is, the better the utility of the output will 

be, because we are incurring in a lower number of non-necessary sanitizations. 
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Recall (eq. 5) quantifies the percentage of correctly sanitized terms from the total number of terms 

identified by the human expert. The higher the recall is, the better the protection will be.  
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F-measure (eq. 6) quantifies the harmonic mean of precision and recall and, thus, summarizes the 

accuracy of the protection process with respect to the human criterion. 

 

F measure
2× Recall× Precision

Recall + Precision
− =

       
(12) 

5.1.   Results and discussion 

The results obtained for the C-sanitization and (C, g(C))-sanitization, the generalizations of each entity 

(i.e., virus and infection for HIV and disease for STD) and the different implementation parameters 

discussed earlier (i.e., MAX cardinality of groups of 1 or 2 and standard or contextualized probability 

calculations) are evaluated in Tables 1 and 2 for HIV and STD, respectively. 

 

Table 1. Precision, recall and F-measure for different model instantiations (the first row corresponds to C-

sanitization and the second and third to (C, g(C))-sanitization) and implementation parameters for the 

HIV document. 

Model instantiation Implementation parameters Precision Recall F-measure 

HIV-sanitization 

 

MAX=1; Standard probability 100% 23.8% 38.4% 

MAX=1; Contextualized probability N/A N/A N/A 

MAX=2; Standard probability 

MAX=2; Contextualized probability 

65.5% 

N/A 

90,5% 

N/A 

76% 

N/A 

(HIV, Virus)-sanitization 

 

MAX=1; Standard probability 88.9% 38.1% 53.3% 

MAX=1; Contextualized probability 84.2% 76.2% 80% 

MAX=2; Standard probability 

MAX=2; Contextualized probability 

61.3% 

67.7% 

100% 

100% 

76% 

80.7% 

(HIV, Infection)-

sanitization  

 

MAX=1; Standard probability 100% 33.3% 50% 

MAX=1; Contextualized probability 74% 95.2% 83.3% 

MAX=2; Standard probability 

MAX=2; Contextualized probability 

53.8% 

58.3% 

100% 

100% 

70% 

73.7% 
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Table 2. Precision, recall and F-measure for different model instantiations (the first row corresponds to C-

sanitization and the second to (C, g(C))-sanitization) and implementation parameters for the STD 

document. 

Model instantiation Implementation parameters Precision Recall F-measure 

STD-sanitization 

 

MAX=1; Standard probability 87.5% 18.9% 31.1% 

MAX=1; Contextualized probability N/A N/A N/A 

MAX=2; Standard probability 

MAX=2; Contextualized probability 

64.1% 

N/A 

67.6% 

N/A 

65.8% 

N/A 

(STD, Disease)-sanitization 

 

MAX=1; Standard probability 73.3% 29.7% 42.3% 

MAX=1; Contextualized probability 73.3% 59.4% 65.6% 

MAX=2; Standard probability 

MAX=2; Contextualized probability 

62.1% 

61.2% 

97.3% 

100% 

75.8% 

75.9% 

 

Several conclusions arise from the analysis of these results. The best results from the privacy protection 

perspective (i.e., recall) are achieved when groups of terms are considered in the analysis (i.e., MAX=2), 

which produces nearly perfect results in all cases. Obviously, this implies evaluating a larger number of 

term combinations, which also requires a significantly larger number of queries to a WSE and, hence, 

increases the time needed to sanitize the document. The run time aspect will be discussed latter in this 

section. However, it is important to note that a cardinality of 2 seems to be enough to detect almost all the 

risky terms and that further analyses of larger combinations are not really necessary. On the other hand, 

this setting suffers from a lower precision, which may hamper the utility of the output due to the larger 

number of unnecessarily sanitized terms. The low precision is caused, in general, because probability 

calculations suffer from data sparseness when dealing with queries with a large number of terms [26].  

 

On the other hand, the effect of the contextualized probability calculation for groups of terms over the 

precision is less noticeable in comparison with the analysis of individual terms. Indeed, the fact that we 

are evaluating groups of terms and, thus, querying them together to the web search engine already 

minimizes term ambiguity. Moreover, precision slightly decreases as the generalizations used as 

thresholds in the model instantiation become less specific because i) most of the sensitive terms appearing 

in the document have been already detected and ii) the stricter analysis tends to increase the number of 

false positives. 

 

In contrast, if we limit the analysis to individual terms (i.e., MAX=1), recall lowers significantly because 

combinations of individually innocuous terms (which are risky in aggregate) remain unprotected. In fact, 

for C-sanitization, for which no generalizations are used as thresholds (i.e., HIV-sanitization and STD-



 

25 
 

sanitization), and with the standard probability calculation, which is hampered by language ambiguity, 

(see row 1 of tables 1 and 2) the recall is so low that the output will hardly avoid disclosure (i.e., 23.8% 

for HIV and 18.9% for STD). In this case, (C, g(C))-sanitization helps to make the sanitization process 

stricter, thus increasing the recall. The same can be said when generalizations are used to contextualize 

the probability calculation proposed in section 4 because, since we are considering individual terms 

(which can be potentially ambiguous), the inclusion of the generalizations in the queries helps to make the 

probabilities more precise, while ensuring the numerical consistency with respect to the taxonomic 

subsumption. As a result, recall significantly increases as generalizations become less specific (i.e., 76.2% 

for (HIV, Virus)-sanitization, 95.2% for (HIV, Infection)-sanitization and 59.4% for (STD, Disease)-

sanitization). Note also that contextualized term probabilities can only be applied to the (C, g(C))-

sanitization model, since we need the generalization defined as sanitization threshold to contextualize the 

queries. 

 

The results of the analysis suggest that the best configuration from the privacy protection perspective is 

such in which groups of terms with cardinality around 2 are considered (i.e., highest recall). However, a 

better balance between utility and protection can be achieved in the case of analyzing individual terms but 

using an adequate generalization as threshold and contextualizing term probabilities. In any case, an 

additional dimension should be considered in order to prefer one approach or the other: the run time of the 

sanitization process. In Table 3 we provide the average evaluation results (i.e., precision, recall and F-

measure) of the different model instantiations and documents (i.e., HIV and STD) showed in the previous 

tests (entities and model instantiations) together with the average run time required to sanitize the 

documents for each parameter value.  

   

Table 3. Average precision, recall, F-measure and run time for the different implementation parameters. 

Implementation parameters Avg. Precision Avg. Recall Avg. F-measure Avg. time 

MAX=1; Standard probability 89.9% 28,8% 43% 1 min. 

MAX=1; Contextualized probability 77.2% 76.9% 76.3% 2 min. 

MAX=2; Standard probability 61.4% 91.1% 72.7% 40 min. 

MAX=2; Contextualized probability 62.4% 100% 76.8% 41 min. 

 

Run time differences are very noticeable when moving from the analysis of individual terms to 

combinations of just two terms. Indeed, in the former scenario, the computational cost scales linearly with 

respect to the number of terms in the document, whereas in the latter the cost is exponential with respect 

to the number of terms and the cardinality of the groups. Even though the actual cost of evaluating groups 
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of terms is minimized in practice thanks to the heuristics implemented in the proposed Algorithm 1, the 

analysis of term combinations incurs in a high cost because of the large number of queries that are 

required. This may be problematic for large documents or contexts. In such cases, the highly scalable 

analysis of individual terms may be preferable, especially under the consideration that the sanitization can 

be made stricter (i.e., to increase the recall) by using less specific generalizations as thresholds (e.g., the 

output of (HIV, infection)-sanitization achieves a recall of 95,2% in around 2 minutes).   

 

On the other hand, the average evaluation measures shown in Table 3 suggest that the contextualization of 

probabilities we propose in section 5 adds no significant execution overhead over the analysis (since the 

number of queries remains the same, but just involving more terms), and also helps to improve the results 

in all cases. It is important to note that the increase in run time resulting from the contextualization of 

individual terms (1 vs. 2 minutes, in average) can be explained by the larger number of sanitizations 

resulting from the more precise analysis, which requires additional queries to assess and select the 

generalization to be used as replacement of risky terms. 

6.   Conclusions and future work 

The main goal of our work is to offer a theoretically sound and practically feasible solution to assist the 

burdensome task of manual document sanitization and to do so by mimicking the semantic reasoning 

employed by human sanitizers. To advance in that direction, in this paper we presented the theory and 

developed the practical aspects of (C, g(C))-sanitization, a flexible and inherently semantic privacy model 

for plain textual documents that, in comparison with other works focusing on documents sanitization [15, 

22, 23], offers an intuitive instantiation and clear beforehand privacy guarantees to practitioners.  

 

The main contributions of our work are: i) we proposed a flexible model that allows to intuitively 

configure the trade-off between the desired level of protection and of utility preservation; ii) we designed 

a customizable and scalable algorithm implementing the model that is driven by several semantics-

preserving heuristics; iii) we detailed a general solution to coherently and accurately compute the term 

probabilities needed by the information theoretic enforcement of the model by using the Web and web 

search engines as proxies for social knowledge. As a result, we provided the tools to ensure the 

applicability and accuracy of (C, g(C))-sanitization in practical scenarios, putting special emphasis on the 

preservation of data utility and in ensuring the scalability of the implementation. Empirical results and 

comparisons against the baseline showed that such tools contributed to improve the accuracy of the actual 
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protection and also provided the flexibility to tune the behavior of the implementation according to 

specific needs (privacy, privacy/utility ratio and/or scalability). 

 

As future work, in order to further illustrate the convenience and benefits of our model, we plan to 

engineer a set of case studies that show: i) how (C, g(C))-sanitization can be instantiated in accordance 

with the legislations on data privacy that are available for different areas (healthcare, finances, census, 

etc.) and, ii) how it can be applied to a variety of textual inputs (e.g., unstructured medical records, 

messages to be published in social media, e-mails, documents to be declassified, etc.). Moreover, we also 

plan to extend the implementation to support a variety of knowledge bases (i.e., other domain specific 

KBs such as SNOMED-CT or MeSH for medical data) and languages (by relying on multi-language 

linguistic tools to extract terms, such as OpenNLP and NLTK, and the translations available for the KBs 

to retrieve suitable generalizations). 
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