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ABSTRACT
The complexity and scale of today’s cloud storage systems
is growing fast. In response to these challenges, Software-
Defined Storage (SDS) has recently become a prime candi-
date to simplify storage management in the cloud.
This article presents IOStack: The first SDS architecture

for object stores (OpenStack Swift). At the control plane,
the provisioning of SDS services to tenants is made accord-
ing to a set of policies managed via a high-level DSL. Policies
may target storage automation and/or specific SLA objec-
tives. At the data plane, policies define the enforcement of
SDS services, namely filters, on a tenant’s requests. More-
over, IOStack is a framework to build a variety of filters,
ranging from general-purpose computations close to the data
to specialized data management mechanisms.
Our experiments illustrate that IOStack enables easy and

effective policy-based provisioning, which can significantly
improve the operation of a multi-tenant object store.

1. INTRODUCTION
Nowadays, the amount of data stored in cloud storage ser-

vices is growing at unprecedented rates, as well as the variety
and heterogeneity of workloads supported by datacenter in-
frastructures. At the same time, datacenter administrators
should respond with increasing agility to changing business
demands in a cost-effective manner, which is cumbersome
due to the complexity of large cloud environments.
Software-Defined Storage (SDS) has recently become a

prime candidate to simplify storage management in the cloud.
The incipient literature in the field states that SDS should
provide a storage infrastructure with i) automation, ii) op-
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timization, and iii) policy-based provisioning [15, 7]. Typ-
ically, this is achieved by explicitly decoupling the control
plane from the data plane at the storage layer.

Automation enables a datacenter administrator to easily
provision resources and services to tenants. This includes
the virtualization of storage services (volumes, filesystems)
on top of performance-specific servers and network fabrics
orchestrated by the SDS system. Optimization refers to the
seamless ability to automatically allocate resources to meet
the performance goals of the different workloads [7]. Finally,
policy-based provisioning allows to control IO performance
and other value-added services through the deployment of
well-defined policies [15]. This includes, for instance, the
application of data reduction techniques, computation and
IO bandwidth differentiation on shared storage [11].

1.1 Today’s SDS Technologies
Today, SDS have become a commercial buzzword to de-

scribe popular storage products such as EMC ViPR and
IBM Spectrum Storage. These offerings promise IT depart-
ments to better handle large amounts of storage by uncou-
pling the management from its underlying hardware. Other
products such as MPStor Orkestra tap into storage virtual-
ization and a centralized controller to provision a variety of
virtualized storage and network resources.

Although these offerings have embraced this new way of
managing storage, SDS goes beyond automated resource
provisioning [15, 7]. A distinctive feature of SDS is the
ability of transparently enforcing transformations on data
flows based on simple policy definitions as elaborated in
IOFlow [15], the first seminal work in the field. The out-
standing feature of IOFlow is that it decouples the data
plane that enforces the policies from the control plane where
the policy logic lies, allowing IO control close to the source
(typically, a VM) and destination (shared storage) endpoints.

However, full abstraction from the underlying hardware
and storage stack is not easy to achieve. For instance, the
enforcement of policies can be done at the file, block and
object levels, making it hard to apply the “one-size-fits-all”
philosophy to SDS. Whereas IOFlow can be classified as a
file-level SDS architecture, there are no SDS systems for
block and object storage yet.
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Figure 1: Example of an OpenStack Swift deploy-
ment (proxy nodes in dark blue, storage nodes in
light blue) concurrently accessed by various tenants.
Storage policies may be enforced on object requests
to optimize the system and enrich the service.

2. TOWARDS SDS FOR OBJECT STORAGE
Object storage is becoming increasingly important for many

customers and applications, as it is ideal for solving the in-
creasing problems of data growth. As more and more data is
generated, storage systems have to grow at the same pace,
which is difficult to achieve with block-based storage sys-
tems, for instance.
Object stores are suitable to store immutable data that

may be subject to future analysis, such as server logs from
Internet services [10], the upcoming data deluge of the Internet-
of-Things [8], or even data coming from web crawlers and
sensor networks. There are also important synergies be-
tween object storage and Big Data scenarios [6]: DataBricks1

—the company that develops Apache Spark— resorts to
Amazon Web Services to deliver data processing services,
including S3. These disparate use cases can coexist in a
multi-tenant object store, which reinforces our motivation
for building SDS object storage architecture.
As a reference object store, we focus on the OpenStack

Swift (or simply Swift) [2]. Swift is accessed via a REST
API similar to Amazon S3 (e.g., PUT, GET). Swift can be
run on commodity servers and has been architected to auto-
matically replicate data across available disks for providing
scalability, availability and data integrity. Internally, Swift
consists of proxy servers and storage nodes (see Fig. 1).
Proxy servers route user requests to the storage nodes that
are the actual data containers and responsible for data main-
tenance and availability.

2.1 A Motivating Example
To better understand our goals, let us draw an example

of a multi-tenant scenario. Imagine an object store and 3
different tenants that access the system concurrently. On
the one hand, tenant T1 represents several servers that are
uploading data gathered from a sensor network. On the
other hand, tenants T2 and T3 represent sets of virtual
machines in a compute cluster that perform computations
on data objects containing logs. This is shown in Fig. 1.
In such scenario, a datacenter administrator may wish to

define distinct policies for these tenants to optimizing the
system’s operation or to enforce certain SLAs. Intuitively,
he could apply a data compression policy to T1 for reducing
its storage space demands, given that log-like data is poten-
tially redundant [9]. Tenants T2 and T3, however, may
apply data filters to import only the fraction of a dataset
actually needed for a specific computation task, thus reduc-
ing download traffic [10]. Further, he may wish to assign

1https://databricks.com
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Figure 2: IOStack architecture and filter framework
integrated in OpenStack Swift.

different IO bandwidth limits to the requests of T2 and T3.
As one can infer, the enforcement of these policies may

permit an object store to manage concurrent workloads more
efficiently. However, today’s object stores are lacking from a
flexible and transparent way of enforcing storage policies on
object requests. This is precisely the objective of IOStack.

3. IOSTACK DESIGN
The previous example opens the door to apply storage

optimizations under multi-tenant workloads [7], as well as to
offer Quality-of-Service (QoS) differentiated policies based
on a tenant’s requirements. Moreover, from a datacenter
administrator’s perspective, these goals need to be achieved
transparently, involving minimal human intervention.

To realize this vision, we present IOStack2. It features:

• Policy-based provisioning: At the control plane,
administrators provision SDS services to tenants via
policies. Policies may target storage automation, such
as enforcing compression or caching to a tenant’s re-
quests. Administrators may also define policies that
target a certain objective or SLA. In this case, IOStack
provides policies with a monitoring-based control loop
to achieve their objective under dynamic workloads.

• Filters: At the data plane, filters perform actual data
transformations on object requests to enforce storage
policies. IOStack has a suitable architecture to favor
the integration of new filters by third-parties. IOStack
also includes a ready-to-use filter framework that en-
ables the execution of user code on object requests at
different stages along an object’s write/read path. A
developer integrating a new filter only needs to con-
tribute the filter’s logic; the deployment and execution
of the filter is managed by IOStack.

Next, we describe the design of policies in IOStack.

4. ADMINISTRATION: STORAGE POLICIES
Storage policies can be seen as a means of providing stor-

age automation and/or SLA targets. In IOStack, datacenter
administrators simply define provisioning policies to tenants
via a simple domain specific language (DSL). Each policy
definition contains a target (e.g., TENANT, CONTAINER), an
action (DO clause), and optionally, a workload-based condi-
tion (WHEN clause). Hence, an administrator may define:

2http://iostack.eu



P1:FOR CONTAINER C1 DO SET CACHING

P2:FOR TENANT T1 WHEN PUTS_SEC > 3 DO SET COMPRESSION

P3:FOR TENANT T2 DO SET BANDWIDTH WITH PARAM1=30MBps

In this example, the first policy represents a storage au-
tomation policy, as the system automatically performs data
caching on container C1 after the definition of this policy.
The second policy goes further as it enables data compres-
sion on tenant T1’s requests if its throughput exceeds 3 PUTs
per second. Similarly, the last policy aims at providing a
certain amount of IO bandwidth to T2, considering that mul-
tiple tenants may be concurrently transferring data. As we
show later on, objective-oriented policies require monitoring
information to achieve their objectives.
Our DSL also supports grouping policies into QoS levels;

that is, GOLD tenants may benefit from data compression,
active storage tasks and high bandwidth limits, whereas
BRONZE tenants may receive only a small fraction of the avail-
able IO bandwidth under multi-tenant workloads. More-
over, workload metrics and actions can be dynamically added
to the language while the system is running.
As shown in Fig. 2, policies feed the SDS Controller.

Next, we depict the role that the SDS Controller plays on
changing the system’s behavior based on these policies.

5. CONTROL PLANE: SDS CONTROLLER
The SDS Controller represents the IOStack’s control plane.

When an administrator defines a policy, the SDS Controller
check its syntax and compiles it via the DSL compiler.
For storage automation policies, the compilation process

ends by issuing an HTTP REST call to the appropriate fil-
ter management API. Retaking the caching policy example,
the REST call persists at the IOStack metadata store that
caching should be enforced in container C1 (see P1 in Fig.
2). From that point onwards, data objects stored/retrieved
from container C1 will be cached at the data plane.
The compilation process for policies with workload-based

condition (i.e., objective-oriented), is more complex. To wit,
the DSL compiles policies as policy actors3 (similar to [14]).
Policy actors are processes that consume monitoring infor-
mation to check if the workload satisfies the “WHEN clause”
defined in the original policy. In the affirmative case, the
policy actor triggers a REST call to the appropriate filter
management API for automatically enforcing the policy.
Objective-oriented policies are possible thanks to the IOStack

monitoring system that we describe next.

5.1 Monitoring for Dynamic Provisioning
IOStack provides objective-oriented policies with monitor-

ing information to build a control loop. Thus, policies may
dynamically trigger actions or execute distributed enforce-
ment algorithms under workload changes.
IOStack integrates a Message Oriented Middleware (MOM)

to disseminate monitoring information from the data plane
(system resources metrics, tailored service metrics) to the
control plane [11]. Each workload metric is connected to a
different queue at the MOM message broker. At the control
plane, policy actors are subscribed to the workload metrics
defined in the “WHEN clause”, enforcing a policy if the work-
load condition is satisfied. Fig. 2 depicts this control loop.
Once a policy is stored as metadata in the metadata store,

it is accessible from storage filters at the data plane.
3https://en.wikipedia.org/wiki/Actor model

6. DATA PLANE: FILTER FRAMEWORK
At the data plane, filters are isolated software components

that perform actual transformations on data objects. These
transformations may be related to the contents of data (e.g.,
compression, computation) or to the management of data
(e.g., caching, IO bandwidth differentiation).

Although independent filter implementations can be in-
tegrated in IOStack, we provide a filter framework that
enables developers to run general-purpose code on object
requests. IOStack borrows ideas from active storage litera-
ture [13, 12] as a means of building filters to enforce policies.

The core of IOStack’s filter framework is based on IBM
Storlets [1]. Storlets extend Swift with the capability to run
computations near the data in a secure and isolated manner
making use of Docker4 as application container. With Stor-
lets a developer can write code, package and deploy it as a
Swift object, and then explicitly invoke it on data objects as
if the code was part of the Swift pipeline. Invoking a Stor-
let on a data object is done in an isolated manner so that
the data accessible by the computation is only the object’s
data and its user metadata. The Storlet engine executes a
particular binary when the HTTP request for a data object
contains the correct metadata headers specifying to do so.

The filter framework in IOStack has 3 main components:

Metadata and code management: This module resides
at the SDS Controller and exposes a high-level API i) to
enable the management of filter/tenant relationships, and
ii) to manage filter binaries.

Request classification: Our framework discriminates the
filters to be applied on a particular data flow at the Swift’s
proxy. Technically, an IOStack module in the Swift proxy
middleware has the notion of which filters should be exe-
cuted on a tenant’s request. Given that, it sets the appro-
priate HTTP headers in the incoming request (e.g., GET,
PUT) in order to trigger the subsequent filter execution.

Sandboxed filter execution: Upon the arrival of a ten-
ant’s request with the appropriate HTTP headers, a filter
can then be executed either at proxy or storage node stages;
a decision that depends on the filter developer. For instance,
a compression filter can efficiently be performed at the proxy,
whereas compute tasks on data objects may be more suitable
at the storage node.

pub l i c c l a s s StorletName implements I S t o r l e t {

@Override
pub l i c void invoke ( ArrayList<Stor let InputStream> iStream ,

ArrayList<StorletOutputStream> oStream ,
Map<Str ing , Str ing> parameters , S to r l e tLogge r l ogge r )
throws Sto r l e tExcept ion {

//User code here
}

}

The code snippet shows that developing a new filter in
our framework is simple. A developer only needs to create a
class that implements an interface (IStorlet), providing the
actual data transformations on the object request streams
(iStream, oStream) inside the invoke method. The ambi-
tion of IOStack is to ease the development of new filters by
the community to become a rich open-source SDS system.

As we show next, the IOStack filter framework can sup-
port many filter types, such as data reduction, storage opti-
mization and general computations on data objects.

4https://www.docker.com
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Figure 3: Comparison of Swift and IOStack in
a multi-tenant scenario. Scatter plots show the
throughput of tenants’ requests and the boxplot de-
picts the throughput of PUT requests for T1.

7. EARLY EXPERIENCES
In our experiments we execute in parallel workloads of

tenants T1 (write-only) and T2 (read-dominated). For T1
we resort to an object storage benchmark (ssbench5) that
uploads 32K synthetic text objects of 10MB in size using 4
threads. T2 is represented by a Spark instance (3 worker
VMs, 1 master VM) that downloads an existing log file of
164GB in size (64MB splits, .csv format). After download-
ing the log, T2 performs a simple word count task on the
user_id field to calculate the number of occurrences of users.
Our hardware consists of a 12-machine cluster formed by

3 high-end compute nodes and 8 storage nodes, plus 1 node
that acts as a proxy. Machines are connected via 1Gbit
switched network links. Compute nodes virtualize the Spark
instance (T2 ), whereas storage nodes and the proxy run
Swift and our IOStack prototype (SDS Controller and filter
framework). We execute ssbench in other servers at URV,
so T1 ’s PUT requests access our cluster from the Internet.
Our cluster runs a complete OpenStack Kilo installation.

7.1 Storage Automation Under Multi-tenancy
Next, we reproduce a multi-tenant scenario inspired in

Fig. 1 to assess the benefits of IOStack compared to Swift.

Benefits for T1: T1 is a write-oriented tenant that up-
loads log-like data to the system. Therefore, we enforced in
IOStack a compression policy —a filter that uses gzip— to
tenant T1 in order to i) improve transfer performance and
ii) minimize storage usage. Hence, scatter plots in Fig. 3
show the throughput of T1 ’s PUT requests (ssbench) and
T2 ’s GET requests (Spark), for both Swift and IOStack.
Observably, due to the parallelism of PUT requests, the

Swift proxy cannot deliver to T1 more than 30MBps per
request. Furthermore, when Spark starts downloading data,
the throughput of both tenants decreases drastically: most
concurrent requests exhibited a throughput around 4-6MBps.
Conversely, IOStack performs significantly better for PUT

requests of T1 due to the enforcement of a compression pol-
icy on highly redundant data. That is, the boxplot in Fig.
3 demonstrates that IOStack may achieve a median write
throughput of 3x higher than Swift. Furthermore, as visible
in the lower scatter plot of Fig. 3, T1 ’s PUT operations are

5https://github.com/swiftstack/ssbench
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Figure 4: Example of a dynamic storage policy.
When T1 ’s requests reach the workload condition,
the system automatically triggers compression.

only slightly affected when T2 starts its activity.
Apart from transfer gains, IOStack also involves impor-

tant storage space savings. To wit, T1 stored along the ex-
periment 312GB of data in Swift —considering 3-way repli-
cation, the actual amount of consumed storage is 936GB.
Due to the high redundancy of data produced by ssbench [9],
IOStack compressed T1 ’s data to 0.1% of its original size.

Benefits for T2: T2 uses Spark to download a dataset and
to count the total number of user ID occurrences on it.

Given that, we noted that T2 only needs a fraction of
the dataset to carry out such a task (i.e., user ID field).
Thus, we enforced in IOStack a compute-close-to-data policy
that filters on the server side the data actually needed by
T2. Intuitively, such an active storage filter may yield two
advantages for T2 : (i) To reduce the total amount of data to
be transferred from the object store to the compute cluster,
and (ii) to decrease data processing times.

Firstly, we noted that filtering the dataset at the source
enables an important reduction of bandwidth for T2. Specif-
ically, retrieving only the user ID field instead of all fields
per line of log reduces the amount of outgoing bandwidth in
95.6%. Although the throughput of T2 ’s transfers is lower
for IOStack due to filtering overhead and the smaller object
size, the traffic reduction greatly amortizes these penalties.

A consequence for T2 of enabling IOStack to filter data
objects at the source is that Spark processing times are much
lower. That is, the Spark cluster exhibited a processing time
of 9, 625s and 4, 009s for Swift and IOStack, respectively.
This means that IOStack reduced the processing time of
Spark in 58% compared to a regular Swift deployment.

Benefits for the administrator: These results are very
interesting from a performance perspective. However, the
major benefit of IOStack is to provide a datacenter’s ad-
ministrator with a simple way of enforcing storage policies
to object requests. To conclude, our experiments certify
that IOStack enables easy and effective enforcement of a
wide range of policies (data reduction, compute), which can
greatly improve the operation of a multi-tenant object store.

7.2 Dynamic Provisioning
Next, we examine the operation of dynamic storage poli-

cies in IOStack. That is, Fig. 4 shows T1 performing PUT

requests with increasing intensity. Then, we defined a dy-
namic policy that will enforce data compression on T1’s re-
quests if it exhibits ≥ 3 PUT per second (see P2 in Fig. 2).



Under such workload, our monitoring system keeps up-
dated the number of PUT/sec of T1. Then, the policy actor
subscribed to this metric detects that the workload of T1

satisfies the condition, and triggers the enforcement of a
compression filter. From that point onwards, requests are
compressed and, due to the redundancy of data objects, ex-
hibit higher throughput. This demonstrates the ability of
IOStack to manage dynamic storage policies, that may ap-
ply to a wide variety of filters.

8. RELATED WORKS
Software-Defined Storage. IOFlow[15] describes the

first SDS architecture—decoupled control and data planes—
that provides policy-based provisioning. Although an inspir-
ing work, there are profound differences between IOFlow and
IOStack. The most evident one is that IOFlow is designed
for a particular file-system, whereas IOStack focuses on ob-
ject storage. Moreover, IOFlow has a very specific scope; it
provides low-level IO services (routing, classification) to con-
trol flows and guarantee IO bandwidth limits. In contrast,
the IOStack’s filter framework is more flexible and supports
arbitrary computations on object requests. This enables het-
erogeneous filters to be easily added to the system.
Similarly, authors in [11] have recently proposed a system,

called Retro, that controls and monitors resource usage in
a distributed system (control plane). Retro also enforces
bandwidth/latency policies to guarantee a certain SLA (data
plane). Although Retro is not itself a complete SDS system,
we believe that it is particularly interesting as a reference to
build dynamic IO bandwidth differentiation in IOStack.
Active Storage. The early concept of active disk [13]

—i.e., hard drives with computational capacity— has been
borrowed by distributed file system designers in HPC envi-
ronments (i.e., active storage) for reducing the amount of
data movement between storage and compute nodes. Con-
cretely, Piernas et al. [12] presented an active storage imple-
mentation integrated in the Lustre file system that provides
flexible execution of code near to data in the user space.
The industry has also done remarkable steps in this direc-
tion by implementing commercial distributed file systems
with compute power such as PanFS [4] and PVFS [3]. Sim-
ilarly, the filter framework of IOStack enables computations
on data objects for policy enforcement. However, there are
major differences between IOStack and previous works: i)
These works do not focus on object storage, and ii) IOStack
provides isolated/sandboxed code execution.
Perhaps, the closest technology to IOStack for leverag-

ing active storage (IBM Storlets [1]) is ZeroCloud [5]. Both
IBM Storlets and ZeroCloud rely on application containers
—Docker and ZeroVM, respectively— for executing general
purpose code on Swift objects. However, the usage of Ze-
roVM is more restrictive, as all code needs to be written
in “C” and compiled via a proprietary tool-chain. Also, Ze-
roVMs can hold maximum of few tens of MBs of RAM.

9. CONCLUSIONS AND FUTURE WORK
We presented IOStack: the first Software-Defined Storage

architecture for object storage (OpenStack Swift). IOStack
enables policy-based provisioning : From an administrator
viewpoint, policies define the enforcement of data services,
namely filters, on a tenant’s requests. Moreover, in IOStack
filters can be built as independent components or integrated

in our filter framework, which enables developers to write
code —such as data reduction or optimization techniques—
to be transparently executed on object requests. Our exper-
iments certify that IOStack represents a step towards im-
proving the administration and operation of object stores.

Despite its potential, IOStack is only the first step of an
ambitious project6. For object storage, we are currently
working on the dynamic orchestration of filters in the IOStack
filter framework, based on the resources that filters con-
sume during their execution. We are also exploring ways
of automatically detecting conflicting filters —or wrong fil-
ter ordering— enforced on the same tenant to simplify filter
management. Furthermore, we are also developing a block
storage version of IOStack for providing unified SDS man-
agement of both block and object storage.
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