
Giving Wings to Your Data: A First Experience of Personal Cloud
Interoperability

Raúl Gracia-Tinedo*, Cristian Cotes, Edgar Zamora-Gómez, Genís Ortiz, Adrián Moreno-Martínez, Marc
Sánchez-Artigas and Pedro García-López

Universitat Rovira i Virgili (Tarragona, Spain)

Raquel Sánchez

eyeOS (Barcelona, Spain)

Alberto Gómez and Anastasio Illiana

NEC (Madrid, Spain)

Abstract

Personal Clouds are becoming increasingly popular storage services for end-users and organizations.
However, the competition among Personal Clouds, their proprietary nature and the heterogeneity of syn-
chronization protocols has lead to a complete lack of interoperability among them. Regrettably, this situa-
tion impedes that users share data transparently across multiple providers. Even worse, the lack of interop-
erability has associated serious risks, such as vendor lock-in, in which users get trapped in a single provider
due to the cost of switching to another one.

In this work, we contribute DataWings: the first interoperability protocol for Personal Clouds. DataWings
consists of an authentication management protocol and a storage API for file storage, synchronization and sharing
that adhere to the current authentication (OAuth) and REST standards, respectively. Moreover, we demon-
strate the feasibility of DataWings by implementing the protocol in various providers (NEC, StackSync,
eyeOS) and performing a real deployment evaluated replaying back-end traces of production systems
(UbuntuOne, NEC). To our knowledge, this is the first real-world experience of Personal Cloud interoper-
ability. Our experiments provide new insights on the performance implications that different types of user
activity and the underlying sharing network topology have on the implementation of our protocol. We con-
clude that DataWings is flexible enough to provide horizontal interoperability to heterogeneous Personal
Clouds, opening the door for a broader adoption by other vendors.

Keywords: Cloud Storage; Personal Clouds; Syntactic Interoperability

1. Introduction

Over the last years, the concept of Personal Cloud has been materialized by several successful com-
mercial offerings. Services like Dropbox, Box or SugarSync provide online file storage, synchronization, and
sharing, as well as accessibility from a variety of mobile devices and the Web. Furthermore, Personal Clouds

∗Corresponding author.
Email addresses:

{raul.gracia|cristian.cotes|edgar.zamora|genis.ortiz|adrian.moreno|marc.sanchez|pedro.garcia}@urv.cat (Raúl
Gracia-Tinedo*, Cristian Cotes, Edgar Zamora-Gómez, Genís Ortiz, Adrián Moreno-Martínez, Marc Sánchez-Artigas and Pedro
García-López), raquel.sanchez@eyeos.com (Raquel Sánchez), {alberto.gomez, anastasio.illana}@emea.nec.com (Alberto
Gómez and Anastasio Illiana)

Preprint submitted to Elsevier March 31, 2016

*Manuscript with source files (Word document)
Click here to view linked References

http://ees.elsevier.com/fgcs/viewRCResults.aspx?pdf=1&docID=11503&rev=1&fileID=291860&msid={7983EDD4-59BC-4CC6-A40A-10460A94CB1E}

are also becoming a popular platform to deploy external applications, such as photo viewers or document
editors, which access the storage layer via REST (Representation State Transfer) APIs and give added value
to the personal storage service itself. According to the market reports, these services are meeting well users’
needs; for instance, Dropbox’s user population grew from 100 to 200 million only in 2013 [1].

However, with competition among vendors growing at such a high pace, the success for a Personal
Cloud service lies on being an all-in-one personal storage solution for an increasing number of users. That is,
Personal Clouds are increasingly becoming large data silos in which native interoperability across providers
is non-existent [2]. This yields to the inability of these services to exchange exchange among them and
to provide transparent data access to external customers. Similarly, external applications managing Personal
Cloud data need to be adapted to the semantics of each vendor. The roots of this problem lie deeply in that
Personal Clouds are still essentially proprietary and they have not been the subject of standardization [3].

Regrettably, this data silo model impedes that users and applications share data transparently across mul-
tiple providers. Even worse, there are associated risks in the Personal Cloud model, such as vendor lock-in,
where users stick to a single vendor due to the high cost and complexity of switching providers [4; 5; 3].
From the viewpoint of users, vendor lock-in has serious and diverse implications, ranging from unexpected
Quality-of-Service (QoS) changes [6] to the lack of trust on unilateral variations on pricing policies or terms
of service [7].

In this sense, one way for allowing customers to be more agile in responding to vendor lock-in is by
offering a standard interoperability protocol among providers. Naturally, these protocols may benefit from
the existing open standards already adopted by most Personal Clouds, such as REST (Representational
State Transfer) APIs and OAuth [8]. Besides, while an open and standard protocol is a generic prerequi-
site for interoperability, we identify two specific factors that may favor interoperability among Personal
Clouds: i) To design a protocol that covers the core operational requirements of most existing services, and ii)
to encourage an initial set of vendors to deploy the protocol.

First, conversely to other services that exhibit an heterogeneous and ever-growing number of func-
tionalities and varying data types (e.g., on-line social networks), most Personal Clouds provide similar
functionalities on users’ data (storage, synchronization and sharing). Such a de-facto set of functionalities
brings the opportunity of defining APIs that cope with the requirements of heterogeneous services in the
long term, limiting the “agreement effort” among Personal Clouds.

Second, deploying an interoperability protocol on an initial group of providers may represent a great
step towards its broader adoption. This is specially true in the Personal Cloud arena, where providers have
not focused on interoperability as a primary feature. Therefore, a pilot interoperability experience among
real-world vendors may encourage others to integrate the protocol as it can be seen as a new, value-added
feature to the service.

All in all, we believe that the future will require Personal Clouds to provide users and applications
with technical means to manage data transparently among vendors. Indeed, an interoperable Personal
Cloud market will open up this sector to SMEs and strengthen their market position. We benefit from our
previous observations to design the first interoperability protocol for Personal Clouds. As we show later
on, we identify the necessary points of agreement among these services to enable interoperability: user
authentication and storage APIs. Moreover, an open implementation of the protocol and a real deployment
on various services certifies its feasibility, opening the door for a broader adoption.

1.1. Contributions

In the context of the EU CloudSpaces project1, we aim at leveraging horizontal interoperability for the
next generation of Personal Clouds. This motivates us to investigate and define open APIs and standard
formats to share information between Personal Clouds, but also to migrate data from/to heterogeneous
providers. Specifically, our contributions in this work are the following:

• Interoperability protocol design: We design DataWings, a syntactic interoperability protocol tailored
for Personal Cloud services. DataWings defines an authentication management protocol to grant external

1http://cloudspaces.eu

2

users access to Personal Cloud resources. Moreover, data exchanges among providers and applica-
tions is based in a novel REST API for file storage, synchronization and sharing.

• Open-source protocol implementation: We provide the implementation of DataWings in a clean ser-
vice framework promoting adoption and third-party development. At the time of this writing,
DataWings is integrated in NEC, StackSync and eyeOS cloud services.

• Use-case applications: We demonstrate the capabilities of the protocol with an advanced proof of
concept: the eyeOS Cloud Desktop. Concretely, eyeOS has integrated DataWings to provide users
with transparent access of data stored at StackSync and NEC Personal Clouds.

• Real-world multi-vendor deployment: Finally, to validate our protocol, we perform a real deploy-
ment and execute a workload based on back-end traces of NEC and UbuntuOne (U1) [9], the Personal
Cloud of Canonical. We also investigate the performance implications that different types of user ac-
tivity (upload/download oriented users) and the underlying sharing network topology have on the
implementation of DataWings by NEC and StackSync. To the best of our knowledge, this work is the
first to evaluate interoperability among Personal Clouds.

The rest of the paper is organized as follows. In Section 2 we overview the related works, stressing
the main differences of this paper compared with current interoperability approaches. Section 3 provides
basic background on Personal Clouds, jointly with a brief description of REST and OAuth technologies.
In Section 4 we describe our interoperability protocol, namely DataWings. Section 5 briefly describes the
use-case cloud services integrating DataWings —i.e, eyeOS, NEC and StackSync—, as well as the details
of their respective implementations. Section 6 presents the experimental framework and the performance
results of the Personal Clouds making use of DataWings. We provide some discussion and conclude the
paper in Section 7.

2. Related Work

The vendor lock-in problem has been recognized by the European Network and Information Security
Agency as a high risk [10], and the Personal Cloud is not an exception. The root of this difficulty is the lack
of interoperability and standard mechanisms to exchange data across providers. Thus, solving the vendor
lock-in problem requires new technical means to share data horizontally across Personal Clouds.

There are two types of interoperability: syntactic and semantic. Syntactic means that cloud providers are
trying to communicate through standardized mechanisms, including interfaces, data formats, and com-
munication protocols [11; 12]. Semantic interoperability, on the other hand, means that information is not
only exchanged but also interpreted in order to be used [13]. There exist various approaches to achieve
semantic interoperability, such as mediators and middlewares that abstract the functionalities of heteroge-
neous providers [14] or ontologies that describe the meaning and structure of service entities and opera-
tions [15; 16], to name a few. In this work, we focus on syntactic interoperability as an essential building block
to provide users with transparent data access and exchanges across Personal Clouds, while minimizing the
“agreement effort” on the provider’s side.

Cloud APIs. The advanced progress in syntactic interoperability at the platform and infrastructure
level (e.g., the FP7 projects VISION Cloud [17], mOSAIC [18] and REMICS [19]) provide the technical
means for easily sharing data and applications across clouds. There are also a number of companies, such
as Deltacloud2 and RightScale3, committed to aggregate a variety of cloud APIs to unify the access to these
services from a user’s viewpoint [20]. On the other hand, organizations like Distributed Management Task
Force (DMTF), Open Grid Forum and Storage Network Industry Association (SNIA) are also leading efforts
on standardizing APIs among cloud services. However, despite remarkable efforts such as the Cloud Data

2https://deltacloud.apache.org/
3http://www.rightscale.com/

3

Management Interface (CDMI) [11] or Open Cloud Computing Interface (OCCI)[21], major Infrastructure-
as-a-Service (IaaS) providers such as Amazon Web Services and Microsoft Azure are still imposing their
own APIs. Similarly, Personal Clouds are not already adhered to standard APIs.

In our view, there could be two plausible reasons for this: First, most vendors provide their own open
API4 as no prior work or organization proposed protocols to leverage interoperability across Personal
Clouds. That is, most well-known interoperability initiatives target IaaS providers (e.g., CDMI) and do
not meet all Personal Cloud requirements, such as efficient syncing or data sharing functionalities, which
require advanced metadata primitives on files that are not offered by CDMI. To inform this argument, au-
thors in [22] build a CDMI-compliant deduplication that only provides simple PUT, GET, DELETE primitives
to users. Given that Personal Clouds need metadata information of file versions or members within shared
a folder, this approach seems insufficient to leverage interoperability among these systems.

Second, there is no prior pilot experience of a group of providers implementing interoperability. We
believe that a pilot interoperability experience may incentivize other vendors to adhere to the protocol. We
address both issues in this work.

Cloud federations. Heimbigner and McLeod proposed the concept of service federation in the mid
1980’s as a way of coordinating isolated information management systems [23]. A more contemporary
definition can be found in the work of Kurze et al. [5], where authors define that a cloud federation com-
prises services from different providers aggregated in a single pool supporting three basic interoperability
features: resource migration, redundancy and combination. We found particularly interesting the concept of
resource migration [24] to mitigate the vendor-lock in problem for Personal Clouds.

Among the existing approaches, the Reservoir model [25] is an architecture to federate groups of co-
operative cloud providers with business-aligned SLAs. Authors in [26] present a distributed network of
proxy agents that disseminate information about the available cloud resources to facilitate autonomic re-
source sharing among them. Vernik et al. [12] propose an on-boarding federation system. It enables data
exchange among cloud providers while providing continuous access and a unified view over the data in
the old cloud and the new cloud, and over data in transit. Closer to our approach, Villegas et al. [27] devise
a federation model in which interoperability among cloud providers occur independently at each layer of
the cloud stack. In fact, our interoperability protocol can be seen as an horizontal Personal Cloud federation
that encompasses syntactic interoperability agreements at the storage and user authentication layers [25; 27].

Apart from resource management, user authentication is a particularly interesting aspects of cloud fed-
erations [28]. For instance, authors in [29] propose a Cloud Single-Sign On (SSO) Authentication protocol
to enable clouds within a federation to access and offer resources. In [30], Huang et al. present a SSO
brokering system that cloud providers should trust as an identity service within the federation.

However, we consider that the agreement effort of delegating identity management to an external ser-
vice is too high in the Personal Cloud arena. As other proposals based on OAuth [31], we present an autho-
rization protocol to enable external users and applications to access shared resources of a Personal Cloud,
but the identity, security and access settings are internally controlled by each provider. This agreement
boundary for access control leaves Personal Clouds the option of adopting the protocol without changing
core security policies and keeping their own identity service.

Multi-cloud systems for storage diversity. In the last decade, several works proposed systems that pro-
vide users with transparent and unified management of the storage space of multiple cloud providers [32;
33; 34]. These systems aim at mitigating vendor lock-in and/or improve performance [35; 34] and relia-
bility [36] based on a simple principle: If a user was able to transparently store and migrate data across
multiple providers, taking benefit of a new provider would entail switching only a fraction of the data.
In the field of Personal Clouds, authors in [37] propose an storage mediator that picks a combination of
providers based on active monitoring. However, this type of multi-cloud brokers require from a dedicated
platform to operate. Even worse, data migrations are still costly in terms of transfer bandwidth since data
objects should be downloaded first from the old provider to be uploaded to the new one.

Despite that our interoperability protocol may provide applications with storage diversity, our main
objective is to enable native horizontal interoperability among Personal Clouds. This yields that users will

4https://www.dropbox.com/developers-v1/core/docs

4

Cloud

Storage

API Servers Metadata Store
Desktop

client

Dropbox infrastructure (metadata)

Metadata/control traffic
Data flows

Figure 1: High-level overview of the Dropbox’s architecture. As can be appreciated, Dropbox explicitely
decouples the management of file metadata and data.

delegate on Personal Clouds the task of data migrations that, in turn, will be more efficient as transfers will
be direct among providers.

Key differences with previous works. Conversely to prior research, this work aims a leveraging horizon-
tal interoperability among Personal Clouds. To this end, we identify the core functionalities that should
be agreed among Personal Clouds (authorization, storage API) and design an interoperability protocol
that addresses these functionalities. As a distinctive point of this work, we also provide a real-world per-
formance evaluation of vendors that already implement our protocol. We evaluate the impact that user
behavior has on the performance of our protocol [38], such as the type of user activity (upload/download
oriented) or the degree of connectivity among the users accessing the shared folders.

3. Background

3.1. Personal Clouds in a Nutshell

The Personal Cloud is an online cloud service for personal information that enables users to store, syn-
chronize and share data from a variety of devices and OSes. Moreover, Personal Clouds are a platform
to deploy third-party applications that provide value-added services on users’ data. Numerous popular
services such as Dropbox, SugarSync and Box fall under this definition.

As can be observed in Fig. 1, from an architectural viewpoint a Personal Cloud exhibits a 3-tier ar-
chitecture consisting of: (i) desktop clients, (ii) synchronization or metadata service and (iii) data store [39; 9].
Thus, these systems explicitly decouple the management of file contents (data) and their logical represen-
tation (metadata). Companies like Dropbox only own the infrastructure for the metadata service, which
processes requests that affect the virtual organization of files in user volumes. The contents of file transfers
are stored separately in Amazon S3. An advantage of this model is that the Personal Cloud can easily scale
out storage capacity thanks to the “pay-as-you-go” payment model, avoiding costly investments in storage
resources.

In general, Personal Clouds provide clients with 3 main types of access to their service: Web/mobile
access, Representational State Transfer (REST) APIs [40] and desktop clients. In this paper, we focus on the
REST API access provided by Personal Clouds in order to enable interoperability among services.

In this sense, Personal Clouds provide third-party applications with REST APIs to interact with the
service, making it possible for them to execute data management operations (PUT, GET, etc.) on files stored
in user accounts. One can easily find similarities between these APIs (files/accounts) and the operation of
object storage services (objects/containers) [41]. A great advantage of these REST APIs is that they abstract
clients from the service internals in order to manage files within user accounts.

We found that these API services are powerful abstractions that have not received enough attention
from the research community. We believe that designing a unified storage REST API for Personal Clouds
may be a great step towards the interoperability of these services. Thus, in the following we provide a
closer look to the functioning of these REST APIs services.

5

3.2. REST APIs & OAuth

REST (REpresentational State Transfer) is an approach to design and communicate with Web services,
typically running over HTTP (Hypertext Transfer Protocol). REST services define a contract or API (Ap-
plication Programming Interface) in form of XML/json file. REST services are specially suitable for client-
server applications, in which clients can perform a limited number of operations (labeled as verbs corre-
sponding to HTTP methods) on certain set of resources (labeled as nouns) identified by unique Universal
Resource Identifiers (URIs). To draw an example, let us consider the following request in the Dropbox API:

https://content.dropboxapi.com/1/files/auto/{my_file}

In this case, the client is requesting the content.dropboxapi.com server to perform an action on a
resource. In particular, the requested resource is a file (/files/) identified by “my_file” and the action to
be performed is to download it, since the HTTP method invoked is GET. This simple example illustrates the
simplicity of REST services, that are prevalent in today’s mobile and social networking applications, IaaS
providers, and many other applications with automated business processes.

Most Personal Clouds provide proprietary REST APIs, along with their client implementations, to make
it possible for developers to create novel applications. There are two types of API calls: metadata and data
management calls. The former type refers to those calls that retrieve information about the state of the
account (i.e., folders, file names), whereas the latter are those calls targeted at managing the stored files in
the account.

On the other hand, OAuth is an authorization standard that is normally used via REST calls. With
OAuth, a client (i.e., resource owner) provides applications with “secure delegated access” to server re-
sources on behalf of him. That is, after a token exchange procedure, the OAuth authorization server issues
access tokens and sends them to a third-party application, given the approval of the resource owner. At this
point, the application uses the access token to access the protected resources hosted by the resource server.
In this sense, most Personal Cloud APIs incorporate OAuth for granting third-party applications and their
own clients (Web, mobile, etc.) access to the files stored in user accounts.

4. DataWings: Protocol Description

4.1. Protocol Design and Requirements

DataWings is a provider-centric interoperability protocol. That is, Personal Clouds that opt to enable data
and metadata access to folders/files via DataWings should also provide a proper protocol implementation
in their back-end infrastructure. In particular, the provider-centric design of our protocol yields several
advantages in terms of simplicity, data integrity, and data security. DataWings is simple as accessing to remote
files and folders in a third-party Personal Cloud is done via open standards, such as REST and OAuth,
which are already known by providers and developers. As we show later on, the protocol makes it easy to
develop algorithms to store, synchronize and share data from a client’s perspective (see Section 5).

Considering file synchronization, the integrity of data is a paramount aspect. That is, several users
in a Personal Cloud may be concurrently updating a given file via our protocol, which may potentially
cause edition conflicts. Therefore, it is a requirement for providers adopting DataWings to implement data
integrity mechanisms; for instance, providers may choose to implement serialization or locking mecha-
nisms to enforce strict file integrity (e.g., WebDav), or they may enable concurrent edits on a file by offering
the potential conflicting file versions for manual conflict resolution (e.g., DropBox or StackSync [42]). In
fact, guaranteeing data integrity on files stored across diverse Personal Clouds in such a provider-centric
protocol design is more practical than recently proposed client-centric protocols [34], which achieve data
integrity via complex distributed consistency algorithms (e.g., Paxos).

Moreover, the provider owning data accessed via DataWings is the one controlling the access to it. This
means that customers accessing data via our protocol are always subject to the internal security policies of the
data owner: Interoperable files are not scattered across multiple vendors that were not selected by the user
creating the data, but only accessed with appropriate credentials and permissions by other users/vendors.

DataWings is flexible enough to leverage a variety of deployment strategies that involve users, applica-
tions and Personal Cloud vendors. Broadly speaking, we can divide these strategies in two types: client-side

6

APP1

PC1
PC2

U2

Applications

Personal

Clouds

UsersU3 U4

II PP

IIII

PP

II

Interoperability Interface Proprietary Interface

PP

U1

II

II

Interoperability Calls Proprietary Calls

Figure 2: Different deployment models of DataWings protocol. We can observe users and applications that
directly resort to DataWings in order to manage their data across multiple providers (client-side interoper-
ability). Moreover, we can observe a user that is still making use of the old proprietary storage API and
his primary Personal Cloud manages a user’s data stored in an external vendor (provider-side horizontal
interoperability).

interoperability and provider-side horizontal interoperability. These strategies refer to the way storage is
managed and they can be observed in Fig. 2.

On the one hand, by provider-side horizontal interoperability we refer to a model in which a Personal Cloud
is in charge of transparently performing the required data exchanges with other services to provide users
with a unified view of their data. More importantly, users of one service do not need to be registered in
other services they aim at interoperating with; DataWings offers means of providing data access to external
users of a Personal Cloud. With this model, users and applications can still use the existing proprietary
API, as the provider can hide the interoperability interactions with other services. This can be observed in
Fig. 2 in which user u4 is managing his own files stored at PC2, as well as shared files from PC1. In this
specific case, u4 does not interact directly with PC1; instead, PC2 transparently forwards u4’s requests on
files stored at PC1 on behalf of him after the appropriate access credential exchange (see Section 4.2).

On the other hand, client-side interoperability means that clients can manage their own accounts at various
Personal Clouds adhered to the protocol. Retaking the example in Fig. 2, users u1, u2 and u3 are users of
PC1 and share files. However, users u2 and u3 access these files at PC1 via a third-party application that
also aggregates their own files stored at PC2. As can be inferred, this type of interoperability encompasses
both users and applications, and leverages a variety of benefits and use cases. For instance, multi-cloud
storage systems [32; 33] could greatly simplify the management of heterogeneous and ever-changing pro-
prietary storage APIs. As we demonstrate Section 5 with eyeOS, applications accessing Personal Clouds
via DataWings are able to provide transparent access to user’s files that reside at multiple providers.

From Fig. 2 it is interesting to note that the integration of DataWings to the operation of vendors and
applications does not force them to exclude the existing proprietary protocols. Our protocol can be used in
parallel with proprietary storage APIs and authentication mechanisms for a smooth adoption process.

Technically, DataWings has two main building blocks: the authentication management protocol (Section
4.2) and the storage API for file storage, synchronization and sharing (Section 4.3). As we describe next, the
former defines a standard way of granting external users access to specific folders and files (i.e. resources),
whereas the latter provides a standard way to manage data and metadata for Personal Clouds.

7

Creates a sharing
Selects provider from list

Sends sharing information Requests for authorization
Authorizes the sharing

Returns sharing proposal
Sends access credentials

Personal Cloud A Personal Cloud B User

Stores credentials for

1

Step requiring
human entry

2

3

proposal and sends email

proposal

result

future requests

Figure 3: High-level diagram of the credential exchange workflow between users of two Personal Clouds
integrating DataWings. The ultimate purpose of this process is to provide a user in Personal Cloud A with
secure delegated access to files owned a user in Personal Cloud B.

4.2. Authentication Protocol Workflow

There are three entities that are involved in the credential protocol: Users, Personal Clouds, and end-
points. Naturally, users are the active entities that aim at exchanging data from various Personal Clouds
via the interoperability protocol. By a Personal Cloud user, we means that the same physical person may
represent more than one user if he or she aims at making use of interoperability across his/her storage
accounts. On the other hand, Personal Clouds are entities that store data to be exchanged and provide a
compliant implementation of the interoperability protocol.

In this sense, our protocol also defines end-points that are accessible via a URL. In particular, end-points
represent system actions to manage users’ access to resources upon interoperability requests. The end-
points in our protocol are the following:

• Share end-point: End-point that presents the interoperability proposal to the user and obtains autho-
rization to enable external access to a specific resource.

• Unshare end-point: End-point used to finish the interoperability agreement between two users related
to a certain resource.

• Credentials end-point: End-point needed to provide the access credentials for an external user to a
resource of a Personal Cloud.

Granting access to an external user to a Personal Cloud services requires a credential exchange process,
which consists of user invitation, invitation acceptance and access credential provision. Fig. 3 shows a sequence
diagram of the process.

User invitation. Let us imagine a user ua who wants to share with user ub a resource r that resides in
Personal Cloud PC1. Therefore, in the domains of PC1, ua selects r as a resource that he wants to share
with ub. To start the sharing process, ua should provide PC1 with sufficient information about ub to send
him an interoperability invitation. As we show later on, in our implementation we make use of a user’s
email address to send such invitations, although other channels (e.g., mobile phone) may be valid as well.

8

Field Type Description
P

ro
p

o
sa

l

share_id string A randomly generated value that uniquely identifies the interoperability proposal.
owner_name string An absolute URL to access the shared resource located in Personal Cloud A.
resource_url string The name corresponding to the owner of the folder.
owner_email string The email corresponding to the owner of the folder.
folder_name string The name of the folder.
permission string Permissions granted to the recipient. Options are read-only and read-write.
recipient string The email corresponding to the user who the folder has been shared with.
callback string An absolute URL to which the Personal Cloud B will redirect the User back when

the invitation step is completed.
protocol_version string MUST be set to 1.0. Services MUST assume the protocol version to be 1.0 if this

parameter is not present.

A
cc

ep
t share_id string A randomly generated value that uniquely identifies the interoperability proposal.

accepted string A string indicating whether the invitation has been accepted or denied. true and
false are the only possible values.

G
ra

n
t share_id string A randomly generated value that uniquely identifies the interoperability proposal.

auth_protocol string The authentication protocol used to access the shared resource (e.g. OAuth).
auth_protocol_version string The version of the authentication protocol (e.g. 1.0a).

Table 1: Credential exchange message fields in DataWings.

At this point, we assume that ua’s interoperability invitation is received by ub and that he or she agrees on
proceeding with the process.

Inside the invitation, ua provides an URL pointing to the share end-point located at the domains of PC1.
By making use of this URL, ub is taken to the PC1 share end-point where he is prompted to enter his Personal
Cloud service, in this particular case PC2.

As ub finishes selecting its own Personal Cloud, PC1 creates an interoperability proposal (see Table 1).
Technically, the interoperability proposal is an HTTP request to an URL that points to PC2’s share end-point.
This request tells PC2 that ub will not only manage folders and files contained in PC2, but also an external
resource r stored at PC1.

Invitation acceptance. At this point, let us assume that the interoperability proposal has been received by
PC2. Once ub returns to PC2’s domains, the Personal Cloud provides ub with the details of the invitation
request, including the resource r to be shared. To explicitly accept the invitation, ub should provide PC2

with his credentials —if he is not already logged-in the service— to authenticate the confirmation.
Once PC2 has obtained approval or denial from ub, PC2 must use a callback to inform PC1 about ub’s

decision. PC2 uses the callback to construct an HTTP GET request and redirects ub to that URL with the
acceptance decision added as a query parameter (see Table 1).

Granting Access Credentials. When PC1 receives the affirmative proposal result it must provide the access
credentials to PC2 in order to be able to obtain the shared resource r. PC1 sends an HTTP request to an URL
that points to PC2’s credentials end-point. This request will provide the necessary authentication protocol
information to PC2 for transparently generating the credential for accessing r from ub’s viewpoint.

In this sense, since the credential subsystem may vary among Personal Clouds, the credential request
should specify certain parameters (see Table 1). For instance, this forces PC1 to specify what type of authen-
tication protocol and version must be used to access the resource. The authentication protocol and version
used by PC1 is beyond the scope of this specification, but OAuth 1.0 or OAuth 2.0 is recommended. There
are authentication-specific parameters in the credentials request that may include values like tokens, times-
tamps or signatures, which have been omitted due to space constraints. The full protocol specification and
request parameters is available on-line5.

It is important to note that our credentials management protocol does not force a Personal Cloud to
change its own identity service. As we describe in Section 5, Personal Clouds may internally link an ex-
ternal user accessing the service with a new user created during the credentials exchange for this purpose.
This enables Personal Clouds to implement our protocol while keeping its own identity system, while
enforcing the same access control and security policies either to external and internal users.

5https://github.com/cloudspaces/interop-protocol

9

REST Call Description HTTP Method URL

Create a file POST /file?{name=file_name}&{parent*=folder_id}

Upload file data PUT /file/{file_id}/data

Download file data GET /file/{file_id}/data

Delete a file DELETE /file/{file_id}

Get file metadata GET /file/{file_id}

Update file metadata PUT /file/{file_id}?{name*=new_file_name}&{parent*=folder_id}

Get file versions GET /file/{file_id}/versions

Get file version metadata GET /file/{file_id}/version/{version_number}

Get file version data GET /file/{file_id}/version/{version_number}/data

Create a folder POST /folder?{name*=folder_name}

Delete a folder DELETE /folder/{folder_id}

Get folder metadata GET /folder/{folder_id}

Get folder content metadata GET /folder/{folder_id}/contents

Update folder metadata POST /folder/{folder_id}?{name*=new_folder_name}&{parent*=parent_folder_id}

Share a folder POST /folder/{folder_id}/share

Unshare a folder POST /folder/{folder_id}/unshare

Get folder members GET /folder/{folder_id}/members

Table 2: Storage API specification for Personal Clouds. Fields marked with (*) are optional.

Thus, when this protocol completes, ub gets the access credentials and she/he is able to transparently
accessing a shared resource r located at PC1 via a storage API from PC2’s domains. In the following, we
describe the design principles and operation of this storage API for Personal Clouds.

4.3. Standard API for Personal Clouds: Storage, Sync & Sharing

To design a storage API that is flexible enough to be broadly adopted by heterogeneous Personal
Clouds, we believe it necessary to consider the main storage functionalities that distinguish these services.
Concretely, most Personal Clouds make intensive use of file storage, synchronization and provide sharing
capabilities on users’ data [39; 9; 42].

Unfortunately, existing storage API standards such as CDMI fall short when it comes to satisfy these
sophisticated Personal Cloud functionalities (e.g., sharing, syncing). This is mainly due to the fact that they
were devised for storage management in IaaS providers. Therefore, to cope with these requirements, we
propose a storage API tailored for Personal Clouds that is compliant with REST standards6 (see Table 2).

First, we can find different Personal Cloud APIs for managing storage and file synchronization7. How-
ever, a common denominator among most existing APIs is that (i) they explicitly decouple data and meta-
data calls, and (ii) they provide support to object versioning. Accordingly, in our API we differentiate
data/metadata management calls to files and folders.

In addition, we provide an abstraction to manage file versions. As our API design considers a ver-
sion as a resource, it enables to separately managing metadata and versions of data, which represents an
additional degree of freedom for synchronization algorithms. Clearly, Personal Clouds adopting our API
can still operating with their own versioning mechanisms and policies, but exhibiting a common front-end
from a user’s perspective. As discuss in Section 7, this opens the door to investigate novel inter-cloud
synchronization algorithms that exploit interoperability.

Our API also provides a file sharing interface. In particular, share and unshare methods abstract the
actions of enabling external users to access files contained in a given folder. Moreover, the API provides a
method to control the membership of a shared folder (i.e. members).

All in all, we empirically demonstrate that our API is flexible enough to satisfy the storage, synchro-
nization and sharing requirements of two Personal Clouds with very different architectures: NEC, which
is based on WebDav following a client-server model, and StackSync, which fully decouples metadata in-
stances in a separate layer that enables horizontal scalability. This gives a sense on the potential of our
storage API for being adopted by other services.

In the following, we describe the reference implementation of DataWings in our use case cloud providers.

6https://github.com/stacksync/swift-API
7https://launchpad.net/ubuntuone-file-storage-api

10

5. Implementation on Pilot Services

In this section, we briefly describe the pilot cloud services that already integrate DataWings to interop-
erate among them. Also, we provide details on the protocol implementation based on the interoperability
model adopted by these services (i.e., client-side o horizontal.)

5.1. Interoperable Cloud Services: StackSync, NEC and eyeOS

Next, we introduce the cloud services that already support our interoperability protocol. In particu-
lar, StackSync and NEC are the Personal Clouds that enable external users (of each other) accessing and
exchanging data. Moreover, eyeOS will be an advanced use case of our interoperability protocol, being
capable of transparently managing data in a real deployment of NEC and StackSync services.

StackSync: StackSync8 is an open-source Personal Cloud with advanced file synchronization elastic-
ity and security mechanisms [42]. StackSync explicitly decouples data —object storage with OpenStack
Swift— and metadata processing. A core contribution of StackSync is to rely on a lightweight commu-
nication framework for providing programmatic elasticity to distributed objects using message queues
as their underlying communication middleware (ObjectMQ9). ObjectMQ unicast and multicast communi-
cation primitives have considerably simplified the code of the synchronization protocol. It also enables
efficient and transparent notification of file changes on top of the underlying messaging service.

StackSync provides a reference implementation and useful tools for rapid prototyping and evaluation.
StackSync is a stable open source project after two years of development that is being used in several public
institutions and data centers, being already available for desktop and mobile clients.

NEC Personal Cloud: NEC Cloud Storage10 is a carrier oriented online storage platform integrated
with multiple fixed and mobile devices for ubiquitous information access. NEC decouples data storage
(OpensStack Swift) and metadata management, which is based on WebDav [43]. The service provides a
battery of attractive features, ranging from synchronization, sharing and collaboration, support for mobile
devices and an intelligent cache technology that stores on your local device the most commonly used files
for flawless offline access. NEC Personal Cloud is being actively used by dozens of companies world-wide.

eyeOS Cloud Operating System: eyeOS11 is a private-cloud application platform with a web-based
desktop interface. Commonly called a cloud desktop because of its unique user interface, eyeOS delivers
a whole desktop from the cloud with file management, personal management information tools, collabo-
rative tools and with the integration of the the client’s applications. In a nutshell, the system’s architecture
is clearly divided into components that run on JavaScript and that run on PHP. Applications are divided
into two parts: the part that runs on the client system (Web browser) and the part interpreted by PHP (Web
server). The client side is used to render the user interface using JavaScript, and when an operation needs
to be carried out, e.g. read the database, the client-side triggers a server-call to the part interpreted by PHP
though an Ajax request.

5.2. Client-side Interoperability in eyeOS cloud desktop

EyeOS is a cloud desktop that embodies an advanced proof-of-concept of DataWings. eyeOS has inte-
grated DataWings as a storage API to provide users with transparent access of their data stored at StackSync
and NEC Personal Clouds. eyeOS is in charge of addressing the requests to the appropriate providers,
depending on where data is living. As defined in our protocol, eyeOS adapted two main services to inter-
operate with StackSync and NEC: authentication and storage management12.

Accessing to interoperable Personal Clouds. For authenticating a Personal Cloud user via eyeOS,
the process is as follows. First, the eyeOS platform uses OAuth authentication in order to interact with
a user’s protected data stored in a Personal Cloud. When a eyeOS user accesses the file manager for the

8http://stacksync.org/
9https://github.com/cloudspaces/objectmq

10http://www.nec.com/en/global/solutions/cloud/portfolio/storage.html
11http://www.eyeos.com/
12https://github.com/cloudspaces/eyeos-u1db\#implementation-of-stacksync-api-into-eyeos

11

(a) Invitation acceptance. (b) eyeOS cloud desktop integrating a StackSync
folder.

Figure 4: Implementation of eyeOS. In this figure, an eyeOS user performed the credential workflow
against StackSync to manage data seamlessly in eyeOS and StackSync.

Figure 5: eyeOS file manager synchronization to obtain updates from StackSync folders.

first time, a newly developed plugin is used to get a security token, which enables to interact with data
stored in Personal Cloud. Concretely, the access token and the token secret are stored in the “token” table of
a relational database (MySQL) in eyeOS. These tokens are linked with the user who has logged into the
platform, meaning the system can determine the access token for a given user who attempts to use the
service at any stage.

Once the user is identified within eyeOS, the credentials exchange for accessing a folder residing at an
interoperable Personal Cloud (e.g., StackSync) is as follows. A user requests from StackSync the consumer
key and secret token that identifies eyeOS as the a resource consumer. This communication is done via email.
Then, a user gets the request token and provides StackSync with the redirect URL to eyeOS once the user
grants authorization. StackSync responds to the previous request by giving a valid request token and an
authorization URL. The user is then redirected to the authorization URL where he may grant eyeOS access
to his private space (see Fig. 4a). Once StackSync verifies the user, it redirects the user to the eyeOS URL
provided in the previous step. Last, the user get the access token and token secret from StackSync, with
which eyeOS will identify itself when accessing the user’s private space in the Personal Cloud13.

Managing external folders. As users finish the credentials exchange between eyeOS and the targeted
Personal Cloud, they can then use eyeOS’ web file manager and all its features with their Personal Cloud

13The complete description of the process can be found at http://cloudspaces.eu/deliverables/doc_download/

55-d5-2-service-platform-reference-prototype

12

External

personal cloud

Interoperability

module
StackSync userStorage API

Sends sharing proposal Processes proposal and displays to user

Accepts proposal

Returns proposal result

Sends access credentials

Notifies user

API request on shared folder

Request w/ given

credentials

Response

Response

(a) StackSync user requesting access to an ex-
ternal Personal Cloud.

External

personal cloud

Interoperability

module
StackSync user Storage API External user

Share folder

Sends email to non-StackSync users

Selects personal cloud

Sends sharing proposal

Returns proposal result to callback

Creates credentials and sends them

API request on shared folder

(b) External user requesting access to StackSync.

Figure 6: Credentials exchange workflow in the implementation of StackSync.

files via the DataWings API. For example, users can display online their documents saved in their Personal
Cloud, create directories, move files, share documents, etc. Users access the files in their Personal Cloud
using a special directory for files at an external Personal Cloud. For instance, in Fig. 4b we can see how a
user in eyeOS has a “StackSync folder” that represents his own data at this Personal Cloud.

To get the file and directory structure of Personal Cloud, a call is made to DataWings’s API. This call re-
turns metadata with all the structural information of the files and directories, which eyeOS uses to generate
a local view of the file system structure (without contents). When the user selects an element and performs
an operation on it, i.e. she opens, moves or copies it, the element’s contents are then downloaded. By doing
this, the system is not overloaded unnecessarily by retrieving information that the user will not use at that
moment. If the content of a file or directory has already been retrieved and there are no changes regarding
the remote copy, it will not be updated (i.e., local cache).

The eyeOS file manager can also retrieve previous versions of a file by exploiting calls related to object
versions in the DataWings’s API. That is, eyeOS shows a list of all the available versions of a file, letting
the user retrieve the contents of the desired version. If the user makes changes to a previous version,
when those changes are saved, a new version is created in the Personal Cloud. The contents of the current
directory are synced with the Personal Cloud directory in a background process, which sends queries every
10 seconds to check whether there are any changes (i.e., pull-based). If there are any changes, the current
data structure is updated. This process can be observed in Fig. 5.

5.3. Horizontal interoperability: NEC and StackSync

Sharing folders with external users. Both NEC and StackSync Personal Cloud systems have imple-
mented the complete protocol and have passed conformance tests14 (i.e., authentication and storage API).
To implement authentication, internally both systems create a new user upon the arrival of a share request
of an external user, which is identified by the token included in the request. In other words, to provide
access to an external user, these Personal Clouds transparently provide a new internal identity to him/her
for enforcing control and security mechanisms. This approach provides two advantages: first, the exter-
nal user credentials are not exposed in any request, and second, the user created to authorize external
access is subject to the same control and security mechanisms that regular users in each Personal Cloud.
Similarly than for eyeOS, a sequence of graphical Web interfaces ease users to get external access to these
services through the credential exchange process. As both systems exhibit a similar implementation, in the
following we describe the StackSync implementation of DataWings authentication protocol (see Fig. 6).

14https://en.wikipedia.org/wiki/Conformance_testing

13

Algorithm 1: Get metadata of a user’s root folder in StackSync.

Data: User user
Result: APIGetMetadata
/* Result variables */

ItemMetadata responseObject = null;
List<ExternalFolderMetadata> externalFolders = null;
Integer errorCode = 0;
Boolean success = false;
String description = "";
try {
/* First, retrieve metadata from the root folder */

ItemMetadata responseObject = this.itemDao.findByUserId(user.getId(), false);
/* Then, retrieve metadata from folders in external Personal Clouds */

List<ExternalFolderMetadata> externalFolders = this.itemDao.getExternalFolders(user.getId());
success = true;

}catch(DAOException e) {
description = e.getError().getMessage();
errorCode = e.getError().getCode();
logger.error(e.toString(), e);

}
APIGetMetadata response = new APIGetMetadata(responseObject, success, errorCode, description,
externalFolders);
return response;

As defined in the protocol, StackSync implements three endpoints: one to receive share proposals from
external Personal Clouds; another to receive cancellations of already-established sharing agreements; and
the last one to receive access credentials for accepted sharing proposals. To this end, we created a Django
module (i.e., interoperability module) to embody the functionality of these end-points. This new module can
be located either with the synchronization service or in an independent server.

The sequence in Fig. 6a depicts a scenario where StackSync receives an external sharing proposal from a
Personal Cloud that already implements the interoperability protocol such as NEC. The entry point for the
request is the interoperability module. It will receive the sharing proposal and check that it is well formed.
Afterwards, the invitee, which is a StackSync user, will be shown the proposal details in a graphical Web
interface similar to Fig. 4a, where she will either accept it or decline it. The result is then forwarded to the
source Personal Cloud, which will reply with the access credentials in case the user accepted the proposal.
These credentials are assigned to the recently shared folder and saved into the database. At this time, the
interoperability process is completed and the StackSync user is notified about its newly shared folder.

Conversely, Fig. 6b illustrates the situation where a sharing proposal is generated by a user in StackSync.
In this case, the interoperability module receives the request and sends an email to the invitee, which is a
user belonging to an external Personal Cloud that also implements the interoperability protocol. The invi-
tee is forwarded to a website located in StackSync where she will select her personal cloud from a list of all
compatible services.

As soon as the user selects the Personal Cloud service, she will be redirected to a website located on her
Personal Cloud where she will be show the details of the folder and will be requested to accept or deny the
proposal. StackSync will get notified of the user’s choice and will hand the access credentials (i.e., OAuth
tokens) to the other Personal Cloud. Afterwards, whenever the invitee wants to access to the shared folder,
the StackSync API will receive the request and process it as any other API call.

Adapting the Personal Cloud to handle external folders. The storage API has been implemented
by both systems (StackSync in Python, NEC in C#) and it enables horizontal interoperability between
providers. The API permits users and applications to manage folders and files in both systems, either

14

being primary users or having external access. Moreover, in StackSync, the API currently serves both
desktop clients and Web/mobile clients, which gives a sense of its capabilities.

Retaking the example of StackSync, once a user has access to an interoperable external folder, the meta-
data back-end should be ready for handling them upon the execution of API calls. For instance, when the
StackSync Web or mobile application shows all the folders of a user, it executes an API operation to retrieve
the metadata of these folders (see Algorithm 1). However, as external and native folders reside in different
locations, both types of folders need to handled in different ways. Naturally, the back-end implementation
of the DataWings API this aspect should be considered and this can be done in various ways.

To do so, a naive approach could be to fetch all the metadata of both native and external folders when
the metadata of a user is requested. However, the problem of this approach is that the exchange of metadata
messages between Personal Cloud services may be too high, inducing high latency on the operation’s
execution. This is specially true considering that most of that metadata requested in this kind of operations
is not used by end-users.

For this reason, in StackSync we have adopted an alternative implementation. As can be observed in
Algorithm 1, StackSync retrieves the metadata of files and folders depending whether they are native or
interoperable ones. On the one hand, all the metadata of native files and folders in StackSync is available in
the metadata store. Moreover, StackSync only stores the name, URL and access tokens of external folders,
which are also retrieved in Algorithm 1. With this optimization, StackSync Web or mobile applications can
efficiently render a preliminary view of a user’s folders without performing requests to external Personal
Cloud providers.

Of course, to obtain the complete metadata of external files and folders in StackSync it is necessary an
additional call on-demand that retrieves that information from the external Personal Cloud. This is pos-
sible thanks to the external folder metadata stored in StackSync (i.e., URL, name and tokens). Similarly,
whenever the user aims at retrieving or uploading data to the shared external folder, the API will seam-
lessly detect the special condition of the folder and forward the request to the origin Personal Cloud with
the given credentials. This process is performed in a transparent manner for the user.

Once described the implementation of DataWings by real use-case services, we proceed to demonstrate
the feasibility of our protocol. To this end, we present a deployment and extensive validation of Personal
Clouds implementing DataWings.

6. Experiences with DataWings

Next, we evaluate a real deployment of our interoperability protocol in two real-world Personal Clouds:
NEC and StackSync. The objective of this evaluation is twofold: First, to ensure the correct implementation
of the complete DataWings protocol (authentication, storage API). Second, we aim at analyzing the perfor-
mance implications that distinct types of user activity (e.g., download/upload oriented) or the underlying
sharing network topology have to these providers [38]. Note that the evaluation of different types of user
activity and their social relationships have not been studied yet in the Personal Cloud literature.

6.1. Experimental Scenario

Workload. The workload used to evaluate the system consists on replaying traces of a real-world Per-
sonal Cloud, namely UbuntuOne (U1) [9]. Concretely, we executed a trace consisting of almost 1K users
(983) performing storage and metadata operations for 6 hours (14/02/2014).

Moreover, we wanted to observe the impact of different types of user behavior on the system. To
this end, following the guidelines of Drago et al. [39], we identified the users that exhibited more than
three orders of magnitude of difference between upload and download (e.g., 1GB versus 1MB) traffic. We
classified them as either download-only or upload-only. Thus, from the total of users that appear in our
trace replay, 581 are upload-only users and 402 are download-only users.

We have developed our workload generator in Python that integrates a client for DataWings API and
manages the credentials of both owned and shared folders across Personal Clouds. Note that the access
credentials for both owned and shared folders were created once beforehand via our authentication proto-
col, and they were reused multiple times for each experiment execution. In our workload generator, each

15

Figure 7: Social graph of NEC Personal Cloud used in our evaluation to model sharing interactions among
users. The size of nodes represent their degree, whereas the width of edges is proportional to sharing
activity between two users —i.e., the number of storage operations of a user a executed on a shared folder
owned by user b.

request to the storage API was executed on a separate thread to enable parallelism and to avoid that failed
requests could delay the trace replay.

Moreover, sharing interactions among users are defined by a social network, as we describe next. In
particular, each user in the workload trace represents a node in the social graph. In our experiments, we
balanced both the number of users and their types in StackSync and NEC, and users are randomly dis-
tributed across the social graph. Thus, before executing a storage operation, the execution thread performs
a weighted decision among the available neighbors based on the number of storage interactions available
in the original social graph.

Sharing network topology. Modeling data sharing across users requires from a realistic description of
how users share data in a Personal Cloud. Unfortunately, today there are no public traces of file sharing in
a Personal Cloud at large scale, since it would require to access the metadata layer of the system.

For this reason, we make use of the sharing network existing in the NEC Personal Cloud. We built a
trace containing the sharing interactions across users that also describes the characteristics of files being
shared. Concretely, this trace contains the sharing interactions of 10K users during 2 years. As a contribu-
tion of this work, we make the trace publicly available15. The social network used in our experiments can
be observed in Fig. 7.

In Fig. 7, nodes represent users in the NEC Personal Cloud and edges represent sharing interactions
among them. Furthermore, the size of nodes is proportional to the degree of the node, and the width
of edges is related to the strength of the sharing interaction among two nodes (i.e., the number of storage
operations that a user a performed on b’s shared folder). As we can observe, there are few users that account
for a large number of links, whereas most users are only linked with one user. Moreover, despite that there
exists some correlation between the degree and the number of sharing interactions, we can observe nodes
with few but very active links. All these effects will be subject of further analysis and may impact on the
performance of our storage API.

Testbed. To run execute our experiments, we employed two different platforms for StackSync and NEC.
On the one hand, to run StackSync we used a 9-machine cluster formed by 2 compute nodes (2x16GB RAM,

15http://cloudspaces.eu/results/datasets

16

10
−2

10
0

10
2

10
4

10
6

10
8

0

0.2

0.4

0.6

0.8

1

Bytes/sec.

C
D

F

PUT operations

NEC

StackSync

StackSync (files>10MB)

NEC (files>10MB)

(a) PUT operations

10
−2

10
0

10
2

10
4

10
6

10
8

0

0.2

0.4

0.6

0.8

1

Bytes/sec.

C
D

F

GET operations

NEC

StackSync

StackSync (files>10MB)

NEC (files>10MB)

(b) GET operations

Figure 8: Storage operations throughput of StackSync and NEC via our storage API for interoperability.

2x1TB 7.2krpm HDD) and 6 storage nodes (4 cores, 12GB RAM, 1TB HDD), plus 1 large node that acts as
a proxy(6 cores, 16GB RAM, 2x600GB 10krpm HDD). Compute nodes run the StackSync metadata service
(sync-servers), whereas storage nodes support a deployment of OpenStack Swift Kilo. Moreover, the proxy
node is the machine running the DataWings API service. Machines are interconnected via 1Gbit switched
network links.

On the other hand, the interoperability prototype of NEC was executed on VMWare virtual machines
running in 2 servers (4-core server, 8GB RAM DDR3). One server was intended to run the metadata service
(SQL server database, WebDav service), including the interoperability API. The other server executed the
graph database used in NEC to manage sharing requests among users (Titan DB). The storage back-end
is OpenStack Swift, which was running in Tissat16; a infrastructure provider in the CloudSpaces project.
Naturally, the physical distance between the metadata layer that processes all the request and the storage
layer may negatively impact performance.

6.2. Results

REST API Performance. First, we aim at analyzing the performance of the storage APIs implemented
by NEC and StackSync, for both data and metadata requests.

First, Fig. 8 shows the performance of data transfers against the storage API implementation of StackSync
and NEC. At first glance, we observe that in most cases data transfers are limited, specially in the case of
NEC. For instance, only 20% of file transfers exhibit a mean transfer speed > 1MBps.

One of the main reasons behind this phenomenon is that most file transfers (PUTs, GETs) are related to
very small files. To inform this argument, 73% of storage operations in our workload belong to files > 1MB.
Clearly, the communication and metadata management overhead of API calls is significant compared to
the time needed for transferring tiny files. All in all, as we can also observe in Fig. 8, if we focus on the
transfer performance of large files (> 10MB) the performance of transfers is significantly better.

Second, in Fig. 9 we illustrate the performance of metadata operations (i.e., API operations that do not
involve data transfers). As we can observe, StackSync significantly outperforms the NEC storage API de-
ployment. To wit, around 60% of successful delete operations and 40% of successful file create operations
(i.e., MAKE) against the NEC deployment take more than 10 seconds to complete, respectively. Further-
more, some of the worst case metadata operation completion times are over 30 seconds, which seems too
high for an operation that does not involve data transfers. We identified two main reasons for the poor
performance of the NEC deployment: i) The fact that the storage back-end of NEC is located in another
datacenter makes the communication between the metadata servers and the storage layer slower, ii) the
commodity hardware used to deploy the interoperability prototype was not sufficient, specially consid-
ering that it was running in a virtualized environment. Conversely, the StackSync metadata service and

16http://www.tissat.es

17

10
−1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Latency (seconds)

C
D

F

MAKE operations

StackSync

NEC

(a) MAKE operations

10
−1

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Latency (seconds)

C
D

F

DELETE operations

StackSync

NEC

(b) DELETE operations

Figure 9: Metadata operations latency of StackSync and NEC via our storage API for interoperability.

StackSync NEC

All operations 47,655 (74.27%) 17,383 (26.73%)
Successful Data operations 23,188 (35.65%) 8,251 (12.69%)

Successful Metadata operations 23,936 (36.80%) 7,746 (11, 91%)

Failed GETs 0 (0.0%) 104 (0.16%)
Failed PUTs 0 (0.0%) 114 (0.18%)

Failed MAKEs 1 (0.001%) 194 (0.30%)
Failed UNLINKs 2 (0.003%) 37 (0.06%)

Table 3: Storage and metadata operations performed during our workload (percentages are w.r.t. the total
amount of operations).

its data store are deployed (bare metal) in a single and larger cluster, offering a much higher metadata
operation performance (e.g., 90% of delete operations take less than 1 second to complete).

We are also interested on analyzing the storage API failures occurred in our experiments. In Table
3 we provide a summary of the API calls performed for both Personal Clouds, as well as the absolute
percentage of failed/successful ones. As visible in Table 3, StackSync exhibits much higher reliability than
NEC. In fact, the failures in StackSync represent a ≈ 0.004% of the total, wheres for NEC this percentage is
0.7%. Despite that the number of failures is still limited, the low performance of the NEC deployment may
be an important surge of failures.

In conclusion, both StackSync and NEC enable users to share data across them. Moreover, the im-
plementation and deployment of StackSync offers higher performance than NEC, which provide us with
guidelines to the proper development of REST API for Personal Clouds.

Implications of social topology and user activity. In the following, we inspect the role that the sharing
interactions defined by the social graph and the types of user activity play on this scenario. For this rea-
son, Fig. 10 shows the amount of traffic exchanged between Personal Clouds and the distribution of data
transfers from external users.

First, in Fig. 10a we observe the traffic exchanged among users depending on the origin and destination
provider. Clearly, there are profound differences in the amounts of in/out traffic of both Personal Clouds.
In our workload, we clearly see that NEC users stored almost x4 times more data than StackSync users
did on NEC. Similarly, StackSync users consumed 31% more download bandwidth that NEC uses from
StackSync. The reasons underlying the asymmetries of inter-cloud traffic consumption are related with the
activity of users and the structure of their social interactions.

That is, the amount of download and upload traffic depends on whether users tend to use Personal
Clouds for storage (upload-only) or for content distribution (download-only). Furthermore, the individual
activity rate of users in a Personal Cloud is also very important. In Fig. 10b, we observe that a small fraction

18

NEC to NEC NEC to SS SS to SS SS to NEC
0

5

10

15

20

25
Distribution of traffic among users of StackSync and NEC

G
B

y
te

s

Download traffic

Upload traffic

(a) PUT operations

10
0

10
2

10
4

10
6

10
8

10
10

0

0.2

0.4

0.6

0.8

1
Distribution of data transferred by users between providers

Bytes

C
D

F

NEC uploaders to StackSync

StackSync uploaders to NEC

NEC downloaders from StackSync

StackSync downloaders from NEC

(b) GET operations

Figure 10: Implications of the social topology and user activity on the traffic exchanged between Personal
Cloud services.

of users consumed most of the traffic [9], causing a significant part of the inter-cloud traffic asymmetries.
For instance, 10% of NEC users account for 83.95% of upload traffic to StackSync shared folders, whereas
5% of StackSync users consume the 68.41% of NEC download traffic.

Moreover, jointly with the activity of users, the social graph plays a critical role on the traffic exchanges
across Personal Clouds. To wit, very active users exhibiting strong data sharing interactions with users of
other Personal Clouds are the most important factor of inter-cloud traffic exchanges. This, in turn, suggests
that Personal Cloud providers specifically take into account the activity of external and very active users,
as they may represent an important source of resource consumption [40].

Although our experiments do not simultaneously replay workload and sharing network from different
user communities, they give a sense on the potential implications that the activity and interactions of users
may have on the traffic exchanged across interoperable Personal Clouds. We conclude that Personal Clouds
may need additional mechanisms to control the amount of resources consumed by external users in an
scenario with horizontal interoperability among providers.

7. Discussion and Conclusions

Lessons learned. In this work, we presented the first interoperability protocol specifically tailored for Per-
sonal Clouds, including a credential management protocol and a storage API. One of the main advantages
of our protocol design is the multiple deployment strategies that it offers. For instance, two Personal Clouds
may opt by integrating the protocol in their back-end, providing horizontal data exchanges across them.
On the other hand, external services may use our protocol to provide transparent access to Personal Cloud
data to their own users; we showed an example of this deployment strategy in eyeOS, a cloud operating
system that could access to shared folders from both StackSync and NEC.

Moreover, we also found that our interoperability protocol is flexible enough to satisfy the storage,
synchronization and sharing requirements of heterogeneous Personal Clouds. This is specially true in the
case of StackSync and NEC: NEC exhibits a client-server architecture based on WebDav, whereas StackSync
resorts to elastic metadata servers totally decoupled from the storage layer. In our view, this yields that
other systems, such as onwCloud17 or big players like DropBox may integrate this protocol with little
impact on their running services.

Beyond Personal Cloud interoperability. Our experiments with StackSync and NEC provided new in-
sights that shed light beyond the operation of the interoperability protocol itself.

First, an scenario in which various Personal Clouds provide horizontal interoperability represents a sub-
strate for data management optimizations. For example, one can imagine a user in a Personal Cloud that

17https://owncloud.org/

19

updates frequently a shared file stored in an external Personal Cloud. In this case, instead of transferring
the whole file in each update, Personal Clouds may provide an inter-cloud synchronization mechanism
on top of DataWings. In particular, interoperable providers may implement chunk-level synchronization,
which may greatly reduce traffic exchanges between clouds.

Moreover, we found that active external users may represent a significant fraction of the consumed
traffic and storage resources regarding interoperable Personal Clouds. Interestingly, this situation can be
alleviated in several ways that are currently unexplored in this scenario. For example, one can imagine
specific payment models or agreements among Personal Clouds to balance the resource consumption of
external users. On the other hand, novel control mechanisms may arise to enable external user access, but
detecting and limiting potential abuses from malicious users.

Conclusions. Today, Personal Cloud services are large data silos that aim at retaining users by offering
an all-in-one storage solution. However, the unintended consequence of this model is that users lack from
transparent data sharing among multiple providers. This may lead to a vendor lock-in situation in which
users get trapped in a single provider due to the cost and complexity of switching to another one.

To solve these problems, we presented DataWings: A protocol consisting of a credential management
protocol and a storage API to enable interoperability among Personal Clouds. The protocol enables users
to store, synchronize and share data transparently from shared folders in external providers. In turn, the
agreement effort for existing Personal Clouds to integrate DataWings is affordable: i) Internally, providers
can keep their own authentication service, and ii) the storage API covers the fundamental functionality of
most existing services and follows the current REST open standards already adopted by Personal Clouds.

We demonstrated our claims by implementing DataWings on heterogeneous Personal Cloud services
(NEC, StackSync). We also described different deployment strategies possible with DataWings, including
the case of eyeOS. Specifically, eyeOS implements our protocol to make it transparent for users accessing
data stored either at NEC or StackSync, being a real use case of DataWings.

Furthermore, we provided a complete evaluation of our prototype implementations in a real multi-
provider deployment (NEC, StackSync). We analyzed the storage API performance on both services, as
well as the implications that the activity of users and their social interactions have on interoperable Personal
Clouds. The latter aspect has not yet been studied in the literature, and opens the door to the design of
novel control and optimization mechanisms in this scenario.

Acknowledgment

This work has been partly funded by the European Union through project FP7 CloudSpaces (317555)
and H2020 IOStack (644182) and by the Spanish Ministry of Science and Innovation through project “Cloud
Services and Community Clouds” (TIN2013-47245-C2-2-R).

References

[1] Techcrunch, Dropbox hits 200m users, unveils new “for business” client combining work and personal files, http://

techcrunch.com (2013).
[2] T. Economist, Battle of the clouds, http://www.economist.com/node/14644393 (2009).
[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, A

view of cloud computing, Commun. ACM 53 (4).
[4] R. Cowan, Tortoises and hares: choice among technologies of unknown merit, The economic journal (1991) 801–814.
[5] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, M. Kunze, Cloud federation, in: IEEE CLOUD’11, 2011.
[6] R. Gracia-Tinedo, M. S. Artigas, A. Moreno-Martınez, C. Cotes, P. G. López, Actively measuring personal cloud storage, in: IEEE

CLOUD’13, 2013, pp. 301–308.
[7] B. Satzger, W. Hummer, C. Inzinger, P. Leitner, S. Dustdar, Winds of change: From vendor lock-in to the meta cloud, IEEE Internet

Computing (1) (2013) 69–73.
[8] E. Hammer-Lahav, The OAuth 1.0 Protocol, http://tools.ietf.org/html/rfc5849 (2010).
[9] R. Gracia-Tinedo, Y. Tian, J. Sampé, H. Harkous, J. Lenton, P. García-López, M. Sánchez-Artigas, M. Vukolic, Dissecting Ubun-

tuOne: Autopsy of a Global-scale Personal Cloud Back-end, in: ACM IMC’15, 2015.
[10] ENISA, Cloud computing-benefits, risks and recommendations for information security,

https://www.enisa.europa.eu/activities/risk-management/files/deliverables/cloud-computing-risk-assessment/ (2009).

20

[11] SNIA, Cloud data management interface (cdmi), http://www.snia.org/cdmi.
[12] G. Vernik, A. Shulman-Peleg, S. Dippl, C. Formisano, M. C. Jaeger, E. K. Kolodner, M. Villari, Data on-boarding in federated

storage clouds, in: IEEE CLOUD’13, 2013, pp. 244–251.
[13] K. Aberer, P. Cudré-Mauroux, A. M. Ouksel, T. Catarci, M.-S. Hacid, A. Illarramendi, V. Kashyap, M. Mecella, E. Mena, E. J.

Neuhold, et al., Emergent semantics principles and issues, in: Database Systems for Advanced Applications, 2004, pp. 25–38.
[14] E. M. Maximilien, A. Ranabahu, R. Engehausen, L. C. Anderson, Toward cloud-agnostic middlewares, in: ACM SIGPLAN’09,

2009, pp. 619–626.
[15] G. Vetere, M. Lenzerini, Models for semantic interoperability in service-oriented architectures, IBM Systems Journal 44 (4) (2005)

887–903.
[16] L. Steels, P. Hanappe, Interoperability through emergent semantics: a semiotic dynamics approach, in: Journal on Data Seman-

tics, 2006, pp. 143–167.
[17] Vision cloud project, http://www.visioncloud.eu/.
[18] mosaic project, http://www.mosaic-fp7.eu/.
[19] Remics project, http://www.remics.eu/.
[20] S. Sotiriadis, N. Bessis, An inter-cloud bridge system for heterogeneous cloud platforms, Elsevier Future Generation Computer

Systems - (-) (2015) In press.
[21] Open cloud computing interface, http://occi-wg.org/.
[22] X.-L. Liu, R.-K. Sheu, S.-M. Yuan, Y.-N. Wang, A file-deduplicated private cloud storage service with cdmi standard, Elsevier

Computer Standards & Interfaces 44 (2016) 18–27.
[23] D. Heimbigner, D. McLeod, A federated architecture for information management, ACM Transactions on Information Systems

(TOIS) 3 (3) (1985) 253–278.
[24] Q. Jia, Z. Shen, W. Song, R. van Renesse, H. Weatherspoon, Supercloud: Opportunities and challenges, ACM SIGOPS Operating

Systems Review 49 (1) (2015) 137–141.
[25] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, et al.,

The reservoir model and architecture for open federated cloud computing, IBM Journal of Research and Development 53 (4)
(2009) 4–1.

[26] D. C. Erdil, Autonomic cloud resource sharing for intercloud federations, Elsevier Future Generation Computer Systems 29 (7)
(2013) 1700–1708.

[27] D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda, L. Fong, S. M. Sadjadi, M. Parashar, Cloud federation in a
layered service model, Elsevier Journal of Computer and System Sciences 78 (5) (2012) 1330–1344.

[28] E. Olden, Architecting a cloud-scale identity fabric, Computer (3) (2011) 52–59.
[29] A. Celesti, F. Tusa, M. Villari, A. Puliafito, Three-phase cross-cloud federation model: The cloud sso authentication, in: IEEE

AFIN’10, 2010, pp. 94–101.
[30] H. Y. Huang, B. Wang, X. X. Liu, J. M. Xu, Identity federation broker for service cloud, in: IEEE ICSS’10, 2010, pp. 115–120.
[31] A. Tassanaviboon, G. Gong, Oauth and abe based authorization in semi-trusted cloud computing: aauth, in: ACM international

workshop on Data intensive computing in the clouds, 2011, pp. 41–50.
[32] H. Abu-Libdeh, L. Princehouse, H. Weatherspoon, Racs: a case for cloud storage diversity, in: ACM SoCC ’10, 2010, pp. 229–240.
[33] A. Bessani, M. Correia, B. Quaresma, F. André, P. Sousa, Depsky: dependable and secure storage in a cloud-of-clouds, ACM

Transactions on Storage (TOS) 9 (4) (2013) 12.
[34] S. Han, H. Shen, T. Kim, A. Krishnamurthy, T. Anderson, D. Wetherall, Metasync: File synchronization across multiple untrusted

storage services, in: USENIX ATC’15, 2015, pp. 83–95.
[35] D. Dobre, P. Viotti, M. Vukolić, Hybris: Robust hybrid cloud storage, in: ACM SoCC’14, 2014, pp. 1–14.
[36] Y. Hu, H. C. Chen, P. P. Lee, Y. Tang, Nccloud: applying network coding for the storage repair in a cloud-of-clouds., in: USENIX

FAST’12, 2012, p. 21.
[37] R. Tornyai, A. Kertesz, Towards autonomous data sharing across personal clouds, in: Euro-Par’14 Workshops, 2014, pp. 50–61.
[38] R. Gracia-Tinedo, M. Sánchez-Artigas, A. Ramírez, A. Moreno-Martínez, X. León, P. García-López, Giving form to social cloud

storage through experimentation: Issues and insights, Elsevier Future Generation Computer Systems 40 (2014) 1–16.
[39] I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre, A. Pras, Inside dropbox: understanding personal cloud storage services,

in: ACM IMC’12, 2012, pp. 481–494.
[40] R. Gracia-Tinedo, M. Sanchez Artigas, P. Garcia Lopez, Cloud-as-a-gift: Effectively exploiting personal cloud free accounts via

rest apis, in: IEEE CLOUD’13, 2013, pp. 621–628.
[41] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor, N. Rinetzky, O. Rodeh, J. Satran, A. Tavory, L. Yerushalmi, Towards an

object store, in: IEEE MSST’03, 2003, pp. 165–176.
[42] P. Garcia-Lopez, M. Sanchez-Artigas, S. Toda, C. Cotes, J. Lenton, Stacksync: Bringing elasticity to dropbox-like file synchroniza-

tion, in: ACM/IFIP/USENIX Middleware’14, 2014, pp. 49–60.
[43] E. J. Whitehead Jr, M. Wiggins, Webdav: Ieft standard for collaborative authoring on the web, IEEE Internet Computing 2 (5)

(1998) 34–40.

21

