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Collective phenomena emerge from the interaction of natural or artificial units with a complex
organization. The interplay between structural patterns and dynamics might induce functional clusters that,
in general, are different from topological ones. In biological systems, like the human brain, the overall
functionality is often favored by the interplay between connectivity and synchronization dynamics, with
functional clusters that do not coincide with anatomical modules in most cases. In social, sociotechnical,
and engineering systems, the quest for consensus favors the emergence of clusters. Despite the
unquestionable evidence for mesoscale organization of many complex systems and the heterogeneity
of their interconnectivity, a way to predict and identify the emergence of functional modules in collective
phenomena continues to elude us. Here, we propose an approach based on random walk dynamics to define
the diffusion distance between any pair of units in a networked system. Such a metric allows us to exploit
the underlying diffusion geometry to provide a unifying framework for the intimate relationship between
metastable synchronization, consensus, and random search dynamics in complex networks, pinpointing the
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functional mesoscale organization of synthetic and biological systems.
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The absence of a central authority coordinating the
interactions among units of a complex system might lead
to interesting collective phenomena, such as synchroniza-
tion [1] in biological systems or consensus [2] in social and
technological networks. This type of self-organization is
affected by the underlying structure, which for a wide
variety of real systems is highly heterogenous [3] and
modular [4,5]. Understanding the interplay between struc-
ture and dynamics of such systems has been, and still is, a
major challenge in the study of complex systems. Empirical
observations, confirmed by numerical simulations and
theoretical predictions, suggest that complex systems with
hierarchical and/or modular mesoscale organization of their
units [6] are characterized by topological scales [7] and the
emergence of functional clusters that might be, in general,
different from topological ones.

In this Letter, we show that such functional clusters
might be predicted and identified for a wide variety of
complex networks. More specifically, for biological sys-
tems which can be modeled as networks of oscillators, and
for systems of individuals or sensors attempting to reach
consensus. The unifying picture is provided by diffusion
geometry [8], developed one decade ago for nonlinear
dimensionality reduction of complex data. This approach
uses Markov processes to integrate local similarities at
different scales, allowing us to approximate the manifold
which better describes the data while preserving their
topological features. From a physical perspective, this
approach relies on topological information gathered by
random searches across time, a principle that has been used
successfully in network science to unravel the topological
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mesoscale organization of a system based on how infor-
mation flows through its units [9-14].

Synchronization dynamics.—Let us indicate with A;; the
entries of the adjacency matrix A representing the con—
nections among a set of N units (note that A;; = 1 if two
units are connected and zero otherwise), each one encoding
an oscillator with natural frequency w; and phase 6;. The
dynamics of this networked system of oscillators has been
widely studied in the last few decades [1] and it is generally
described by the Kuramoto model:

) = w; —l—Za,jA ;sin[;(7) —

The choice of o;; s the mixing rate, determines the speed of
convergence to a synchronized state, if any, and the behavior
of the system in the thermodynamic limit N — oo. It has
been shown that, at variance with one’s naive expectation,
synchronizability does not necessarily correlate with the
average distance between oscillators, which might be
extraordinarily small in the case of strongly heterogeneous
connectivity [15]. Such an heterogeneity might, in fact,
suppress synchronization in networked oscillators which are
coupled symmetrically with uniform coupling strength [16].
A solution to this apparent paradox [17]—undermining the
relevance of scale-free paradigm as a universal property of
robust self-organizing phenomena favored by evolutionary
dynamics [3]—is to consider a mixing rate which is
inversely proportional to a node’s degree k; =) Aijs
i.e., 0;; = K/k;, being K an overall coupling constant (that
we set equal to 1 in our analysis). This choice effectively
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reduces the dephasing effects in hubs, putting in a closer
relationship the dynamics of synchronization close to the
global attractor with the dynamics of information diffusion
in the network, confirming that synchronizability does not
only spread along shortest paths between two units but along
all possible ones.

In complex networks with a well-defined mesoscale
organization, nodes belonging to the same cluster tend to
synchronize to a common phase, not necessarily equal for
all clusters, while the dynamics towards synchronization
evolves [18]. If the natural frequency is the same for all
units, there is only one attractor for the dynamics, corre-
sponding to the point where all phases are the same, i.e.,
0;(t > 00)=0* for i =1,2,...,N and 7 representing
time. Numerical experiments show that a strong cluster
organization favors a metastable synchronized state, where
0; = 0; if nodes i and j belong to the same cluster. In
this peculiar state—and for a sufficiently small amount of
time—contributions from units which act as bridges with
other clusters might be neglected with respect to the larger
number of intracluster contributions. The overall dynamics,
therefore, consists of a first phase, where intracluster
synchronization takes place, followed by a second phase
where cluster-cluster synchronization emerges, slowly
driving the system towards its global attractor (see

Fig. 1). During both phases, sin(6; —6;) = (6; — 6;) and
the dynamics can be approximately described by
6=-Lo, (2)

where L = I — D™'A is the normalized Laplacian matrix,
L is the identity matrix, D;; = k;, and D;; = O for i # j. The
matrix L governing the dynamics is the same as that which
governs the diffusion of a random walker and the proba-
bility to find it in a certain node at a certain time step, as we
will see later. During the metastable state, we can describe
the common phase of nodes which are clustered together
by Qg”’, with m = 1,2, ..., M indicating the cluster, and
we indicate with 6, the vector (93 L gz, ...,Hg’”). Let us
introduce the rectangular matrix S encoding the (unknown)
mesoscale organization of the system, i.e., S;,, = 1 if node i
belongs to cluster m and it is zero otherwise. Such
definitions allow us to write the state vector in a very
compact form as z = S@,. Let us make a localized small
perturbation on the phase of unit i: the perturbed state can
be written as z; = z + 50,v;, v; being the canonical vector
with ith component equal to 1 and 60, < 1. By assuming
the metastable state as the initial condition, the state of the
system at time 7 is given by 6(z;i) = exp (—7L)z,. It is
plausible to expect that the magnitude of the difference
between the evolution of the perturbed states z; and z; is
small when the corresponding nodes belong to the same
cluster and larger when this is not the case. We define the
synchronizability distance between two nodes by

sz(i.j) = [0(z:i) = 0(z: )%, (3)
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FIG. 1. Emergence of functional clusters. (a) A Girvan-Newman

benchmark network [20] of N = 128 oscillators. The mesoscale
structure is organized into four clusters. (b) Phases 6;
(i=1,2,...,N) of identical oscillators (@w; = 0) reported on a
polar coordinate system with unitary radius for the original system
(outer ring) and with smaller radius (inner ring) for one realization
of its configuration model (which preserves the connectivity
distribution of the original data and removes other correlations).
The oscillators have initial phases uniformly distributed in [0, 27]
at time 7 = 0 (left panel). They are free to interact with each
other, according to the underlying topology, and drive the systems
to collective synchronization at 7 = 20 (right panel). The original
system reaches a metastable state—with intracluster units
synchronized to a common phase, with small fluctuations around
a reference value—whereas the configuration model—where the
mesoscale structure has been destroyed—quickly reaches the
global attractor. (c) Opinion-formation dynamics of agents in
the DeGroot model of decentralized consensus [21]. Each line
represents the evolution of an opinion x; (). In the metastable state
local consensus is first achieved within clusters (see the inset) and
later evolves into a collective opinion.

with 8(; i) = z; exp(—7L), to quantify how easy it is for
two nodes to reach a common phase during a metastable
state. Intriguingly, the synchronizability distance reduces
to s2(i, j) o [(v; — vj)e‘TL]z, where the right-hand side is
better known as diffusion distance [19].
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Consensus dynamics.—In a social context, as well as in a
system of sensors, decision-making processes require indi-
viduals (or units) to exchange information to self-organize
and, under certain circumstances—such as the absence of
coordinating authorities or external influences—the emer-
gence of consensus is observed [2,22]. A distributed con-
sensus dynamics based on a linear protocol exists and it is
governed by the Laplacian matrix of the network. Because of
the natural heterogeneity observed in these types of systems
[23], it is desirable to define a consensus dynamics where
the weight due to high connectivity of a few individuals
is somehow compensated, for instance by rescaling the
amount of exchanged information by their degree. This type
of decentralized opinion-formation dynamics is equivalent
to a continuous-time DeGroot model [21] and can math-
ematically described as in Eq. (2), with the opinion vector
x(7) playing the role of the phase vector €(z). It is
straightforward to show that the weighted-average consen-
sus is asymptotically reached [2]. Similarly to the case of
synchronization, we expect that in a network with a
mesoscale organization, individuals or units within a cluster
tend to reach consensus before, successively driving the
collective dynamics of the system towards the overall
consensus [see Fig. 1(c)]. To better understand this process,
we consider that the system is in a consensus state except for
node i, e.g., x(0) = v;. We consider the same setup with
another node j # i and then we track the evolution of both
states over time. We introduce the consensus distance

cz(i.j) = X(z:d) = X(z: )%, (4)
with %(z; i) = v; exp(—zL), under the plausible assumption
that, like in the case of synchronization, this distance tends
to be small if the two nodes belong to the same cluster and
it is larger otherwise. This distance can be rewritten as
(i, j) = [(v; - Vj)e‘TL]z, where the right-hand side is the
diffusion distance.

Using diffusion geometry to reveal functional clusters.—
The dynamics describing how a piece of information
diffuses through networked systems has been well studied
for classical [24] and multilayer networks [25,26] (see
Ref. [27] for a thorough review). The probability to find the
random walker in any node after a certain amount of time ¢
is given by the solution of the master equation

p(v) = -p(v)L, (5)

where L is the normalized Laplacian matrix we have
discussed before. The general solution is given by

p(z) = p(0)exp (—7L). Here, we indicate by p(z|i) =
V; exp (—TI:) the probability vector corresponding to the
initial condition where the walker’s origin is in node i with
probability 1 [i.e., p(0) = v;].

We exploit the intriguing connection between the mea-
sure of synchronizability in the metastable state, consensus,
and information diffusion to identify synchronization or

consensus clusters, after mapping this problem into a

hidden geometric space induced by Markov dynamics.
The diffusion distance [19] between nodes i and j is
defined by

d2(i.j) = [p(zli) = p(zl))]. (6)

where p,(z|i) encodes the probability to find a random
walker originated in i at node k, at time z. Diffusion
maps, built on this concept, are widely adopted for low-
dimensional embedding of high-dimensional data [8,28]
and provide a unified probabilistic interpretation for spec-
tral embedding and clustering algorithms [29], among
others. The diffusion distance between two nodes is small
if there are many paths which connect them, allowing
information to be easily exchanged. We can exploit this
property to gather insight about physical processes, such as
information diffusion, and collective phenomena with
emergent behavior, such as synchronization and consensus
dynamics. In fact, in a complex network where units are
organized in functional clusters, the diffusion distance
among nodes belonging to the same cluster must be small,
because the mesoscale structure favors the information
exchange within the clusters rather than across them. The
relationships among these processes are made explicit by
the identities s? = 60yd?(i, j) and c2(i, j) = d2(i, j).

At a specific time delay 7, the diffusion distances among
all pair of nodes define a matrix A, that we name diffusion-
distance matrix in the following. To obtain a geometrical
intuition about its meaning, we can embed the units into a
low-dimensional Euclidean space by using, for instance,
multidimensional scaling [Fig. 2(a)]. In this diffusion
space, closer points correspond to units with smaller
diffusion distance, i.e., to nodes that successfully exchange
information in less than 7 steps [Fig. 2(b)]. Important
consequences of this approach include the mapping from a
network’s mesoscale to clusters in space [Fig. 2(c)] and the
identification of hierarchies at multiple resolutions. When =
is small, microscale structure is revealed, while for increas-
ing 7 the mesoscale is screened until the macroscale
structure is captured.

For specific applications, it might be useful to identify
the mesoscale structure which provides the best coarse-
graining of the system, with respect to certain criteria. We
use the persistence of the mesoscale across time, if any, to
characterize the system. By construction, the diffusion
distance between two units tends to zero for increasing
time; it is therefore necessary to normalize it appropriately
to allow the comparison between the cluster formation
at different values of z. As shown in Fig. 2(d), this can
be accomplished by wusing the normalized matrix
A, = A, /max;;(A;;(7)), with the persistence of clusters
being encoded in the persistence of the diffusion distance
between their units. We exploit the fact that the normalized
diffusion distance quickly shrinks for intracluster nodes,
to guarantee that the average diffusion-distance matrix,
defined by A = 7} fmx A,—where 7, is a temporal
cutoff—will preserve this geometrical persistence. For
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Identifying functional clusters in diffusion space. (a) A Girvan-Newman benchmark network [20] with four clusters,

embedded in the Euclidean space by using multidimensional scaling applied to the diffusion-distance matrix A,_;. (b) Two units from
the same cluster are closer across time (z) than units from different clusters. (c) Diffusion-distance matrices corresponding to different
times: the mesoscale structure becomes more evident as time goes by. (d) The diffusion-distance matrix at time 7z is normalized as
A,/max;;(A;(7)) (i,j = 1,2,...,N): the normalized distance between units from the same cluster quickly shrinks, while the one
between units from different clusters slowly shrinks; this peculiar behavior is used to probe the mesoscale structure at different
resolutions. (e) The diffusion-distance matrix built by averaging the matrices up to a certain time z,,,, accounts for persistence of
mesoscale across time and it is used to unveil its hierarchical organization by means of hierarchical clustering. (f) All resulting
hierarchies are screened and the corresponding networks of clusters are built. The network which better represents the mesoscale
structure is the one where the average diffusion distance among clusters is maximized. The significance of such a structure can be easily
quantified by comparing with the result obtained from a network model preserving the degree distribution of the original data while
destroying other correlations (i.e., a configuration model). See the Supplemental Material [30] for further analysis of synthetic networks.

Tmax & N, 1.e., the size of the system, the results obtained
from the matrix A are robust to the choice of this cutoff. If
Tmax << N, the random walkers do not have enough time to
search through the system, and only the mesoscale closer to
the micro scale can be revealed. Conversely, if 7., > N,
the information gathered during the search is washed out
and only the macroscale can be captured. The hierarchical
clustering of units in the diffusion space of average
distances reveals the most persistent clusters and their
hierarchical organization [Fig. 2(e)]. To understand which
hierarchy better represents the mesoscale structure, it is
natural to analyze the corresponding network of clusters,
where each node is a functional superunit—consisting of
units belonging to the same functional cluster—and con-
nections between superunits are weighted by intercluster
connectivity. The average diffusion distance among super-
units is expected to be maximum when diffusion between
clusters is extremely hindered; this happens when the most
representative functional mesoscale is captured, and it is
significantly different from random expectation [Fig. 2(f)].

To better understand the relationship between structural
communities, due to purely topological connectivity, and the
functional clusters, due to the interplay between structure

and dynamics previously described, we have generated and
analyzed ensembles of Girvan-Newman networks [31],
while varying the ratio between inter- and intracommunity
connectivity. Diffusion geometry identifies clusters in agree-
ment with structural ones when this ratio is very small—i.e.,
when the structural mesoscale is strongly organized into
well-defined clusters—and provides different results for
larger ratios, by identifying a larger number of functional
modules, compared to other methods [9,32-34] (see
Supplemental Material [30]).

Given the expected difference between topological and
functional clusters, as an application of our framework we
analyze an empirical network providing anatomical con-
nectivity within and between visual cortical and sensori-
motor areas in the macaque brain [35]. Our analysis (see
Supplemental Material [30]) reveals a hierarchical func-
tional organization of cortical units, significantly different
from what should be expected from a network with the
same connectivity distribution in absence of correlations.
The importance of the ventral intraparietal (VIP) region in
bridging the two functional areas is manifested from the
analysis, in perfect agreement with previous findings [35].
Other key functional modules, such as areas 46 and 7a, are
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successfully identified, confirming studies based on neural
collective behavior measured from transfer entropy func-
tional connectivity and blood oxygenation level-dependent
correlation patterns [36]. It is worth remarking that despite
our results are not based on external functional information,
they provide results comparable with existing knowledge
obtained from that information. The analysis of similarities
among the identified functional clusters, the anatomical
ones and the structural mesoscale organization obtained
from the spin-glass approach [32], shows that our diffusion
geometry framework identifies a functional organization
that is distinct from the structural one (see Supplemental
Material [30]).

As diffusion mapping revolutionized applied math and
machine learning, we envision many potential applications
in complex systems physics based on the unifying frame-
work of diffusion geometry. Complementary to approaches
based on a network’s hidden geometry deduced from
structural properties [37—40], future applications to multi-
layer networks [26,41,42] will allow us to gain further insight
into the collective phenomena emerging from the interplay
between the structure and dynamics in such systems.
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edges financial support from the Ministry of Economy,
Industry and Competitiveness (MINECO), program Juan
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