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Abstract – Recently it has been recognized that many complex social, technological and biological
networks have a multilayer nature and can be described by multiplex networks. Multiplex networks
are formed by a set of nodes connected by links having different connotations forming the different
layers of the multiplex. Characterizing the centrality of the nodes in a multiplex network is a
challenging task since the centrality of the node naturally depends on the importance associated
to links of a certain type. Here we propose to assign to each node of a multiplex network a centrality
called Functional Multiplex PageRank that is a function of the weights given to every different
pattern of connections (multilinks) existent in the multiplex network between any two nodes. Since
multilinks distinguish all the possible ways in which the links in different layers can overlap, the
Functional Multiplex PageRank can describe important non-linear effects when large relevance
or small relevance is assigned to multilinks with overlap. Here we apply the Functional Page
Rank to the multiplex airport networks, to the neuronal network of the nematode C. elegans, and
to social collaboration and citation networks between scientists. This analysis reveals important
differences existing between the most central nodes of these networks, and the correlations between
their so-called pattern to success.
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Introduction. – Many complex interacting systems
are formed by nodes related by different types of inter-
actions forming multiplex networks [1–4]. Examples of
multiplex networks are ubiquitous, from social [5–8] to
transportation [9–11] and biological networks [9,12]. For
example scientific authors form at the same time col-
laboration networks and citation networks in which they
cite each other [7,8], the airport network is formed by
airports connected by flights operated by different air-
line companies [10], in the brain neurons are simulta-
neously connected by chemical and electrical types of
connections [9,13,14]. A multiplex network is therefore
constituted by a set of N nodes interacting through M
layers which are networks formed by links having the same
connotation. In recent years we have gained a significant
understanding of the interplay between the structure and
the dynamics of multiplex networks [15–21] and relevant

insights regarding the level of information encoded in their
correlated structure [5,7–9,22–24]. In this context, given
the increasing number of multiplex network datasets, es-
tablishing the centrality of the nodes in multiplex net-
works has become a problem of major interest. Until
now, several multiplex centrality measures have been pro-
posed [8,25–30] which aim at going beyond the defini-
tion of centrality in single networks [31–33]. Examples
of multiplex centrality measure include the Versatility of
the nodes [25], the Multiplex PageRank [8,26], and the
Eigenvector multiplex centrality [27]. The Versatility [25]
emphasizes the relevance of nodes connected in many dif-
ferent layers and it applies to multiplex networks where
corresponding nodes in different layers are connected by
interlinks. The Multiplex PageRank [8,26] exploits the
correlations existing between the degree of the nodes in
different layers through the use of a biased random walk.

28004-p1

http://creativecommons.org/licenses/by/3.0/


Jacopo Iacovacci et al.

The Eigenvector multiplex centrality [27] instead assumes
that the centrality of a node with respect to one layer is
influenced by its centrality in other layers weighted by a
matrix of influences that one layer has on the other layer.
Both the Multiplex PageRank and the Eigenvector multi-
plex centrality do not make explicit use of the interlinks.
The main challenge when defining a centrality of the nodes
in a multiplex network without interlinks is that the cen-
trality depends on the relevance associated to the different
types of possible interactions that can exist between the
nodes. Recently, the complete set of possible interactions
existing between any two nodes of a multiplex network
has been fully characterized using the multilinks [7,22].
The multilinks specify all the layers in which any pair of
two nodes is connected. Here we propose a new centrality
measure called Functional Multiplex PageRank which as-
signs to each node a centrality depending on the influence
assigned to each type of multilink. In this way it is pos-
sible to go beyond the modelling of the influence of each
single layer because the influence of multilinks can cap-
ture important non-linear effects due to the overlap links.
For example in a duplex network it allows us to weight
a connection existing in both layers much more or much
less than the sum of the weights attributed to connections
which are exclusively present in one of the layers. The
Functional Multiplex PageRank associated to each node
is a function also called the pattern to success of the node.
The Functional Multiplex PageRank allows the compar-
ison of the pattern to success corresponding of different
nodes and important insights can be gained by studying
their correlations. Finally starting from the calculation of
the Functional Mutliplex PageRank it is possible to ex-
tract an Absolute Multiplex PageRank which is able to
provide a unique ranking for all the nodes of the multi-
plex network.

Multiplex networks and multilinks. – A multiplex
network �G = (G1, G2, . . . , GM ) is formed by a set of N
nodes V and M layers (networks) Gα = (V, Eα) with
α = 1, 2, . . . , M and Eα indicating the set of links in layer
α. It is to be noted here that in this definition of a mul-
tiplex network we do not include explicitly the interlinks
and therefore the multiplex networks we are considering
are equivalent to colored networks where links of different
colors form the different layers.

The multiplex network that we consider in this paper
can be fully represented using M adjacency matrices a[α]

with α = 1, 2, . . . , M indicating the interactions occurring
in each layer α. We assume that the networks forming the
different layers are directed and unweighted and we adopt
the convention that the adjacency matrix element a

[α]
ij = 1

if and only if node j points to node i in layer α, otherwise
a
[α]
ij = 0.
In multiplex networks two generic nodes can be con-

nected in more than two layers. In this case we say that
there is a link overlap in the multiplex network. The signif-
icance of the overlap of the links between any two layers

α, β can be evaluated by means of the total overlap be-
tween any two layers [22]. The total overlap O[α,β] be-
tween layer α and layer β is given by the total number of
pairs of nodes connected both in layer α and layer β, i.e.,

O[α,β] =
∑
i,j

a
[α]
ij a

[β]
ij . (1)

For a general multiplex network with M > 2 there are
multiple ways in which the links can overlap across dif-
ferent layers. A way to fully characterize multiplex net-
works with link overlap is to use the recently introduced
concept of multilinks [7,22]. In fact, in a multiplex net-
work it is convenient to specify for each pair of nodes i
and j all the layers in which they are connected. This is
simply achieved by indicating which type of multilink �m
connects the two generic nodes. We first define the vec-
tor �m = (m1, m2, . . . , mM ) of generic elements mα = 0, 1
with α = 1, 2, . . .M . We say that a generic pair of nodes
(i, j) is connected by a multilink �m = �mij if and only if
�mij = (a[1]

ij , a
[2]
ij , . . . , a

[M ]
ij ). In particular, two nodes that

are not connected in any layer are connected by the trivial
multilink �m = �0.

The multiadjacency matrices A�m, define the neighbors
of a node that are connected with a multilink of type �m.
Specifically the multiadjacency matrix elements take the
value one (A�m

ij = 1) if the pair of nodes (i, j) is connected
by a multilink �m, while otherwise A�m

ij = 0. Therefore the
multiadjacency matrix elements A�m

ij can be expressed in
terms of the adjacency matrices a[α] as

A�m
ij =

M∏
α=1

[
mαa

[α]
ij + (1 − mα)(1 − a

[α]
ij )

]
. (2)

Since every pair of nodes (i, j) can be connected by a
unique multilink, the multiadjacency matrices satisfy

∑
�m

A�m
ij = 1. (3)

Moreover we have A�m
ij = 1 for the unique type of multilink

�m = �mij , i.e., A�mij

ij = 1.
Take for example the case of a duplex network formed

by two layers α = 1, 2. The multiadjacency matrices cor-
responding to non-trivial multilinks �m �= �0 are given by

A
(1,0)
ij = a

[1]
ij (1 − a

[2]
ij )

A
(0,1)
ij = (1 − a

[1]
ij )a[2]

ij

A
(1,1)
ij = a

[1]
ij a

[2]
ij . (4)

Assume that we consider the airport duplex networks
formed by two layers corresponding to the flight con-
nections of two different airline companies. In this case
A

(1,0)
ij = 1 if the airport i can be reached from airport

j by a direct flight connection of the first company but
not by a direct flight connection of the second company,
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A
(0,1)
ij = 1 if the airport i can be reached from airport j

by a direct flight connection of the second company but
not by a direct flight connection of the first company, and
finally A

(1,1)
ij = 1 if airport i can be reached from airport

j by direct flight connections of both airline companies.
In general the multilinks can characterize all the differ-

ent ways in which a pair of nodes of the multiplex network
can be connected across the M layers. Nevertheless the
number of different types of multilinks increases exponen-
tially with the number of layers M , as it is 2M , and for
large number of layers the distinction between different
multilinks can be problematic. A way to go around this
problem is to classify all the multilinks according to the
multiplicity of link overlap ν given by

ν(�m) =
M∑

α=1

mα. (5)

Therefore if node i and node j are linked by a multilink
�m, the multiplicity of the overlap ν(�m) indicates in how
many layers there is a connection between the two nodes.
If we only distinguish between multilinks with different
multiplicity of the overlap, we can drastically reduce the
complexity of the analysis because the range of variability
of ν(�m) is given only by the set {1, 2, . . . , M}.

Functional Multiplex PageRank. – In this section
we will define a Functional Multiplex PageRank Xi of node
i. This centrality measure depends functionally on a set
of parameters z and as a function of the parameters z can
be reduced to:

– PageRank on each separate layer;

– PageRank on the aggregated network;

– PageRank on the network formed by the links (i, j)
present at the same time in every layer α =
1, 2, . . . , M .

The Functional Multiplex PageRank Xi of node i depends
on the tensor z with elements z �m ≥ 0 defined for every
type of multilink �m. It describes the steady state of a
random walker that hops from a node j to a neighbor
node i with probability α̃ if this is possible, and otherwise
performs random jumps to a random connected node of
the multiplex network. When the random walker hops
to a random neighbor it follows each multilink �m �= �0
with a probability proportional to z �m. Therefore we have
that the Functional Multiplex PageRank Xi(z) of node i
is given by

Xi(z) = α̃

N∑
j=1

A�mij

ij z �mij 1
κj

Xj + βvi, (6)

where z
�0 = 0 and where

κj =
N∑

i=1

A�mij

ij z �mij

+ δ0,
∑N

i=1 A�mij

ij z �mij ,

β =
1
N

N∑
j=1

[
(1 − α̃)(1 − δ0,

∑N
i=1 A�mij

ij z �mij ),

+ δ0,
∑

N
i=1 A�mij

ij z �mij

]
Xj,

vi = θ

⎛
⎝

N∑
j=1

A�mij

ij z �mij

+
N∑

j=1

A�mji

ji z �mij

⎞
⎠ . (7)

Here δx,y indicates the Kronecker delta and θ(x) indicates
the Heaviside step function. Using the definition of the
Functional Multiplex PageRank given by eq. (6), by mak-
ing an opportune choice of the influences z we can recover
the desired limiting cases:

– for z �m = z� > 0 for every �m with mα = 1, and z �m = 0
for every �m with mα = 0, the Functional Multiplex
PageRank reduces to the PageRank in the layer α;

– for z �m = z� > 0 for every �m �= �0, the Functional
Multiplex PageRank reduces to the PageRank in the
aggregated network;

– for z �m = 0 for every �m �= �1, and z
�1 = z� > 0,

the Functional Multiplex PageRank reduces to the
PageRank in the network where each link (i, j) is
present in every layer, i.e., (i, j) are connected by
a multilink �1.

For every node i the Functional Multiplex Centrality Xi(z)
is a function depending on the values of the influences
z associated to its multilinks. We call this function the
pattern to success of node i.

In general the Functional Multiplex PageRank allows
the association of different influence z �m to each type of
multilink and can therefore be used to capture the specific
role of overlapping links. Consider for example the case
of a duplex network. The Functional Multiplex PageRank
can describe non-linear effects due to the overlap between
the links when the weight associated to a multilink (1, 1)
is not equal to the sum of the weights associated to the
multilinks (1, 0) or (0, 1), i.e., when

z(1,1) �= z(1,0) + z(0,1). (8)

From the definition of the Functional Multiplex PageR-
ank one observes that the ranking X(z) is invariant under
the transformation

z = γz (9)

for γ > 0. Therefore by considering z as a vector in a
(2M − 1)-dimensional space, with elements z �m for every
�m �= �0, the Functional Multiplex PageRank only depends
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on the direction of this vector and not on its normal-
ization. Therefore the general definition of the Func-
tional Multiplex PageRank depends on 2M−2 independent
parameters.

We make here a general remark: although the above
definition is very general, the definition of the Functional
Multiplex PageRank for more than two layers might yield
a centrality depending on too many parameters (2M − 2)
and can be difficult to handle. Therefore in the following
we will describe first the case of a duplex network that
can be treated in full generality using two parameters,
and subsequently we will cover the case of a general mul-
tiplex network M where the parameters z �m are taken to
be dependent on a single external parameter q and on the
multiplicity of the overlap ν(�m).

Note that here and in the following we have considered
unweighted multiplex networks. Consequently the mul-
tiadjacency matrices have elements A�m

ij = 0, 1. However
it is possible to consider a weighted version of the Func-
tional Multiplex PageRank just by using in eq. (6) a set
of weighted multiadjacency matrices. The weighted mul-
tiadjacency matrices associate a weight to each multilink.
This weight could be equal, for instance, to the average
weight of the links forming the multilink, or, alternatively
to their maximum or minimum weight.

Absolute Functional Multiplex PageRank. – It
is often the case that one desires a global ranking of the
nodes. Here we propose to take as the ranking of node i
the maximum of the Functional Multiplex PageRank over
all the space in which the vector z varies. To this end
we define the Absolute Multiplex PageRank X�

i of node i
given by

X�
i = max

z
Xi(z). (10)

This constitutes only a possible choice of establishing an
Absolute Rank from the Functional Multiplex PageRank.
Another interesting possibility is to consider the absolute
ranking induced by the average of the Functional Multi-
plex PageRank, i.e.,

X̂i = 〈Xi(z)〉z. (11)

In the following we will refer exclusively to the Absolute
Multiplex PageRank X�

i .

Understanding Functional Multiplex PageRank,
a geometric interpretation. – In this section we will
study Functional Multiplex PageRank on different duplex
networks showing the rich information that can be gained
about its nodes. In all the cases discussed below we will
span all the region of variability of z = (z(1,0), z(0,1), z(1,1))
and we will always take α̃ = 0.85 which is the usual value
that is considered for the PageRank on single layers. As
has been discussed in the previous section, the Functional
Multiplex PageRank only depends on the direction of z in-
terpreted as a 3-dimensional vector in R

3. Therefore in a

Table 1: Top ranked airports according to the Absolute Mul-
tiplex PageRank, in a duplex airport network formed by
Lufthansa and British Airways airlines. Here in order to find
the absolute Functional Multiplex PageRank we evaluated the
Functional Multiplex PageRank for angles (θ, φ) chosen on a
grid with spacing δθ = δφ = π/80.

Rank Airport
1 Heathrow Airport (LHR)
2 Munich Airport (MUC)
3 Frankfurt Airport (FRA)
4 Gatwick Airport (LGW)

duplex network, changing only the direction of the vector
z within the 3-dimensional region where all the compo-
nents of z are either positive or null, is sufficient to span
all cases. Therefore the different directions of z can be
parametrized just by using two parameters. Here we ex-
press z = (z(1,0), z(0,1), z(1,1)) in spherical coordinates as

z(1,0) = sin θ cosφ,

z(0,1) = sin θ sin φ,

z(1,1) = cos θ, (12)

with θ, φ ∈ [0, π/2].
As a first duplex network on which to apply the func-

tional PageRank we consider the airport duplex network
formed by the flight connections of Lufthansa (layer 1) and
British Airways (layer 2) constructed by using the data of
ref. [10].

The angle φ modulates the influence of the multilinks
(1, 0) (exclusively Lufthansa flight connections) with re-
spect to multilinks (0, 1) (exclusively British Airways flight
connections). For φ = 0, θ = π/2 or (φ = 0◦, θ = 90◦)
the influence of exclusively Lufthansa connections is max-
imized, for φ = π/2, θ = π/2 (or φ = 90◦, θ = 90◦) the
influence of exclusively British Airways is maximized. The
angle θ measures the influence of multilinks (1, 1) cor-
responding to flight connections existing in both airline
companies with respect to the other two types of multi-
links corresponding to flight connections existing in a sin-
gle airline company. For θ = 0 or (0◦) the influence of
multilinks (1, 1) is maximized, while for θ = π/2 (or 90◦)
it is minimized.

The Absolute Multiplex PageRank of this duplex net-
work ranks its four top central airports according to the
rank shown in table 1.

We observe that the major airports display a very dif-
ferent Functional Multiplex PageRank revealed by their
distinct pattern to success. In fig. 1 we display the pattern
of success of four exemplar hub airports. The Frankfurt
airport (FRA) shows a pattern of success that establishes
the airport as a central hub for Lufthansa. In fact its
Functional Multiplex PageRank displays a maximum for
smaller values of φ and decreases as θ decreases toward
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Fig. 1: (Color online) Functional Multiplex PageRank for im-
portant airports such as Frankfurt Airport (FRA), Heathrow
Airport (LHR), Düsseldorf Airport (DUS) and Gatwick Air-
port (LGW).

zero showing that the Frankfurt airport takes most of its
centrality from flight connections operated exclusively by
Lufthansa. On the contrary, the Düsseldorf airport (DUS)
acquires significant centrality also by including connec-
tions existing in both layers although it constitutes an
important Lufthansa hub. Therefore it has a Functional
Multiplex PageRank that is increasing as φ decreases,
and also increasing as θ approaches zero. By calculating
the Functional Multiplex PageRank of Heathrow Airport
(LHR) and Gatwick Airport (LGW) one can see that they
are both British Airways hub airports but Heathrow ac-
quires important centrality also by including connections
existing in both layers.

Therefore this result shows that the links that deter-
mine the centrality of the nodes can be of different types
for two different nodes of the multiplex network. It is
therefore interesting to measure the correlation between
the Functional Multiplex PageRank (pattern to success) of
two different nodes. This can be measured by considering
the Functional Multiplex PageRank as a function of the
angles φ, θ, i.e., Xi = Xi(φ, θ). By evaluating the Func-
tional Multiplex PageRank on a given grid with points
(φs, θr), with r = 1, 2, . . . , Nφ and s = 1, 2 . . . , Nθ we can
calculate the Pearson correlation ρ between the Functional
Multiplex PageRank of the generic nodes i and j as

ρ =
XiXj − XiXj

σ(Xi)σ(Xj)
, (13)

where Y (φ, θ) is given by

Y (φ, θ) =
1

NφNθ

Nφ∑
r=1

Nθ∑
s=1

Y (φs, θr), (14)

and σ(Y ) =
√

Y 2 − Y
2
. Note that ρ ∈ [−1, 1],

where negative values ρ < 0 indicate anticorrela-
tions, while ρ > 0 indicates positive correlations.
In table 2 we report the correlations ρ existing
between the Functional Multiplex PageRanks shown
in fig. 1 showing both positive (Heathrow/Gatwick,
Frankfurt/Düsseldorf but also Heathrow/Düsseldorf) and

Table 2: Correlation ρ between the Functional Multiplex
PageRank of the airports Heathrow (LHR), Frankfurt (FRA),
Gatwick (LGW) and Düsseldorf (DUS). The Pearson corre-
lation is calculated starting form the Functional Multiplex
PageRanks Xi = Xi(φ, θ) calculated on a grid of δφ = δθ =
π/80.

ρ LHR FRA LGW DUS
LHR 1 −0.797 0.484 0.351
FRA −0.797 1 −0.983 0.275
LGW 0.484 −0.983 1 −0.729
DUS 0.351 0.2758 −0.729 1

Table 3: Top 10 ranked neurons according to the Absolute Mul-
tiplex PageRank of the neuronal network of C. elegans where
the first layer is formed by electric junctions and the second
layer is formed by chemical synapses. The Absolute Multiplex
PageRank was performed using a grid δφ = δθ = π/40.

Rank Neuron Rank Neuron
1 AVAR 6 PVCR
2 AVAL 7 AVDR
3 AVBL 8 AVER
4 AVBR 9 AVEL
5 PVCL 10 DVA

negative values (Heathrow/Frankfurt,Gatwick/Frankfurt,
Gatwick/Düsseldorf).

As a second example we analyzed the multi-
plex connectome (brain network) of the neumatode
C. elegans [9,13,14]. This dataset includes all the con-
nections existing between the 279 neurons of the animal.
These connections can be chemical (synaptic connections
forming the layer 1) or electrical (gap junctions form-
ing the layer 2) [9]. Both layers are undirected and
unweighted.

According to the Absolute Multiplex PageRank the top
ten central neurons are the ones displayed in table 3. In
the top four positions of the rank list we found the AVA
interneurons and the AVB interneurons.

The Pearson correlation coefficient analysis performed
on the top ten ranked node (fig. 2) shows, as expected, that
neurons of the same type (AVA, AVB, PVC, AVE) have
similar interaction channels, which is due to their charac-
teristic role and function in the nervous system. Also the
AVDR and the DVA are much more correlated between
each other and with the AVE neurons than with the other
neuron types (AVA, AVB, PVC).

In fig. 3 we show the Functional Multiplex PageR-
ank (pattern to success) of different types of neurons
in the parameter space (φ, θ). Given this duplex struc-
ture, the Functional Multiplex PageRank calculated ex-
clusively using electric junctions corresponds to the value
at φ = 0(0◦), θ = π/2(90◦) the one calculated using ex-
clusively synaptic connections corresponds to the value
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Fig. 2: (Color online) Correlation ρ between the Functional
Multiplex PageRank of the top ranked neurons in the duplex
brain network of the nematode C. elegans.

Fig. 3: (Color online) Functional Multiplex PageRank of the
neurons AVAL, AVBL, PVCL and AVEL in the duplex brain
network of the nematode C. elegans.

at φ = π/2(90◦), θ = π/2(90◦). Finally, for θ = 0(0◦),
only connections involving both electric and chemical in-
teractions are affecting the value of the Functional Mul-
tiplex PageRank. The patterns to success shown in fig. 3
reveal the very different functional roles of the correspond-
ing neurons in the brain network.

As a third example of duplex network we consider the
dataset studied in [7] formed by the authors of Phys. Rev.
E (PRE) until the year 2009. The first layer is the (di-
rected) citation network between the authors in the jour-
nal PRE, the second layer is the (undirected) collaboration
network between the authors in the same journal. Both
layers are here unweighted. The analysis of the functional
PageRanks of PRE authors reveals different patterns to
success, which eventually combine the centrality in the ci-
tation and the collaboration network. Here the angle φ
will tune the influence of the citation with respect to the
collaboration network, while the angle θ tunes the rele-
vance of the multilinks (1, 1) formed by authors that col-
laborate and cite other authors. In fig. 4 we display the
Functional Multiplex PageRank of three major authors,
M. E. J. Newman, H. E. Stanley and S. Strogatz showing
different patterns to success.

Modelling the dependence on the multiplicity of
the overlap and applications to real datasets. – In
this section we will study the application of the Func-
tional Multiplex PageRank to multiplex networks with ar-
bitrary number of layers. Due to the exponential growth
of the number of multilinks with the number of layers M ,

Fig. 4: (Color online) Functional Multiplex PageRank of the
three important authors of PRE, M. E. J. Newman, H. E. Stan-
ley and S. Strogatz. The correlation ρ between their Functional
Multiplex PageRank is ρ = 0.504 (Newman/Stanley), ρ =
0.780 (Newman/Strogatz) and ρ = 0.003 (Stanley/Strogatz).
This calculation is performed on a grid with δθ = δφ = π/20.

Table 4: Top ranked airports according to the Absolute Func-
tional Multiplex PageRank, in the multiplex airport network
formed by all N = 85 airlines companies operating in Europe.

Rank Airport
1 Madrid-Barajas Airport (MAD)
2 Roma Fiumicino Airport (FCO)
3 Palma de Mallorca Airport (PMI)
4 Paris Charles de Gaulle Airport (CDG)

we consider the case in which the value of the influence
parameter z �m only depends on the multiplicity of the over-
lap ν(�m). Specifically we take

z �m = qν(�m)−1, (15)

with q > 0. For example for three layers we will have

z(1,0,0) = z(0,1,0) = z(0,0,1) = 1,

z(1,1,0) = z(0,1,1) = z(1,0,1) = q,

z(1,1,1) = q2. (16)

Therefore if q > 1 the multinks with high multiplicity of
overlap will have higher influence, while for q < 1 their
influence will be suppressed.

With this convention the Functional Multiplex PageR-
ank will be a function of q ∈ R

+. Here we consider as
an example of an application the airport multiplex net-
work of ref. [10], including all airline companies operating
in Europe. This multiplex network is formed by N = 450
airports connected by N = 85 airlines. The Absolute Mul-
tiplex PageRank rewards the major tourist destinations
(see table 4) that have all Functional Multiplex PageR-
ank with a maximum for large q, i.e. they are central
when the influence of multilinks with large multiplicity of
overlap is significant. Nevertheless other important air-
ports can have significantly different pattern to success
(see fig. 5). Interestingly Heathrow and Frankfurt dis-
play a correlated pattern to success while Stansted and
Gatwick airport have an anticorrelated pattern to success.
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Fig. 5: (Color online) Functional Multiplex Centrality as a
function of q in the European airport multiplex network with
N = 450 nodes and M = 85 layers. The airports shown
are Madrid-Barajas Airport (MAD), Roma Fiumicino Air-
port (FCO), Palma de Mallorca Airport (PMI), Paris Charles
de Gaulle Airport (CDG) (top panel) and Heathrow Airport
(LHR), Frankfurt Airport (FRA), Gatwick airport (LGW) and
Stansted airport (STN) (bottom panel).

By proceeding similarly to the case of the duplex networks
we can calculate the Pearson correlation which is given by
ρ = 0.7641 between Heathrow and Frankfurt airports and
by ρ = −0.9750 between Stansted and Gatwick airports
(calculated on a logarithmically spaced one-dimensional
grid with qr = e(r−20)/5 and r = {1, 2, . . . , 40}).

Conclusions. – In conclusion we have proposed here to
study the Functional Multiplex PageRank for character-
izing the centrality of nodes in multiplex networks. This
measure associates to a node a function called its pattern
to success that is able to capture the role of the differ-
ent type of connections in determining the node central-
ity. Two generic nodes of a multiplex network can have
distinct patterns leading to their success, and here we pro-
pose a way to characterize their correlations. From this
measure we can extract an Absolute Multiplex PageRank
which provides an absolute rank between the node of the
multiplex. We have applied this measure to airport multi-
plex networks, to the multiplex connectome of the neuma-
tode C. elegans, and to the citation/collaboration network
of PRE authors. The Functional Multiplex PageRank can
be efficiently measured on duplex multiplex networks, and
when suitably simplified, it can be applied to multiplex
networks with arbitrary number of layers M . Interest-
ingly this algorithm can be easily generalized to weighted
multiplex networks.
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