
The Power of Swarming in Personal Clouds Under Bandwidth Budget

Rahma Chaabouni1, Marc Sánchez-Artigas1, Pedro García-López1 and Lluís Pàmies-Juàrez2

1 Universitat Rovira i Virgili, Tarragona (Spain)
{rahma.chaabouni|marc.sanchez|pedro.garcia}@urv.cat

2 HGST Resarch
lluis.pamies-juarez@hgst.com

Abstract

Users are unceasingly relying on personal clouds (like Dropbox, box . . .) to store, edit and retrieve their files stored
in remote servers. These systems generally use HTTP to distribute the files to end-users. This means that they require
a huge amount of bandwidth to meet the requirements of their clients. Personal clouds with limited bandwidth budget
can benefit from the upload speed of the clients sharing the same file to improve the quality of service. This can be
done by introducing a peer-to-peer protocol, BitTorrent for instance, when the load on a certain file becomes high.
The main challenge is to decide when to switch to BitTorrent and how to allocate the cloud’s available bandwidth to
the different clients. In this paper, we propose an algorithm for the allocation of the cloud’s bandwidth. Based on the
current load and the predefined quality of service constraints, the algorithms identifies the most suitable protocol for
each swarm and provides the corresponding bandwidth allocation. We validate the algorithm using a real trace of the
Ubuntu One system and the results show important gains in the download times experienced by the clients.

Keywords: BitTorrent, peer-assisted content distribution, personal clouds, bandwidth allocation

1. Introduction

Nowadays, users are unceasingly relying on cloud storage services (like Dropbox, Google Drive or Box . . .) to
store, edit and retrieve their data stored in remote servers and which can be accessed all over the Internet. Such systems
are hosted by cloud-based datacenters spread all over the world and are generally equipped with a set of features that
allow sharing and collaboration between the users. That is why these popular applications account for a major share
of Internet traffic today [1].

Small and medium-sized personal clouds with limited budget constraints generally have fixed amount of band-
width. This bandwidth is shared by all the concurrent active end-users, which might jeopardize the overall quality
of service especially when the demand becomes high. As a matter of fact, these systems are based on a client-server
architecture and the default content distribution protocol is usually HTTP. This means that all download requests are
handled by a central entity which sends the requested content in a single stream. Unfortunately, such transfer is limited
by the narrowest network condition along the way, or by the server being overloaded by requests from many clients.

To cope with these limitations, the cloud can benefit from the clients’ upload capacities to overcome its bandwidth
limits. This can be done by using the BitTorrent (BT) protocol [2] to distribute the files that are shared between a
set of devices. In such scenarios, it is possible to benefit from the common interest of users in the same file and use
their own upload bandwidth to offload the cloud from doing all the serving. However, the use of BitTorrent may
incur a longer download time compared to HTTP especially for small files [3]. The main challenge is to decide for
each swarm which protocol is more suitable (HTTP or BT) for transferring the requested files and how much cloud
bandwidth should be allocated to each swarm.

In this paper, we study the relationship between the cloud bandwidth allocated to a swarm of clients and the
resulting download time for the end-users. We also propose a bandwidth allocation and protocol decision algorithm
that evaluates for each swarm the most suitable protocol (HTTP or BT) and returns the amount of bandwidth to be
allocated, based on the current load on the cloud. Our key contributions are as follows:

Preprint submitted to Journal of Network and Computer Applications May 25, 2015

• We analyze the relationship between the amount of cloud bandwidth allocated to a given swarm and the resulting
download time. Based on a fixed quality of service constraint, we calculate the amount of seed bandwidth
needed to ensure a given ratio between the download times in HTTP and BT.

• We propose a dynamic algorithm (Algorithm 1) which uses simple parameters that can be collected by the
system and evaluates the efficacy of using HTTP and BitTorrent as a distribution protocol for each requested
file. Based on the load of the seed and the predefined switching constraints, the algorithms decides the most
suitable protocol for each case and provides the corresponding bandwidth allocations at the swarm level. This
algorithm can be applied in cloud-based content distribution systems to achieve important improvements in the
overall quality of service.

• We develop two simulators to evaluate the efficiency of our proposal. The first one simulates the default behavior
of the seed where each download operation is treated individually and the content is delivered using HTTP. The
second simulator simulates the bandwidth distribution and switching algorithm where BT can be used along
with HTTP to distribute content. We validate both approaches using a real trace of the Ubuntu One 1 system:
We vary the switching constrains and the cloud upload speed limits and measure the degree of improvement
in download time of the involved clients using our algorithm (BT and HTTP together) compared to the use of
HTTP alone. The results show important improvements in the download time experienced by the peers.

The remainder of this paper is organized as follows: We discuss related work in Section 2 and present some
background on BitTorrent and personal clouds in Section 3. Section 4 presents the architecture of the system and
highlights the main differences compared to the classic personal clouds. In Section 5, we state the bandwidth allocation
problem and propose an algorithm to solve it in section 6. Section 7 evaluates the efficacy of the algorithm based on
a real trace of the Ubuntu One system. Finally, Section 8 concludes the paper and presents our future plans.

2. Related work

Integrating BitTorrent with the cloud is not a new idea in the literature. Several previous studies have tried to
combine BitTorrent content distribution technologies with cloud environments. Many previous works have focused
on reducing download times for large contents using BitTorrent in cloud settings. BitTorrent has proven its efficiency
not only for bulk synchronous content distribution [4] but also for reducing transfer times for cloud virtual images
[5, 6, 7]. However, to the best of our knowledge, we were the first to propose to use both HTTP and BitTorrent
together in cloud systems [8, 3].

In [8], we introduced the idea of transparent switching from HTTP to BitTorrent upon detection of a certain critical
mass demand on a specific content. The threshold was placed on the number of users requesting the same files. The
system tested with each new request whether the current number of requesters of the corresponding file passed the
predefined threshold or not. When the threshold was reached, the system decided to adopt BitTorrent instead of HTTP
in order to avoid bottlenecks on the one hand, and to save cloud bandwidth on the other hand.

In [3], we investigated further the threshold at which the system should switch from HTTP to BitTorrent. Instead
of placing a static condition on the number of peers requesting the same file, we elaborated a complete analysis and
experimental evaluation of a dynamic threshold that takes into consideration not only the number of peers, but also
their corresponding bandwidths and the size of the shared file. With recourse to previous studies related to the study
of HTTP and BT protocols [9, 10, 11, 12], we proposed accurate estimations of the download times in both protocols
and introduced some evaluation metrics to evaluate the efficiency of each of them. These metrics provide accurate
estimations of the gain in download time and the amount of data contributed by the peers.

This paper differs from [3] in that it considers personal clouds with a fixed bandwidth budget constraint. Various
related works focused on the allocation of the seed’s bandwidth within the BT swarms when the bandwidth budget
is limited [13, 14, 15]. However, we believe we are the first to propose an algorithm that manages to distribute the
limited cloud bandwidth between the different peers using two different download protocols: HTTP and BitTorrent.

1https://wiki.ubuntu.com/UbuntuOne

2

3. Background

3.1. The BitTorrent protocol (BT)

BitTorrent [2] is a P2P application whose goal is to facilitate fast downloads of files by taking advantage of the
upload bandwidth of the peers. A user who wants to share a certain content via BT has to generate first a .torrent
file that contains the related meta-data information and a link to a tracker. A tracker is a server that assists in the
communication between peers interested in the same content. After the generation of the meta-data file, the user has
to make the content to be shared available through a BitTorrent node acting as a seed. A seed is a node that has
a complete copy of a particular content, whereas a leecher is one that has only a partial copy. In this paper, seeds
and leechers are simply referred to as peers and the set of all the peers sharing the same content is called a swarm.
Peers interested in a certain content are in charge of getting the corresponding .torrent file and then contacting the
tracker to acquire a set of peers sharing the same content. Once these peers are located, it is possible for them to
communicate to one another in order to distribute the file among them. The official protocol specification can be
found at: http://www.bittorrent.org/beps/bep_0003.html

3.2. Personal Cloud systems

Definition. A Personal Cloud (PC) is a term generally used to refer to a file hosting service that allows its users to
store, synchronize and share content over the Internet. The authors in [16] propose the following definition: “The
Personal Cloud is a unified digital locker for our personal data offering three key services: Storage, Synchronization
and Sharing. On the one hand, it must provide redundant and trustworthy cloud data storage for our information
flows irrespective of their type. On the other hand, it must provide syncing and file exploring capabilities in different
heterogeneous platforms and devices. And finally, it must offer fine-grained information sharing to third-parties (users
and applications)." Personal Clouds have attracted the researchers’ attention lately and there have been important work
related to the benchmark and design of these services [17, 18, 19, 20].

Storage service

FTP/SFTP

 User interfaces

Processing service

Metadata servers

Database

 Notification service

Metadata service

Figure 1: General architecture of personal clouds

Architecture. Figure 1 presents the general architecture of a PC. This figure is inspired from the official architecture
of Dropbox [21]. It presents the core elements of a PC, without taking into consideration the authentication and
encryption layers that are deployed to reinforce security. These elements are:

3

• Meta-data service: The meta-data servers contain all the meta-data information related to the clients and the
files. They can be equipped with a local database where all the meta-data is stored.

• Storage service: The storage service of storage back-end refers to the physical locations where the users’ file
content are stored. It can be local, in the form of local storage servers accessed via FTP/SFTP, or external,
provided by a third-party (Amazon, Google. . .).

• Notification service: The notification service is dedicated to monitoring whether or not any changes have
been made to the users’ accounts. Whenever a change to any file takes place, the client is notified in order to
synchronize these changes.

• PC clients or user interfaces: The services offered by personal clouds can be utilized and accessed by physical
clients through a number of interfaces, including web interfaces (accessed through web browsers), desktop
applications or mobile apps.

• Processing service: The processing service is responsible for processing the files and ensuring their delivery to
the end-users. To download a file, the client sends an HTTP GET request to the processing service. The latter
verifies the existence of the file in the storage nodes and the file is transferred using the HTTP protocol.

4. System architecture

In this paper, we consider a classic personal cloud (store, sync and share functionalities) enriched with extra
components that allow inter-client content transfers via BT. Several components are added to accommodate the BT
behavior as shown in Figure 2, including:

Clients swarms

HTTP swarms: Shttp

BitTorrent swarms: Sbt

s
10

s
8

s
11 s

13

s
14

s
9

s
12 s

3

s
1

s
4 s

6

s
7 s

5

s
2

Modified Personal Cloud

Classic Personal Cloud Content Delivery Service

Processing

service

Storage

service

Metadata

service

Notification

service

g N

Coordinator Seeder nodes

BitTorrent seeds HTTP seeds
s

8

s
9

s
10

s
11

s
12

s
13

s
14

s
1

s
2

s
3

s
4

s
5

s
6

s
7

Figure 2: Global view of the system architecture

• Content Delivery Service : The content delivery service is also referred to as cloud. Its main role is to process
the requests coming from the end-users and ensure the delivery of the files to the corresponding requesters.
Several components are added, compared to the default architecture (Figure 1), including:

- Coordinator: The coordinator is the core component of the cloud. It is responsible for managing all the
clients’ requests and ensuring they are processed correctly. The coordinator is also responsible for the
proper management of the cloud’s resources.

- Seeder nodes: The seeder nodes are the entities responsible for delivering the requested content from the
storage back-end servers to the end-users. To each file being distributed corresponds one seeder node.

4

In our paper, we refer to these seeder nodes as cloud seeds or seeds. We distinguish two types of seeds:
HTTP seeds and BitTorrent seeds depending on the algorithm adopted to distribute the requested content
to end-users.

• Clients swarms: All the end-user peers are organized into swarms. We define a swarm by the set of peers
that are requesting the same file. If a file is being downloaded by a single peer, we consider it as a single-peer
swarm. This means that, at a given time, there are as many swarms as the number of files being downloaded (to
each file corresponds only one swarm and one seeder node). In our model, we distinguish between two types of
swarms:

- HTTP Swarms: The HTTP swarms are the swarms whose peers are downloading the corresponding file
from HTTP seeds via HTTP. Clearly, these peers are not collaborating with each other, but grouping them
in swarms is a simple means of control which will help, later on, in making the switching decision.

- BitTorrent Swarms: Also referred to as BT swarms. Similar to HTTP swarms, BT swarms are the swarms
whose peers are downloading the corresponding file from BT seeds via the BT protocol. Typically, these
swarms are composed of two peers or more. Since the peers are supposed to collaborate between each
other with the help of the cloud seed, it makes no sense to have a single-peer BT swarm.

To download a file, the client sends an HTTP GET request to the coordinator. The latter verifies the existence of
the file in the storage nodes and decides the download protocol to be used: HTTP or BitTorrent. The decision is made
based on the load on the seed and the swarms’ characteristics. In the case of a HTTP download, a HTTP seeder node
is associated with the requested file which will be transferred using the HTTP protocol. Otherwise, in the case of a
BT transfer, the coordinator creates a torrent meta-data file and runs a corresponding BT seed. After that, the recently
created .torrent file will be transmitted to the corresponding clients who, unaware of all these interactions, will then
start downloading the file using the BitTorrent protocol (from the cloud seed and/or from the other clients). Evidently,
the “old" clients who arrived before the switch to BitTorrent will also benefit from the switch if they did not finish
the download. In fact, when an “old" client requests a new part of the file to be downloaded, he will realize that the
transfer protocol has changed and will automatically adapt to the new one. Thus, each “old" client will join the swarm
with the pieces he already has, which means that he will be probably contributing to the swarm as soon as he switches
to BitTorrent in a very transparent way.

User A
User A’s connected devises

(a) Synchronization

User A

User B and user C’s connected devises

User B
User C

(b) Sharing

Figure 3: Synchronization and sharing in personal cloud systems

This approach can applied widely in any cloud-based system. Personal clouds are the most appropriate for this
proposal since the developers can tune the client’s implementation to extend them with the BT functionality. The two
following common file distribution scenarios could benefit from our hybrid download strategy:

1. Synchronization: User A is adding a new file f to his personal account. During the synchronization process,
the same file will be download by all the other synchronized devices of the user (figure 3a)

2. Sharing: User A is sharing a file f with other users. In this case, the file will be downloaded by all the
synchronized devices of the users (Figure 3b)

5

Both cases can be modeled by the problem of distributing a file f from the cloud servers to a swarm s of different
devices (peers) as detailed in Figure 4. We will focus in the following section on this scenario and state the problem
of bandwidth distribution.

For the rest of the paper, we consider the notation presented in Table 1.

Table 1: Table of notations

W the cloud’s upload budget limit

S the set of all active swarms

S http a subset of S that corresponds to the set of the swarms downloading the files via HTTP

S bt a subset of S that corresponds to the set of the swarms switched to BitTorrent

s a swarm s = (Ps, fs,ws, isBTs) is identified by the set of the peers forming it Ps, the file being
shared fs, the corresponding amount of allocated cloud bandwidth ws and a boolean variable
isBTs that indicates the download protocol.

Ps set of all the peers in s. Ps =
{
(up, dp), ∀p ∈ Ps

}
where up and dp are respectively the upload

and download speeds of a given peer p ∈ s

fs file requested by the peers in Ps

ws amount of cloud bandwidth allocated to the swarm s

isBTs boolean variable that indicates the download protocol adopted by the peers in s. isBTs = True,
if peers in Ps are downloading fs via BitTorrent and isBTs = False, otherwise

Fs size of the requested file fs

Ls number of peers in Pss (Ls = |Ps|)

Ds aggregated download speed of all the peers in Ps (Ds =
∑

p∈Ps

dp)

dmin,s the download speed of the slowest peer in Ps (dmin,s = min
∀p∈Ps

dp)

us the average upload speed of all the peers in Ps (us =
∑

p∈Ps

up

Ls
)

ηs the effectiveness of file sharing, introduced in [11] and reused in [3]. ηs takes real values
in [0, 1] where 1 means maximum effectiveness while a value of 0 signals the absence of
collaboration between peers

αbt the overhead related to the start-up phase in BitTorrent transfers

τ the QoS constraint that defines the switching point from HTTP to BT

5. Bandwidth Allocation Problem

Our main goal is to minimize the upload bandwidth ws allocated to a swarm s ∈ S while taking into consideration
the quality of service offered to the different clients. These allocations should be non-negative (ws ≥ 0,∀s ∈ S)
and their sum should not exceed the cloud’s upload budget limit (

∑
s∈S ws ≤ W). The bandwidth allocation strategy

follows these two rules:

Rule 1. HTTP is the default download protocol and each swarm is allocated a share of the cloud’s bandwidth equal
to its demand.

Rule 2. The cloud can decide to switch the download protocol for a given swarm s from HTTP to BT if it (the cloud)
will save in bandwidth and if this change of protocol will not jeopardize the quality of service constraint related to the
download time of the peers in s.

Rule 1 defines HTTP as the default download protocol and sets the share of the cloud’s bandwidth allocated to s to
be equal to the aggregated download speeds of the peers in s (ws = Ds). When it is possible to gain in bandwidth, the

6

cloud can decide to switch the download protocol from HTTP to BT, as stated in Rule 2. This change of protocols is
fixed by a quality of service constraint τ. This constraint defines the degree of improvement (or degrade) in download
time that is accepted when considering the switch to BT. For instance, a τ = 0.2 requires an improvement of a least
20% in download time that a swarm would gain if it adopts BT rather than HTTP. A negative value of τ, such as −0.5
means that losses in download time up to 50% are accepted. The bandwidth allocated to BT swarms should be the
minimal that satisfies the switching constraint. As the swarms evolve over time with new peers joining and leaving,
we will need to adapt the assignments and allocations accordingly since the cloud’s upload speed is limited by W.

To better understand the problem, it is important to introduce some parameters that will interfere in making the
decision about the bandwidth allocation. These parameters serve to evaluate the performance of using HTTP or BT
to distribute a given file shared between a set of peers.

Cloud seed:

• ws: allocated share of the cloud’s

bandwidth allocated to the swarm s

Requested file fs:

• Fs: the size of fs

Swarm s:

• Composed by Ls peers

• us: average upload speed of the peers in s

• dmin,s: download speed of the slowest peer in s

Figure 4: File distribution scenario

We consider the case of a swarm s composed of Ls distinct peers requesting the same file fs from the same source,
called the cloud seed (or simply the seed). We denote by ws the allocated share of the cloud’s upload bandwidth
reserved to s, Fs the size of the shared file fs, us the average upload speed of the peers in the s and by dmin,s the
download speed of the slowest peer among them (see Figure 4 for more details).

In the following subsections, we will present some formulas related to the estimation of the download times in
HTTP and BT (respectively Thttp and Tbt. We will also define the gain percentage Gain and estimate the minimum
cloud upload bandwidth needed to satisfy the QoS constraint for s by solving the equation Gain(wbt

s , s) ≥ τ.

5.1. Download Time in HTTP Thttp

In the case fs is distributed via HTTP, the distribution time Thttp is limited by the download speed of the slowest
peer dmin,s or the seed bandwidth ws divided equally between the Ls clients. It can be defined as follows:

Thttp (ws, s) =
Fs

min
{
dmin,s,

ws
Ls

} . (1)

5.2. Download Time in BitTorrent Tbt

When fs is distributed via BT, then the distribution time Tbt depends on the download speed of the slowest peer
dmin,s, the aggregated upload bandwidth of all the nodes divided equally between all the Ls leechers, and the cloud’s
allocated share ws. Tbt has been studied before in [10] and an approximation of the distribution was given. In [3],
we extend that approximation and propose an accurate estimation of Tbt that takes into consideration the overheads
related to the nature of the protocol, as follows:

Tbt (ws, s) =
Fs

min
{
dmin,s,

ws+ηs.us.Ls
Ls

,ws

} + αbt, (2)

7

where αbt is the overhead related to the start-up phase, and ηs measures the effectiveness of file sharing for s. For
more details about αbt and ηs, please refer to [3]. Equation 2 was validated in [3] using different bandwidth settings
and different file sizes, and was proven to be accurate even with small files.

5.3. The Gain Ratio
Sometimes the use of BitTorrent may incur a longer download time compared to HTTP especially for small files.

The main challenge is to decide when it is worth switching to BitTorrent. The key element in making the decision
is the gain in download time which represents the difference in download time between HTTP and BitTorrent. To
this extend, we introduced in [3] the gain ratio which measures the improvement in terms of download time between
client-server and peer-assisted systems, as follows:

Gain (ws, s) =
Thttp(ws, s) − Tbt(ws, s)

Thttp(ws, s)
.

The gain can take different values which can be either negative, positive or equal to zero. A positive (respectively
negative) gain ratio equal to x (respectively −x) means that downloading the file via BT entails a gain (respectively a
loss) of 100x% in download time compared to HTTP. A gain ratio equal to zero indicates that both protocols (BT and
HTTP) have the same estimated download time.

We derived in [3] the analytic equation of the gain based on the values of the divisors of Thttp and Tbt, which are
respectively min

{
dmin,s,

ws
Ls

}
and min

{
dmin,s,

ws+ηs Ls us
Ls

,ws

}
, as follows:

Gain (ws, s) =

−
αbt dmin,s

Fs
, if dmin,s ≤

ws

Ls
and dmin,s ≤ min

{
ws + ηs us Ls

Ls
,ws

}
1 −

ws

Ls dmin,s
−
αbt ws

Fs Ls
, if

ws

Ls
≤ dmin,s and dmin,s ≤ min

{
ws + ηs us Ls

Ls
,ws

}
1 −

ws

ws + ηs us Ls
−
αbt ws

Fs Ls
, if

ws + ηs us Ls

Ls
≤ min

{
dmin,s,ws

}
1 −

1
Ls
−
αbt ws

Fs Ls
, if ws ≤ min

{
dmin,s,

ws + ηs us Ls

Ls

}
.

(3)

5.4. Solving the equation Gain(
??

wbt
s , s) ≥ τ

In order to calculate the minimum amount of cloud bandwidth needed to ensure that the switching condition
Gain(wbt

s , s) ≥ τ is satisfied, it essential to reverse the gain formulation (equation 3). To this extend, we study the
behavior of the gain formulas when wbt

s varies. Based on this constraint, we identify two exhaustive cases in which
the gain equations are monotonically decreasing. For each case, we deduce the reversed equations of the gain, interval
per interval, as follows2:

• Case A: (Ls − 1) dmin,s ≥ Ls ηs us: the average download speed of the peers in the swarm s is higher than the
upload bandwidth the whole swarm can provide:

wbt
s =

Ls dmin,s, ∀τ ∈

]
−∞,−

αbtdmin,s

Fs

]
(1 − τ)Fs Ls dmin,s

Fs + dmin,s αbt
, ∀τ ∈

[
−
αbt dmin,s

Fs
,
ηs us

dmin,s
−
αbt (dmin,s − ηs us)

Fs

]
√

a2b2 − 2abc + 4ab + c2 − ab − c
2 b

, ∀τ ∈

[
ηs us

dmin,s
−
αbt(dmin,s − ηs us)

Fs
, 1 −

1
Ls
−

αbt ηs us

(Ls − 1) Fs

]
Fs [Ls (1 − τ) − 1]

αbt
, ∀τ ∈

[
1 −

1
Ls
−

αbt ηs us

(Ls − 1) Fs
, 1 −

1
Ls

[
@, ∀τ ∈

[
1 −

1
Ls
,+∞

[
2 For the complete proof of the solution, please refer to Appendix A

8

Where:
a = ηs Ls us, b =

αbt

Fs Ls
and c = τ (4)

• Case B: (Ls − 1) dmin,s ≤ Ls ηs us: the average download speed of the peers in the swarm s is lower than the
upload bandwidth the whole swarm can provide:

wbt
s =

Ls dmin,s, ∀τ ∈

]
−∞,−

αbt dmin,s

Fs

]
(1 − τ)Fs Ls.dmin,s

Fs + dmin,s αbt
, ∀τ ∈

[
−
αbt dmin,s

Fs
, 1 −

1
Ls
−
αbt dmin,s

Fs Ls

]
Fs [Ls(1 − τ) − 1]

αbt
, ∀τ ∈

[
1 −

1
Ls
−
αbt dmin,s

Fs Ls
, 1 −

1
Ls

[
@, ∀τ ∈

[
1 −

1
Ls
,+∞

[

6. Bandwidth Allocation and Protocol Management Algorithm

In this section we present our bandwidth distribution and protocol management algorithm. This algorithm aims to
minimize the cloud’s allocated bandwidth among the seeder nodes, while respecting the QoS constraint. We remind
that a seeder node is an entity responsible for distributing a given file to the corresponding set of clients. The share
of the cloud’s upload bandwidth allocated to each seeder node should verify the constraints of the problem previously
explained in section 5.

In addition to the bandwidth allocations, the algorithm is also responsible for evaluating for each swarm the most
suitable content distribution protocol: HTTP or BitTorrent. A swarm would switch to BitTorrent if it satisfies the
following conditions:

1. The number of clients in the swarms is higher or equal to 2. In fact, it makes no sense to use BitTorrent with
only one client interested in the file.

2. The switch to BitTorrent should satisfy the quality of service constraint τ. This means that BitTorrent can be
used only when the gain percentage (equation 3) is higher or equal than τ.

3. The amount of cloud bandwidth allocated in BitTorrent should be smaller than the one using HTTP. This means
that the switch will only take place if the cloud would gain in terms of bandwidth.

We proposed in [3] a simple decision approach that consists in calculating for each swarm s ∈ S , with more
than one peer, how much the swarm would gain in terms of download time if BT is used instead of HTTP. If that
gain satisfies the quality of service constraint τ, then BitTorrent is chosen. Otherwise, HTTP is kept as the download
protocol. Even though this approach is simple and direct, it has to be further improved in order to satisfy the third
switching condition.

In this paper, we go a step further and calculate the minimum amount of bandwidth wbt
s needed to satisfy the

constraint Gain(wbt
s , s) ≥ τ (Section 5.4). Thus, instead of comparing Gain(wbt

s , s) and τ, we compare Ds and wbt
s and

the protocol that requires less bandwidth is chosen.

Algorithm Description
The main goal of our bandwidth distribution and switching algorithm is to optimally manage the cloud’s limited

bandwidth among the seeder nodes. It is also responsible for evaluating for each requested file the most suitable
content distribution model: client-server or peer-assisted, based on the current demand load. Each active seeder node
in the system is associated with a swarm of clients that are interested in the same file. It is important to remind
here that the default bandwidth distribution protocol is HTTP, but BitTorrent can be also used when the switching
conditions previously stated are satisfied. The swarms whose peers are using HTTP as a transfer protocol are referred
to as HTTP swarms (S http is the set of HTTP swarms) and the ones with peers downloading via BT are labeled as BT
swarms (S bt is the set of BT swarms).

The algorithm is executed whenever a change affects a swarm s∗ ∈ S . This change can be related to a modification
in one or more of the parameters of a certain swarm. It can be due to one or more of the following cases:

9

- A new peer p∗ wants to download a file fs∗ . If the file is already requested by other peers, then p∗ will be added
to the existing swarm s∗. Otherwise, a new swarm s∗ will be created containing a single peer p∗.

- A peer p∗ leaves a swarm s∗. If p∗ was not the only peer in the swarm, then the modified swarm will contain a
list of the other remaining peers. If p∗ was the last peer in s∗, then s∗ will be removed from S .

- The upload or download speed of one or more of the peers in s∗ changes.

Algorithm 1 Bandwidth distribution and switching algorithm

Input S . the set of all the current swarms
Input s∗ . swarm affected by a change
Input W . the cloud’s upload bandwidth budget limit
Input τ . the switching constraint

1: if Ls∗ = 1 then . s∗ is a single-peer swarm
2: ws∗ = Ds∗

3: else if Ls∗ > 1 then . s∗ has more than one peer
4: if s∗ ∈ S http then . s∗ is a HTTP swarm
5: calculate wbt

s∗ using equation (4)
6: if wbt

s∗ ≤ Ds∗ then . switching to BT
7: switch the transfer protocol from HTTP to BT
8: isBTs∗ = True . mark s∗ as a BT swarm
9: ws∗ = wbt

s∗

10: else . not switching to BT
11: ws∗ = Ds∗

12: end if
13: else . s∗ ∈ S BT , s∗ is a BT swarm
14: ws∗ = wbt

s∗ calculated using equation (4)
15: end if
16: else . Ls∗ = 0, s∗ no longer exists
17: remove s∗ from S
18: if

∑
s∈S ws + ws∗ = W then . the cloud was overloaded

19: for each s in S bt do
20: ws = ws +

ws∑
s∈S bt

ws
ws∗ . redistribute ws∗ to the BT swarms

21: end for
22: end if
23: end if

24: if
∑

s∈S ws > W then
25: for each s in S do
26: ws =

ws∑
s∈S ws

W . scale down all the bandwidth shares

27: end for
28: end if

The algorithm requires the following input parameters: the set of all current swarms S , the swarm affected by the
change s∗, the cloud’s upload bandwidth budget limit W and the switching constraint τ.

Using these input parameters, the algorithm identifies for each swarm the most suitable download protocol (HTTP
or BT) and calculates the amount of bandwidth to be allocated to the corresponding seed, as follows:

- If s∗ is a single-peer swarm (Ls∗ = 1), then the cloud allocates to s∗ a share of bandwidth equal to its download
capacity: ws∗ = Ds∗ (lines 1 and 2). In this case, the file will be distributed directly from the cloud seed to the
single-peer using HTTP.

- If the number of peers in s∗ is strictly higher than 1 (lines 3 to 12), then there are two possible cases:

10

• If the peers in s∗ are using HTTP to download fs∗ (isBTs∗ = False), the algorithm verifies if it is worth
it to switch to BT. To do so, wbt

s∗ is calculated according to equation (4). We remind that wbt
s∗ measures

the amount of seed bandwidth required to verify the quality of service constraint τ when using BT for s∗.
The algorithm compares later this bandwidth (ws∗) with the bandwidth allocated by default to the swarm
(which is equal to Ds∗).
◦ If the bandwidth required using BT is smaller than the one allocated by default (wbt

s∗ ≤ Ds∗), then the
download protocol more suitable for s∗ is BT (lines 4 to 9). In this case, a .torrent file associated to
fs∗ is created and a BT seed is launched in the cloud. All the peers in s∗ have to download the .torrent
file recently created and then can start downloading fs∗ via BT.

◦ If the use of BT requires more bandwidth than HTTP, then it is not worth switching to BT. In this
case, the cloud allocates a share of bandwidth equal to Ds∗ (line 11).

• If s∗ has already switched to BT, then the algorithm recalculates wbt
s∗ : the bandwidth needed to maintain

the quality of service constraint τ, which represents also the amount of bandwidth allocated to s∗.
- If s∗ is an empty swarm (Ls∗ = 0), then the swarm is removed from the swarms’ list. If the cloud was overloaded

before the removal of s∗, then the amount of bandwidth that was previously allocated to s∗ is redistributed among
the BitTorrent swarms (lines 18 to 22). This will prevent the cloud’s bandwidth from being underutilized and
will boost the distribution of the files among the BT swarms.

When the number of simultaneous requests becomes high, the seed might be unable to serve all the swarms at
their full speed. In such a case, the cloud has to scale down all the bandwidth allocations proportionally to the demand
(lines 24 to 28).

Complexity of the algorithm

Our bandwidth distribution and switching algorithm has a complexity of O(n) which is linear with the number of
current swarms. The coordinator only keeps in memory the state of the swarms during the iterations. This corresponds
to n × k units of storage where n is the maximum number of simultaneous swarms and k is the size, in unit of storage,
required to store the essential information about a current swarm. k is rather small (compared to the size of the files)
and it depends on the number of peers in the swarm and the storage space required to store the information of each
one of these peers.

7. Validation of the algorithm: Application to the Personal Cloud scenario

In order to evaluate the performance of the proposed algorithm, we implement two simulators. The first simulates
the default behavior of the cloud where all the download requests are treated individually and the files are distributed
via HTTP. The second simulates the bandwidth distribution and protocol management algorithm. We compare later
the results of both approaches using a trace of a real personal cloud system.

7.1. The Ubuntu One trace

In our validation, we use a real trace of the Ubuntu One (UB1) system. The trace was provided by Canonical
Ltd.3 in the context of the CloudSpaces project4. The logs were collected for about a month from their servers located
in London, based on the behavior of real users. Each line of the trace represents an upload or download operation
performed by one user on a given file. For the sake of privacy, files and user real identifiers are presented in the form
of unique hash codes. For each operation, several information were collected, including: the timestamp, the type of
operation (“up” or “down”), the hash and size of the file in question, the user’s hash identifier and the corresponding
upload and download bandwidths. We filtered the original trace and focused on the upload and download operations
that were performed during a random day of the trace (January 21st, 2014). For that day, 6, 331, 131 operations
performed by 33, 257 distinct client on 4, 095, 057 unique files were logged.

Figure 5 shows the total uploaded and downloaded volume along with the total number of upload and download
operations measured per hour during the whole day. The hours are logged according to the Greenwich Mean Time

11

00:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00
Time in the 24-hour notation

50

100

150

200

Tr
af
fic

 v
ol
um

e
(in

 G
By

te
s)

Downloaded volume
Uploaded volume

(a) Volume

00:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 24:00
Time in the 24-hour notation

5

10

15

20

25

Nu
m
be

r o
f o

pe
ra
tio

ns
(x
 1
0,
00

0)

Download operations
Upload operations

(b) Operations

Figure 5: Total uploaded and downloaded volume and the number of upload and download operations per hour during
the day January 21st, 2014 for the UB1 system.

(GMT). We notice that the peak with the highest number of upload and download operations corresponds to the hour
between 21:00 and 22:00 GMT.

To facilitate the validation process, we focus only on that peak hour, but we believe the results would be similar
for the whole trace. Since we aim to manage efficiently the upload speed of the cloud, we filter the one-hour sample
to keep only 225, 514 download operations which correspond to 173, 756 distinct files. The average file size in the
sample is about 1 MB, 988.26 KB to be precise. We notice in that sample that about 68.62% of the operations
correspond to single downloads. Single downloads are operations related to files downloaded only once. These files
account for about 89% of the total files downloaded between 21:00 and 22:00. This means that only 31.38% of the
operations correspond to multiple downloads of the same file and that only 11% of the files were downloaded more
than once. This signifies that only 31.38% of the operations are potential candidates for switching to BitTorrent.

Focusing more on that peak hour, we calculate how much bandwidth should be provided by the cloud seed in
order to satisfy the need of all the requesting peers if the download protocol was HTTP. To do so, we went through the
trace tracking the active swarms at each timestamp and summing up all the download capacities of the active peers.
With each new download request, we updated the amount of data left to be downloaded by each peer. Once a peer
has finished downloading the file, it was removed from the active peers list. The download times were calculated
according to equation (1). We plot the resulting amount of needed bandwidth in Figure 6.

This figure will be useful later to set a potential limit on the cloud seed’s bandwidth when evaluating the algo-
rithm’s efficiency. It shows that the total need in cloud bandwidth does not exceed 650 Mbps. So, when evaluating the
algorithm, it would be better to vary the cloud limit W ∈]0, 650[in order to measure the effect of the seed’s capacity
on the algorithm’s performance.

7.2. Experimental settings

To evaluate the efficiency of our proposal, we developed a Python 5 script that simulates the bandwidth distribution
and switching algorithm (Algorithm 1) and logs the results in two different log files. The first log file is related to
the seed: it keeps a log of the current state of the seed. At each timestamp, several parameters are logged including:
the amount of needed bandwidth, the amount of bandwidth served by the seed and the current number of swarms and
clients. The second log keeps track of the start time and end time of each download. The download times are updated

3 Canonical Ltd: http://www.canonical.com
4 FP7 CloudSpaces Project: http://www.cloudspaces.eu
5 Python Software Foundation: http://www.python.org

12

21:00 21:15 21:30 21:45 22:00
Time

100

200

300

400

500

600

700

Ba
nd

w
id
th
 (M

bp
s)

Needed bandwidth

Figure 6: Needed upload bandwidth over time during the peak hour

at each timestamp according to equations (1) and (2), for HTTP and BT swarms, respectively.
In order to evaluate the results, we also developed another script that simulates the default behavior of the seed in
which each download operation is treated individually and the download times are calculated according to equation
(1). This simulator also keeps similar logs as the algorithm simulator in order to facilitate the comparison of the
approaches.

7.3. Results
We exploit the previously described trace sample of UB1 and re-simulate the arrival pattern of the peers to validate

our approach. We run both simulators with a wide combination of τ and W values and collect the logs of each
experiment. Then, we evaluate our algorithm comparing the results with the ones obtained using the default strategy
with the same bandwidth limits.

First of all, we run the simulator fixing the upload bandwidth budget at 300 Mbps and varying the switching
constraint τ. The goal is to get a first idea of the performance of the algorithm. We measure for each simulation, the
download time taken by each operation and compare them to the times measured using the HTTP-only simulator with
the same budget limit. It is important here to note that the download times are measured in seconds with a precision
of one millisecond. We classify the operations into three different categories: operations that have gained in download
time with the algorithm, operations that experienced losses and operations whose download time is left unchanged for
both approaches.

Table 2: Percentages of operations with gains and losses in download time resulted by the algorithm compared to pure
HTTP use. The cloud upload bandwidth budget limit is W=300 Mbps.

τ1 = −0.2 τ2 = 0 τ3 = 0.2 τ4 = 0.4
% of operations with gain 82.89 % 82.9 % 83.43 % 83.53 %
% of operations with loss 2.23 % 2.31 % 2.48 % 2.85 %
% of operations with no difference 14.88 % 14.79 % 14.09 % 13.62 %

Total % 100 % 100 % 100 % 100 %

Table 2 presents the percentages of the operations in each category. We notice that for the three different values
of τ, more than 80% of the operations benefited from a gain in download time, about 15% kept the same time and
only about 2.5% of them lost in download time. Even though these percentages are quite good, we need to make sure
that the cumulative gains are higher than the losses. To do so, we sum all the download times of all operations for

13

both approaches and calculate the total net gain percentage (net_gain_%). net_gain_% represents the percentage ratio
between the total time gained (or lost) by using the algorithm (net_gain_hours = sum_http_hours− sum_algo_hours)
and the total download times using HTTP only (sum_http_hours).

net_gain_% =
net_gain_hours
sum_http_hours

× 100 =
sum_http_hours − sum_algo_hours

sum_http_hours
× 100

Table 3: Total sum of all the download times for all the operations and the net gain percentage for the algorithm
applied on the one-hour sample of the UB1 trace. The cloud upload bandwidth budget limit is W=300 Mbps.

τ1 = −0.2 τ2 = 0 τ3 = 0.2 τ4 = 0.4
sum_http_hours (in hours) 2450.2 2450.2 2450.2 2450.2
sum_algo_hours (in hours) 2000.98 1997.05 1952.73 1906.56
net_gain_hours (in hours) 449.22 453.15 497.47 543.64
net_gain_% 18.33% 18.49% 20.3% 22.19%

Table 3 presents the total sum of all the download times of all the download operations and the net gain percentage
based on the UB1 one-hour sample. The first row represents the sum of download times using HTTP. It is important
to mention here that, for HTTP, this sum depends only on the cloud upload bandwidth budget W. Hence, for the fixed
bandwidth W = 300Mbps, it is always equal to 2450.2 hours, regardless of the τ constraint. However, the sum of the
download times using the algorithm with a given cloud bandwidth limit depends highly on the switching constraint τ.
In Table 3, we compare the results with three different τ values:
Similarly, with the third and fourth constraints τ3 = +0.2 and τ4 = +0.4 (switch only if the corresponding peers will

gain 20%, respectively 40%, or more gain in download time), the net gain percentage gets higher and reaches more
than 20% of the total download time of all peers.

The first constraint is τ1 = −0.2: this constraint can be translated as follows: at a certain timestamp, a swarm can
switch from HTTP to BitTorrent only if it will only lose less than 20% in download time. Under this constraint, we
notice that the algorithm performs better than HTTP with a net gain in the client’s download time equal to 18.33%.
Next, we make the constraint a little bit stricter and we accept only switches to BT when the peers in question will
only gain in download (τ2 = 0, no loss is permitted). We notice that the net gain percentage improves slightly. This is
because the constraint will prevent swarms with negative gains from switching which will result in an increase of the
total amount of net gain hours.

21:00 21:15 21:30 21:45 22:00
Time

100

200

300

400

500

Se
rv
ed

 b
an

dw
id
th
 in

 M
bp

s

With the algorithm
Without the algorithm

Figure 7: Amount of bandwidth served to the clients with and without the algorithm. The extra served bandwidth
with the algorithm comes from the peers involved in BitTorrent swarms. Settings: W = 300 Mbps and τ = 0.4.

14

To measure the efficiency of the algorithm for a specific configurations, we fix the switching constraint τ = 0.4 and
we suppose that the cloud’s upload budget limit W = 300 Mbps. Figure 7 shows the efficiency of taking advantage of
the upload speed of the peers. It compares the amount of bandwidth served by the seed to clients without using the
algorithm (all files are distributed via HTTP) versus the total amount that becomes available when using the algorithm.
This latter includes, in addition to the cloud’s upload limit, the upload speed of the clients who switched to BitTorrent.
We notice that the peers’ contribution can reach up to 60% of the total cloud’s budget. The total operations switched to
BT represents only 2.45% of the operations with multiple downloads, which corresponds to less than 1% of the total
number of operations, and the average size of the swarms switched to BitTorrent is 2.206 peers per swarm. Despite
this limited number of switched operations, we notice in Figure 8b that the download times are reduced using the
algorithm. As a matter of fact, the average download time without using the algorithm is 39.11 seconds. This time is
reduced by 22.19% using the algorithm to only 30.43 seconds. Figure 8b presents the CDF of the inter-arrival times
of requests and BT swarms. The average inter-arrival rate of the download requests (time between each arrival of a
download request into the system and the next) is 0.0159 seconds. The average inter-arrival rate of the BT swarms
(time between each creation of a BT swarm and the next) is 4.5702 seconds.

10-4 10-3 10-2 10-1 100 101 102 103 104 105
Download time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Without the algorithm
With the algorithm

0.04 0.06 0.08 0.10 0.12 0.14

0.46

0.48

0.50

0.52

0.54

(a) Download time

10-3 10-2 10-1 100 101
Inter-arrival time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0
CD

F

Requests
BT swarms

(b) Interarrival time

Figure 8: CDF download times and inter-arrival time of requests and BT swarms with and without the algorithm.
Settings: W = 300 Mbps and τ = 0.4.

After evaluating the general performance of the algorithm, we study the effect of the bandwidth limit W. Figure 9
compares the number of simultaneous clients in HTTP-only mode and using the algorithm for four different values of
W (200, 300, 400 and 500 Mbps, respectively). It is important to mention here that in our simulator, peers do not stay
as seeders in the system. They leave as soon as they finish downloading the requested files. When comparing between
the number of simultaneous peers using each of the approaches, we note that a lower number of simultaneous peers
means that the clients are downloading faster which proves that the corresponding approach is more efficient. We
notice that with very limited bandwidth budget (200 and 300 Mbps), the algorithm performs better than pure HTTP.
This due to the fact that when the seed has a very limited bandwidth budget, the share each client gets will be small.
Therefore, the HTTP download time will be “high” and the overhead of switching to BitTorrent will be negligible.
However, the higher the seed bandwidth gets, the bigger the overhead becomes compared to the download time in
HTTP. This explains the degrade in the algorithm’s performance when the seed’s bandwidth budget becomes quite
high (400 Mbps).

Figure 10 presents, for different values of W ranging from 180 Mbps to 500 Mbps, the net gain percentage the
average size of BT swarms. The first figure (Figure 10a) plots the evolution of the net gain percentage with the cloud’s
bandwidth. Similar to the aforementioned conclusions, when the bandwidth is small (lower than 320 Mbps), the net
gain percentage in download time of the clients is important (between 17.5% and 21%). However it gets lower with
the increasing budget of the cloud, until reaching negative values when the seed’s bandwidth is higher than 420 Mbps.
This confirms our previous conclusions that the algorithm is more efficient when the cloud seed has very limited

15

21:00 21:15 21:30 21:45 22:00
Time

0

2000

4000

6000

8000

10000

Nu
m
be

r o
f c

lie
nt
s

With the algorithm
Without the algorithm

(a) 200 Mbps

21:00 21:15 21:30 21:45 22:00
Time

0

500

1000

1500

2000

2500

3000

Nu
m
be

r o
f c

lie
nt
s

With the algorithm
Without the algorithm

(b) 300 Mbps

21:00 21:15 21:30 21:45 22:00
Time

200

400

600

800

1000

Nu
m
be

r o
f c

lie
nt
s

With the algorithm
Without the algorithm

(c) 400 Mbps

21:00 21:15 21:30 21:45 22:00
Time

100

200

300

400

500

600

700
Nu

m
be

r o
f c

lie
nt
s

With the algorithm
Without the algorithm

(d) 500 Mbps

Figure 9: CDF download times and inter-arrival time of requests and BT swarms with and without the algorithm.
Settings: W = 300 and τ = 0.4.

bandwidth resources. The second figure (Figure 10b) presents the average number of peers in BT swarms. We notice
that most of the BT swarms are very small with an average size of about 2.22 peers per swarm. This can be due to the
limited sharing in UB1 system and to the fact that most of UB1 users are using the service for data backup only.

7.4. Algorithm’s performance

To measure the efficiency of the algorithm, we measure the time needed to simulate the trace. The total simulation
of the trace (more than 225,000 operations) took around 82 minutes until all the downloads have finished. We also
measure the time needed to calculate the bandwidth distribution for each timestamp (with the arrival of each new
download operation). This time corresponds to one execution of the algorithm and we refer to it as the execution time.
Figure 11a presents the CDF of this execution time. It varies between 0.005 and 71.566 milliseconds. The mean and
median execution times are 15.178 and 8.006 milliseconds, respectively.

To measure the effect of the number of swarms on the execution time at each round of the algorithm, we depict
the scatter plot of the execution time as a function of the number of swarms in Figure 11b. We also plot the regression
line using the ordinary least squares (OLS) method. The regression coefficient is equal to 0.01418. This means that
there is a potential linear relationship between the number of swarms and the execution time.

16

200 250 300 350 400 450 500
Cloud limit (Mbps)

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ne
t g

ai
n

pe
rc

en
ta

ge
 (%

)

Net gain percentage

(a) Net gain percentage

200 250 300 350 400 450 500
Cloud limit (Mbps)

2.150

2.175

2.200

2.225

2.250

2.275

2.300

Sw
ar
m
 s
iz
e
(p
ee

rs
/s
w
ar
m
)

Average swarm size

(b) Average BitTorrent swarms’ size

Figure 10: Net gain percentage and average size of the BT swarms for different cloud bandwidth limits ranging
between 180 and 500 Mbps. The switching constraint considered here is τ = 0.2.

0 10 20 30 40 50 60 70
Execution time in milliseconds (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

CD
F

median = 8.006 ms
mean = 15.178 ms
max = 71.566 ms
min = 0.005 ms

median = 8.006 ms

mean = 15.178 ms

(a) CDF execution time (b) Execution time per number of swarms

Figure 11: Algorithm’s perfomance during the trace simulation

7.5. Modified trace: bigger shared files: Results

Even though the UB1 trace has limited sharing and very small files (most of the files are smaller than 1 MB), we
could achieve relatively important improvements in the system’s performance. To further validate our proposal, we
modified the trace in order to have bigger shared files. Our idea was to keep the same arrival pattern of the peers and
just increase the size of the files that were downloaded more than once. We obtained two different modified traces:

• trace_1: This trace preserves the same arrival pattern as in the original trace, but we increase the size of the files
smaller than 1 MB by 1 MB. For instance, if a file fs is downloaded more than once in the original trace sample
and has a file size of 100 KB, then, in trace_1, the same file would be 1 MB (1024 KB) bigger, that is 1124 KB.
We chose this value (1 MB) because it represents the mean file size of all the files in the original trace.

• trace_2: This trace is obtained the same way as trace_1. We chose a bigger limit on size equal to 5 MB,
which is the average size of a picture. This means that trace_2 also preserves the same arrival pattern as in the
original trace, but here we increase the size of the files smaller than 5 MB by 5 MB. For instance, if a file fs is

17

21:00 21:15 21:30 21:45 22:00
Time

200

400

600

800

1000

Ba
nd

w
id
th
 (M

bp
s)

Needed bandwidth

(a) trace_1

21:00 21:15 21:30 21:45 22:00
Time

500

1000

1500

2000

Ba
nd

w
id
th
 (M

bp
s)

Needed bandwidth

(b) trace_2

Figure 12: New bandwidth requirements of the modified traces

downloaded more than once in the original trace sample and has a file size of 1 MB, in trace_2, the same file
would be 5 MB bigger, that is 6 MB.

Clearly, when we increase the size of some files, the amount of bandwidth needed to distribute the requested file
to the peers will increase too. Figure 12 presents the new required bandwidth for both traces and shows that trace_1
and trace_2 require clearly more bandwidth compared to the original requirements (Figure 6). We apply later our
algorithm on both traces and compare the results. We use the same switching constraint τ = 0.4 and we fix the cloud’s
upload budget limit W to 400 Mbps (1000 Mbps, respectively) for trace_1 (trace_2, respectively).

Table 4: Comparison of the results with the three different traces. The experiments settings are the followings: τ = 0.4
for all the traces, W is 300 Mbps for the original trace, 400 Mbps for trace_1 and 1000 Mbps for trace_2

original trace trace_1 trace_2
Number of operations affected by the change 0 69,286 65,992
(% of the total number of operations) (0%) (30.72%) (29.26%)
Number of operations switched to BitTorrent 1734 36,727 43,997
(% of the total number of operations) (0.76%) (16.28%) (19.5%)
Number of BitTorrent swarms created 786 9,324 10,763
Average BitTorrent swarm size (in peer/swarm) 2.206 3.93 4.08
Average inter-arrival time of BitTorrent swarms (in seconds) 4.570 0.386 0.334
Average download time without the algorithm (in seconds) 39.11 106.09 186.82
Average download time with the algorithm (in seconds) 30.43 52.77 61.08
net_gain_% 22.19% 50.26% 67.30%

Figure 13 and Table 4 summarize the results with and without the algorithm. As we can see in Figures 13a and
13b, the amount of bandwidth contributed by the BT clients can reach up to 100% of the cloud’s initial limit. In
addition, we notice important improvements in the net gain percentage that increases from about 22% for the original
trace to reach over 50% when the files are bigger than 1 MB and more than 65% when the files are bigger than 5 MB.
In fact, increasing the file sizes results in increased probability of switching to BitTorrent. Actually, the percentage
of operations switched to BT grows from 0.76% in the original trace and reaches 19.5% in trace_2. This leads to a
noticeable decrease in the inter-arrival time of BT swarms as seen in Figures 13e and 13f. The frequency of creation
of new BT swarms increases from 0.21 swarms per second for the original trace to 2.59 swarms per second for trace_1

18

21:00 21:15 21:30 21:45 22:00
Time

200

400

600

800

1000

Se
rv
ed

 b
an

dw
id
th
 in

 M
bp

s

With the algorithm
Without the algorithm

(a) trace_1: Served bandwidth

21:00 21:15 21:30 21:45 22:00
Time

500

1000

1500

2000

2500

3000

Se
rv
ed

 b
an

dw
id
th
 in

 M
bp

s

With the algorithm
Without the algorithm

(b) trace_2: Served bandwidth

10-4 10-3 10-2 10-1 100 101 102 103 104 105

Download time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Without the algorithm
With the algorithm

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.00.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52

(c) trace_1: CDF download times

10-4 10-3 10-2 10-1 100 101 102 103 104 105
Download time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0
CD
F

Without the algorithm
With the algorithm

0.5 1.0 1.52.0 2.53.0 3.54.00.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54

(d) trace_2: CDF download times

10-3 10-2 10-1 100
Inter-arrival time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Requests
BT swarms

(e) trace_1: CDF inter-arrival times

10-3 10-2 10-1 100
Inter-arrival time (in seconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Requests
BT swarms

(f) trace_2: CDF inter-arrival times

Figure 13: Results using the modified traces

and reaches 2.98 swarms per second for trace_2. Similarly, the average size of the swarms increases from 2.206 peers
per swarm to reach about 4.08 peers per swarm when the sizes of the shared files become bigger.

19

8. Conclusions

In this paper, we propose a bandwidth allocation and protocol management algorithm that can be implemented in
personal cloud systems with limited bandwidth budget. Based on the demand on the cloud and the load on each file,
the cloud server is able to decide whether to use a client-server approach (HTTP) or a peer-assisted one (BitTorrent) to
distribute that file. Our proposed algorithm for the management of cloud bandwidth achieves important improvements
in terms of download time for the clients, even though in our simulator’s implementation we were “stricter" on
BitTorrent than HTTP. In fact, we used an estimation of the download time in HTTP that does not take into account
the protocol’s overheads. However, on the other hand, we added to BitTorrent the potential latency of the peers
discovery phase and the delay that can be caused by pieces unavailability. Moreover, we considered the “worst case
scenario" where the peers leave the system as soon as they finish download, while in reality, the synchronization
process works always in the background without the user being aware of it. This means that it is more probable that
the peers will stay longer, even after finishing the download and contribute more to the system. Despite that, the results
prove that the use of BitTorrent in personal cloud systems can help the clients gain in download time, especially when
the bandwidth resources of the seed are limited. In such conditions, the net gain percentage in the download time of
all the peers exceeds 20% of their download time in most cases, based on a real trace of the UB1 system.

The original UB1 trace has limited sharing and very small files. For this reason, we modified it in order to have
bigger shared files. The application of the algorithm on the modified traces results in important improvements in the
download time that exceed 65% of the original download time of all the peers.

Nevertheless, several extensions can be added to the algorithm. For instance, it is possible to consider two different
values of the switching constraint based on the load of the seed: τoverloaded and τnot_overloaded. This way, strict constraints
can be put when the seed is not overloaded and loosened it up when the load on the seed increases.

Our future plans include the study of the efficiency of file bundling in personal cloud systems and measure the
gain in terms of cloud bandwidth and peers download time.

Acknowledgments

This work has been partially funded by the Spanish Ministry of Economy and Competitiveness in the context
of the project Cloud Services and Community Networks (TIN2013-47245-C2-2-R) and by EU in the context of the
projects CloudSpaces: Open Service Platform for the Next Generation of Personal clouds (FP7-317555) and IOStack:
Software-defined Storage for Big Data (H2020-ICT-2014-7-1).

References

[1] I. Drago, Understanding and Monitoring Cloud Services., Ph.D. thesis, University of Twente (2013).
[2] B. Cohen, Incentives Build Robustness in BitTorrent (2003).
[3] R. Chaabouni, M. Sanchez-Artigas, P. Garcia-Lopez, Reducing Costs in the Personal Cloud: Is Bittorrent a Better Bet?, in: Peer-to-Peer

Computing (P2P), 14-th IEEE International Conference on, 2014, pp. 1–10. doi:10.1109/P2P.2014.6934302.
[4] R. Sweha, V. Ishakian, A. Bestavros, Angels in the Cloud: A Peer-Assisted Bulk-Synchronous Content Distribution Service, in: Cloud

Computing (CLOUD), 2011 IEEE International Conference on, 2011, pp. 97–104. doi:10.1109/CLOUD.2011.84.
[5] R. Wartel, T. Cass, B. Moreira, E. Roche, M. Guijarro, S. Goasguen, U. Schwickerath, Image Distribution Mechanisms in Large Scale Cloud

Providers, in: Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International Conference on, 2010, pp. 112–117.
doi:10.1109/CloudCom.2010.73.

[6] M. Schmidt, N. Fallenbeck, M. Smith, B. Freisleben, Efficient Distribution of Virtual Machines for Cloud Computing, in: Parallel, Distributed
and Network-Based Processing (PDP), 2010 18th Euromicro International Conference on, 2010, pp. 567–574. doi:10.1109/PDP.2010.39.

[7] J. Reich, O. Laadan, E. Brosh, A. Sherman, V. Misra, J. Nieh, D. Rubenstein, VMtorrent: virtual appliances on-demand, in: SIGCOMM,
2010, pp. 453–454.

[8] R. Chaabouni, P. Garcia Lopez, M. Sanchez Artigas, S. Ferrer Celma, C. Cebrian, Boosting Content Delivery with BitTorrent in On-
line Cloud Storage Services, in: Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference on, 2013, pp. 1–2.
doi:10.1109/P2P.2013.6688731.

[9] B. Wei, G. Fedak, F. Cappello, Scheduling Independent Tasks Sharing Large Data Distributed with BitTorrent, in: Grid Computing, 2005.
The 6th IEEE/ACM International Workshop on, 2005, pp. 8 pp.–. doi:10.1109/GRID.2005.1542745.

[10] R. Kumar, K. Ross, Peer-Assisted File Distribution: The Minimum Distribution Time, in: Hot Topics in Web Systems and Technologies,
2006. HOTWEB ’06. 1st IEEE Workshop on, 2006, pp. 1–11. doi:10.1109/HOTWEB.2006.355259.

[11] D. Qiu, R. Srikant, Modeling and Performance Analysis of BitTorrent-like Peer-to-peer Networks, in: Proceedings of the 2004 Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communications, SIGCOMM ’04, ACM, New York, NY, USA,
2004, pp. 367–378. doi:10.1145/1015467.1015508.

20

[12] C. Carbunaru, Y. M. Teo, B. Leong, T. Ho, Modeling Flash Crowd Performance in Peer-to-Peer File Distribution, Parallel and Distributed
Systems, IEEE Transactions on 25 (10) (2014) 2617–2626. doi:10.1109/TPDS.2013.220.

[13] X. Leon, R. Chaabouni, M. Sanchez Artigas, P. Garcia Lopez, Smart Cloud Seeding for BitTorrent in Datacenters, Internet Computing, IEEE
18 (4) (2014) 47–54. doi:10.1109/MIC.2014.43.

[14] Peterson, Ryan and Sirer, Emin Gün, AntFarm: Efficient Content Distribution with Managed Swarms., in: NSDI, Vol. 9, 2009, pp. 107–122.
[15] A. Sharma, A. Venkataramani, A. Rocha, Pros amp; cons of model-based bandwidth control for client-assisted content delivery, in: Commu-

nication Systems and Networks (COMSNETS), 2014 Sixth International Conference on, 2014, pp. 1–8.
[16] Pedro García-López, Marc Sánchez-Artigas, Cristian Cotes, Guillermo Guerrero, Adrian Moreno and Sergi Toda, StackSync: Architecturing

the Personal Cloud to Be in Sync, http://stacksync.org/wp-content/uploads/2013/11/stacksync_full_paper.pdf.
[17] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, A. Pras, Inside Dropbox: Understanding Personal Cloud Storage Services, in:

Proceedings of the 2012 ACM Conference on Internet Measurement Conference, IMC ’12, ACM, New York, NY, USA, 2012, pp. 481–494.
doi:10.1145/2398776.2398827.

[18] I. Drago, E. Bocchi, M. Mellia, H. Slatman, A. Pras, Benchmarking Personal Cloud Storage, in: Proceedings of the 2013 conference on
Internet measurement conference, ACM, 2013, pp. 205–212.

[19] R. Gracia-Tinedo, M. Sanchez Artigas, A. Moreno-Martinez, C. Cotes, P. Garcia Lopez, Actively Measuring Personal Cloud Storage, in:
Cloud Computing (CLOUD), 2013 IEEE Sixth International Conference on, 2013, pp. 301–308. doi:10.1109/CLOUD.2013.25.

[20] P. G. Lopez, M. Sanchez-Artigas, S. Toda, C. Cotes, J. Lenton, StackSync: Bringing Elasticity to Dropbox-like File Synchroniza-
tion, in: Proceedings of the 15th International Middleware Conference, Middleware ’14, ACM, New York, NY, USA, 2014, pp. 49–60.
doi:10.1145/2663165.2663332.

[21] Dropbox, Inc., Dropbox for Business Security: A Dropbox Whitepaper,
https://www.dropbox.com/static/business/resources/dfb_security_whitepaper.pdf.

21

Appendix A. Inverting the gain formulas: Solving the equation: Gain(
??
ws, s) = τ

The goal of this section is to reverse the equations of the gain and get, for a given swarm s and a given file of size
Fs, the amount of bandwidth needed to be provided by the seed ws that satisfies the condition Gain(ws, s) ≥ τ. We
remind our reader that the gain percentage is defined as follows:

Gain (ws, s) =

−
αbt dmin,s

Fs
, if dmin,s ≤

ws

Ls
and dmin,s ≤ min

{
ws + ηs us Ls

Ls
,ws

}
1 −

ws

Ls dmin,s
−
αbt ws

Fs Ls
, if

ws

Ls
≤ dmin,s and dmin,s ≤ min

{
ws + ηs us Ls

Ls
,ws

}
1 −

ws

ws + ηs us Ls
−
αbt ws

Fs Ls
, if

ws + ηs us Ls

Ls
≤ min

{
dmin,s,ws

}
1 −

1
Ls
−
αbt ws

Fs Ls
, if ws ≤ min

{
dmin,s,

ws + ηs us Ls

Ls

}
.

While inverting this equation and in order to be able to define correctly the interval delimiters, we need to distin-
guish two different cases based on the maximum of (Ls − 1) dmin,s and Ls ηs us:

• Case A: (Ls − 1) dmin,s ≥ Ls ηs us

• Case B: (Ls − 1) dmin,s ≤ Ls ηs us

Appendix A.1. Case A: (Ls − 1) dmin,s ≥ Ls ηs us

The general shape of that function is given in figure A.14. The next step is to find expressions of the intervals
delimiters (lim1, lim2, lim3 and lim4) and the corresponding gain values (Gain(lim1, s), Gain(lim2, s), Gain(lim3, s)
and Gain(lim4, s)).

Gain

ws
lim4 lim3 lim2 lim1

1

gain(lim1)

gain(lim2)

gain(lim3)

gain(lim4)

case IV case III case II case I

Figure A.14: General shape of the gain ratio as a function of the upload speed of the seed in case A when
(Ls − 1) dmin,s ≥ Ls ηs us

1. lim1 and Gain(lim1, s): The conditions of case I are the followings:
dmin,s ≤

ws
Ls

dmin,s ≤
ws+ηs Ls us

Ls

dmin,s ≤ ws

Ls≥1
ηs us≥0
=====⇒

dmin,s ≤
ws
Ls
≤ ws

dmin,s ≤
ws
Ls
≤

ws+ηs Ls us
Ls

=⇒ ws ≥ Ls dmin,s =⇒ lim1 = Lsdmin,s

22

The corresponding Gain(lim1, s) for case I is as follows:

Gain(lim1, s) caseI
= Gain(Ls dmin,s, s) caseI

= −
αbt.dmin,s

Fs

- Resolution of the equation Gain(
??
ws, s) = τ, ∀τ ∈] −∞,−αbt dmin,s

Fs
]

We have τ ∈] −∞,−αbt .dmin,s

Fs
] and Gain(

??
ws, s) = τ.

This leads to Gain(
??
ws, s) ∈] −∞,−αbt dmin,s

Fs
], this means that ws ≥ Ls dmin,s.

Thus, ∀τ ∈] − ∞,−αbt dmin,s

Fs
], the optimal bandwidth that should be allocated to the swarm without violating the

constraint (Gain(ws, s) ≥ τ) is ws = Ls.dmin,s

∀τ ∈

]
−∞,−

αbt dmin,s

Fs

]
,

(
Gain(

??
ws, s) = τ

)
⇒

(
ws = Ls dmin,s

)
2. lim2 and Gain(lim2, s): The conditions of case II are the followings:

dmin,s ≥
ws
Ls

(lim1)
dmin,s ≤

ws+η.s Ls us
Ls

dmin,s ≤ ws

⇒

ws ≥ dmin,s

ws ≥ Ls (dmin,s − ηs us)
⇒ ws ≥ max

(
dmin,s, Ls (dmin,s − ηs us)

)
⇒ lim2 = max

(
dmin,s, Ls (dmin,s − ηs us)

) Case A
=======⇒ lim2 = Ls (dmin,s − ηs us)

Let’s verify whether lim1
?
≥ lim2:

lim1 − lim2 = Ls dmin,s − Ls (dmin,s − ηs us) = Ls dmin,s − Ls dmin,s + Ls ηs us

= Ls ηs us ≥ 0 (because Ls ≥ 1, ηs ≥ 0 and us ≥ 0) (verified 3)

The corresponding Gain(lim2, s) for case II is as follows:

Gain(lim2, s) caseII
= 1 −

Ls dmin,s − Ls ηs us

Ls dmin,s
−
αbt(Ls dmin,s − Ls ηs us)

Fs Ls
=
ηs us

dmin,s
−
αbt(dmin,s − ηs us)

Fs

This formula should be verified using the gain formula for case III since the two cases share the same border
lim2:

Gain(lim2, s) caseIII
= 1 −

Ls dmin,s − Ls ηs us

Ls dmin,s − Ls ηs us + ηs Ls us
−
αbt (Ls dmin, − Ls ηs us)

Fs Ls

=
ηs us

dmin,s
−
αbt (dmin,s − ηs us)

Fs
(verified 3)

We need now to verify whether Gain(lim2, s)
??
≥ Gain(lim1, s)

Gain(lim2, s) − Gain(lim1, s) =
ηs us

dmin,s
−
αbt (dmin,s − ηs us)

Fs
+
αbt dmin,s

Fs

ηs us

dmin,s
+
αbt ηs us

Fs
≥ 0

Thus,
αbt.dmin,s

Fs
≤
ηs us

dmin,s
−
αbt(dmin,s − ηs us)

Fs
(verified 3)

- Resolution of the equation Gain(
??
ws, s) = τ, ∀τ ∈

[
−
αbt .dmin,s

Fs
, ηs us

dmin,s
−

αbt(dmin,s−ηs us)
Fs

]
We have: Gain(

??
ws, s) = τ and τ ∈

[
−
αbt dmin,s

Fs
, ηs us

dmin,s
−

αbt(dmin,s−ηs us)
Fs

]
This means that Gain(

??
ws, s) ∈

[
−
αbt dmin,s

Fs
, ηs us

dmin,s
−

αbt(dmin,s−ηs us)
Fs

]
which corresponds to the formula of the gain

23

related to case II.
Let’s try now to invert that formula in order to get an estimation of ws

Gain(
??
ws, s) = τ

case II
⇐=====⇒ 1 −

ws

Ls.dmin,s
−
αbt.ws

Fs Ls
= τ

⇐⇒ 1 − τ = ws

(
1

Ls dmin,s
+

αbt

Fs Ls

)
⇐⇒ ws =

(1 − τ)Fs Ls dmin,s

Fs + dmin,s αbt

We can then conclude that:

∀τ ∈

[
−
αbt dmin,s

Fs
,
ηs us

dmin,s
−
αbt(dmin,s − ηs us)

Fs

]
,
(
Gain(

??
ws, s) = τ

)
⇒ ws =

(1 − τ) Fs Ls dmin,s

F + dmin,s αbt

3. lim3 and Gain(lim3, s): The conditions of case III are the followings:ws+ηs Ls us
Ls

≤ dmin,s
ws+ηs Ls us

Ls
≤ ws

=⇒

ws ≤ Ls(dmin,s − ηs us) (lim2)
ws ≥

ηs Ls uq

Ls−1

=⇒ lim3 =
ηs Ls us

Ls − 1

Let’s verify whether lim2
?
≥ lim3:

lim2 − lim3 = Ls (dmin,s − ηs us) −
ηs Ls us

Ls − 1
=

Ls

Ls − 1
(
Ls (dmin,s − ηs us) − dmin,s

)
≥ 0 (because Ls > 1 and dmin,s ≤ Ls (dmin,s − ηs us)) (verified 3)

The corresponding Gain(lim3, s) for case III is:

Gain(lim3, s) caseIII
= Gain

(
ηs Ls us

Ls − 1
, s

)
caseIII

= 1 −
ηs Ls us

Ls−1
ηs Ls us

Ls−1 + ηs Ls us
−
αbt

ηsLs us
Ls−1

Fs Ls

= 1 −
ηs Ls us

ηs Ls us + ηs Ls us (Ls − 1)
−

αbt ηs us

(Ls − 1) Fs
= 1 −

1
Ls
−

αbt ηs us

(Ls − 1) Fs

This expression needs to be verified also using the gain formula for case IV since the two cases share the same
border lim3:

Gain(lim3, s) caseIV
= Gain

(
ηs Ls us

Ls − 1
, s

)
caseIV

= 1 −
1
Ls
−
αbt

(
ηs Ls us

Ls−1

)
Fs Ls

= 1 −
1
Ls
−

αbt ηs us

(Ls − 1) Fs

We need now to verify whether Gain(lim3, s)
??
≥ Gain(lim2, s)

Gain(lim3, s) − Gain(lim2, s) = 1 −
1
Ls
−

αbt ηs us

(Ls − 1) Fs
−

(
ηs us

dmin,s
−
αbt(dmin,s − ηs us)

Fs

)
= 1 −

1
Ls
−
ηs us

dmin,s
+
αbt dmin,s

Fs
−
αbt ηs us

Fs

(
1 +

1
Ls − 1

)
=

[
1 −

1
Ls
−
ηs us

dmin,s

]
+

[
αbt dmin,s

Fs
−
αbt ηs us Ls

Fs (Ls − 1)

]
=

(
Ls(dmin,s − ηs us) − dmin,s

) (
1

Ls dmin,s
+

αbt

Fs (Ls − 1)

)
≥ 0 (since all the terms are ≥ 0, Ls > 1 and dmin,s ≤ Ls(dmin,s − ηs us))

24

Thus,
ηs us

dmin,s
−
αbt(dmin,s − ηs us)

Fs
≤ 1 −

1
Ls
−

αbt ηs us

(Ls − 1) Fs
(verified 3)

- Resolution of the equation Gain(
??
ws, s) = τ, ∀τ ∈

[
ηs us
dmin,s
−

αbt(dmin,s−ηs us)
Fs

, 1 − 1
Ls
−

αbt ηs us
(Ls−1) Fs

]
We have: Gain(

??
ws, s) = τ and τ ∈

[
ηs us
dmin,s
−

αbt(dmin,s−ηs us)
Fs

, 1 − 1
Ls
−

αbt ηs us
(Ls−1) Fs

]
This means that Gain(

??
ws, s) ∈

[
ηs us
dmin,s
−

αbt(dmin,s−ηs us)
Fs

, 1 − 1
Ls
−

αbt ηs us
(Ls−1) Fs

]
which corresponds to the formula of the

gain related to case III.
Let’s try now to invert that formula in order to get an estimation of ws

Gain(
??
ws, s) = τ

case III
⇐=====⇒ 1 −

ws

ws + ηs Ls us
−
αbt ws

Fs Ls
= τ

Since the resolution of this equation is too complex, we tried to simplify it by introducing the following symbols:
a = ηs Ls us, b = αbt

Fs Ls
and c = τ. The simplified equation becomes:

1 −
ws

ws + a
− b ws = c

To solve this second degree equation, we used an online solver 6. We obtained the following solutions:

ws1 =

√
a2 b2 − 2 a b c + 4 a b + c2 − a b − c

2 b

ws2 =
−

(√
a2 b2 − 2 a b c + 4 a b + c2 + a b + c

)
2 b

Clearly, ws2 < 0 so it cannot be considered as a solution. Then, we can conclude that:

∀τ ∈

[
ηs us

dmin,s
−
αbt(dmin,s − ηs us)

Fs
, 1 −

1
Ls
−

αbt ηs us

(Ls − 1) Fs

]
,(

Gain(
??
ws, s) = τ

)
⇒ ws =

√
a2 b2 − 2 a b c + 4 a b + c2 − a b − c

2 b

where a = ηs Ls us, b =
αbt

Fs Ls
, and c = τ

4. lim4 and Gain(lim4, s): The conditions of case IV are the followings:ws ≤
ws+ηs Ls us

Ls

ws ≤ dmin,s
=⇒

ws ≤
ηs Ls u
Ls−1 (lim2)

ws ≤ dmin,s

We need compare dmin,s and ηs Ls us
Ls−1 in order to verify lim3.

dmin,s −
ηs Ls us

Ls − 1
=

(Ls − 1) dmin,s − ηs Ls us

Ls − 1
=

Ls (dmin,s − ηs us) − dmin,s

Ls − 1
≥ 0 (because Ls > 1 and dmin,s ≤ Ls(dmin,s − ηs us)) (verified 3)

Thus lim3’s definition is correct and there no analytic definition for lim4. We can suppose that it can be equal to
0 since ws can only be positive (or equal to 0). So we can suppose that lim4 = 0 even thought attaining that
limit means that the download might be interrupted.

6The online solver is available at: http://www.wolframalpha.com

25

We need now to calculate lim
ws→0

Gain(ws, s) that will be considered the upper bound of the gain values

lim
ws→0

(Gain(ws, s)) caseIV
= lim

ws→0

(
1 −

1
Ls
−
αbt.ws

F.Ls

)
= 1 −

1
Ls

- Resolution of the equation Gain(
??
ws, S f , F) = τ, ∀τ ∈

[
1 − 1

Ls
−

αbt ηs us
(Ls−1) Fs

, 1 − 1
Ls

[
We have: Gain(

??
ws, s) = τ and τ ∈

[
1 − 1

Ls
−

αbt ηs us
(Ls−1) Fs

, 1 − 1
Ls

[
This means that Gain(

??
ws, s) ∈

[
1 − 1

Ls
−

αbt ηs us
(Ls−1) Fs

, 1 − 1
Ls

[
which corresponds to the formula of the gain related

to case IV. Let’s try now to invert that formula in order to get an estimation of ws:

Gain(
??
ws, s) = τ

case IV
⇐=====⇒ 1 −

1
Ls
−
αbt ws

Fs Ls
= τ⇐⇒

αbt ws

Fs Ls
= 1 −

1
Ls
− τ

⇐⇒ ws =
Fs Ls

αbt

(
Ls (1 − τ) − 1

Ls

)
⇐⇒ ws =

Fs [Ls (1 − τ) − 1]
αbt

We can then conclude that:

∀τ ∈

[
1 −

1
Ls
−

αbt η u
(Ls − 1) Fs

, 1 −
1
Ls

[
,

(
Gain(

??
ws, s) = τ

)
⇒ ws =

Fs [Ls (1 − τ) − 1]
αbt

General conclusion for Case A: ws = f (τ)

The equation: Gain(
??
ws, s) = τ has the following solution.

wbt
s =

Ls dmin,s, ∀τ ∈

]
−∞,−

αbtdmin,s

Fs

]
(1 − τ)Fs Ls dmin,s

Fs + dmin,s αbt
, ∀τ ∈

[
−
αbt dmin,s

Fs
,
ηs us

dmin,s
−
αbt (dmin,s − ηs us)

Fs

]
√

a2b2 − 2abc + 4ab + c2 − ab − c
2 b

, ∀τ ∈

[
ηs us

dmin,s
−
αbt(dmin,s − ηs us)

Fs
, 1 −

1
Ls
−

αbt ηs us

(Ls − 1) Fs

]
Fs [Ls (1 − τ) − 1]

αbt
, ∀τ ∈

[
1 −

1
Ls
−

αbt ηs us

(Ls − 1) Fs
, 1 −

1
Ls

[
@, ∀τ ∈

[
1 −

1
Ls
,+∞

[
Where:

a = ηs Ls us, b =
αbt

Fs Ls
and c = τ

Appendix A.2. Case B: (Ls − 1) dmin,s ≤ Ls ηs us

In this case, the intervals and the delimiters are not as evident as in Case A. So let’s start first by studying the limits
in the gain cases and try to locate the cases based on their order.

Appendix A.2.1. Fixing the interval delimiters
For each interval we part from its constraints and determine the range of values pf ws in each of these intervals.

The goal is to verify if theses intervals are disjoint and do not superimpose.

1. lim1: (case I)
dmin,s ≤

ws
Ls

dmin,s ≤
ws+ηs Ls us

Ls

dmin,s ≤ ws

⇒ dmin,s ≤
ws

Ls
⇒ ws ≥ lim1 = Ls dmin,s

26

2. lim2: (case II)
dmin,s ≥

ws
Ls

dmin,s ≤
ws+ηs Ls us

Ls

dmin,s ≤ ws

=⇒

ws ≤ Ls dmin,s = lim1

ws ≥ dmin,s

ws ≥ Ls(dmin,s − ηs us)

Case B
=======⇒

 ws ≤ lim1

ws ≥ dmin,s = lim2

Comparing lim1 and lim2: We know that Ls > 1 and dmin,s > 0 Thus Ls dmin,s > dmin,s ⇒ lim1 > lim2

Figure A.15: Delimiter lim2 and interval for Case II

3. lim3 and lim2p(case III)
ws + ηs Ls us

Ls
≤ dmin,s

ws + ηs Ls us

Ls
≤ ws

=⇒

ws ≤ Ls (dmin,s − ηs us) = lim2p

ws ≥
η Ls us

Ls − 1
= lim3

Comparing lim2p and lim2:. Based on the conditions of Case B, we already know that
lim2p ≤ lim2

Comparing lim3 and lim2:.

lim3 − lim2 =
ηs Ls us

Ls − 1
− dmin,s =

ηs Ls us − (Ls − 1) dmin,s

Ls − 1
=

1
Ls − 1

(
dmin,s − Ls (dmin,s − ηs us)

)
≥ 0 (because Ls > 1 and dmin,s ≥ Ls(dmin,s − ηs us))⇒ lim3 ≥ lim2

Comparing lim3 and lim1:.

lim3 − lim1 =
ηs Ls us

Ls − 1
− Ls dmin,s =

ηs Ls us − Ls(Ls − 1).dmin,s

Ls − 1

(
Ls (dmin,s − ηs us) − L2

s dmin,s

)
Ls − 1

We have Ls ≥ 1⇒ L2
s ≥ 1 & dmin,s ≥ 0⇒ L2

s .dmin,s ≥ dmin,s

and since

dmin,s ≥ Ls(dmin,s − ηs us)
L2

s dmin,s ≥ dmin,s
⇒ L2

s dmin,s ≥ Ls(dmin,s − ηs us)

Thus lim3 − lim1 ≤ 0⇒ lim1 ≥ lim3

Figure A.16: Delimiter lim2p and lim3 and interval for Case III

4. lim4: (case IV) ws ≤
ws+ηs Ls us

Ls

ws ≤ dmin,s
⇒

ws ≤
ηs Ls us

Ls−1

ws ≤ dmin,s
⇒

ws ≤ lim3

ws ≤ lim2

lim3≥lim2
======⇒ ws ≤ lim2

27

Figure A.17: Interval for Case IV

Appendix A.2.2. Interpretation of the superimposed cases
Based on figure A.17, we can distinguish 3 intervals where there are superimposed cases which are:

• Interval 1:
]
−∞, lim2p

]
=

]
−∞, Ls (dmin,s − ηs us)

]
: superimposition of case IV and case III

• Interval 2: [lim3, lim1] =
[
ηs Ls us

Ls−1 , Ls dmin,s

]
: superimposition of case II and case III

• Interval 3: [lim1,+∞[=
[
Ls dmin,s,+∞

[
: superimposition of case I and case III

Let’s check interval by interval the implications of such a superimposition. For each interval we will define the new
constraints resulting from the intersection of the corresponding cases and define accordingly the gain expression. The
goal is to demonstrate that the solution will be the same for both cases.

i. Interval 1:
Case IV :

ws ≤ dmin,s

ws ≤
ws+ηs Ls us

Ls

Case III :

ws+ηs Ls us
Ls

≤ dmin,s
ws+ηs Ls us

Ls
≤ ws

⇒ ws =
ws + ηs Ls us

Ls
≤ dmin,s ⇒ ws =

Ls ηs us

Ls − 1

Verification of the gain expression in both cases:. Let’s now verify that Gain(ws, s) has the same expression in
both cases IV and III when ws =

ηs Ls us
Ls−1 .

Gain
(

Ls ηs us

Ls − 1
, s

)
case IV

= 1 −
1
Ls
−
αbt

ηs Ls us
Ls−1

Fs Ls
= 1 −

1
Ls
−

αbt ηs us

Fs (Ls − 1)

Gain
(
ηs Ls us

Ls − 1
, s

)
case III

= 1 −
ηs Ls us

Ls−1
ηs Ls us

Ls−1 + ηs Ls us
−
αbt.

ηs Ls us
Ls−1

Fs Ls

= 1 −
1

1 + (Ls − 1)
−

αbt.ηs us

Fs (Ls − 1)
= 1 −

1
Ls
−

αbt.ηs us

Fs (Ls − 1)

For this interval, both cases have the same expression. Thus, we can just consider just one of the cases instead
of working with both. The best choice seems to be case IV since it has a simpler formulas.

ii. Interval 2:
Case II :

dmin,s ≥

ws
Ls

dmin,s ≤
ws+ηs Ls us

Ls

dmin,s ≤ ws

Case III :

ws+ηs Ls us
Ls

≤ dmin,s
ws+ηs Ls us

Ls
≤ ws

⇒
ws

Ls
≤ dmin,s =

ws + ηs Ls us

Ls
≤ ws

⇒ ws = Ls
(
dmin,s − ηs us

)
28

Verification of the gain expression in both cases:. Let’s now verify that Gain(ws, s) has the same expression in
both cases II and III when ws = Ls (dmin,s − ηs us).

Gain(Ls dmin,s, s) case II
= 1 −

Ls (dmin,s − ηs us)
Lsdmin,s

−
αbt Ls (dmin,s − ηs us)

Fs Ls

Gain(Ls dmin,s, s) case III
= 1 −

Ls (dmin,s − ηs us)
Ls (dmin,s − ηs us) + ηs Ls us

−
αbt Ls (dmin,s − ηs us)

Fs Ls

= 1 −
Ls (dmin,s − ηs us)

Ls dmin,s
−
αbt Ls (dmin,s − ηs us)

Fs Ls

For this interval, both cases have the same expression. Thus, we can just consider just one of the cases instead
of working with both. The best choice seems to be case II since it has a simpler formulas.

iii. Interval 3:

Constraints definition:.
Case I :

dmin,s ≤

ws
Ls

dmin,s ≤
ws+ηs Ls us

Ls

dmin,s ≤ ws

Case III :

ws+ηs Ls us
Ls

≤ dmin,s
ws+ηs Ls us

Ls
≤ ws

Ls>1
=====⇒ dmin,s =

ws + ηs Ls us

Ls
≤

ws

Ls

Ls≥1
ηs us≥0
=====⇒

dmin,s =
ws+ηs Ls us

Ls

ηs Ls us = 0
⇒ ws = Ls dmin,s

Verification of the gain expression in both cases:. Let’s now erify that Gain(ws, s) has the same expression in
both cases II and III when ws = Ls dmin,s.

Gain(Ls.dmin,s, s) case III
= 1 −

Ls dmin,s

Ls dmin,s + ηs Ls us
−
αbt Ls dmin,s

Fs Ls

ηs us=0
= 1 − 1 −

αbt dmin,s

Fs

= −
αbt dmin,s

Fs

case I
= Gain(Ls dmin,s, s)

For this interval, both cases have the same expression. Thus, we can just consider just one of the cases instead
of working with both. The best choice seems to be case I since it has a simpler formulas.

After the verification of the superimposed intervals, we can just consider the following intervals (figure A.18)

Figure A.18: Final interval to be considered for Case B

Appendix A.2.3. Inverting the gain
The goal of this section is to derive a potential equation of the gain ratio as a function of the seed’s upload

speed. The general shape of that function is given in figure A.14. We have already defined the intervals delimiters
(lim1 and lim2) and lim3 is the lower bound of ws (that is 0). We just need to verify the corresponding gain values
(Gain(lim1, s) , Gain(lim2, s) and Gain(lim3, s)) that should be equal to the ones already defined in Case A.

29

Gain

ws
lim3 lim2 lim1

1

gain(lim1)

gain(lim2)

gain(lim3)

case IV case II case I

Figure A.19: General shape of the gain ratio as a function of the upload speed of the seed when max(dmin,s, Ls (dmin,s−

ηs us)) = dmin,s

1. lim1 and Gain(lim1, s): We have already found that lim1 = Ls dmin,s . The corresponding gain has been

already calculated and verified for both case I and case II. It is equal to: Gain(lim1, s) = −
αbt dmin,s

Fs
.

- Resolution of the equation Gain(
??
ws, s) = τ, ∀τ ∈

]
−∞,−

αbt dmin,s

Fs

]
Since τ ∈

]
−∞,−

αbt dmin,s

Fs

]
and Gain(

??
ws, s) = τ.

This leads to Gain(
??
ws, s) ∈

]
−∞,−

αbt dmin,s

Fs

]
, this means that ws ≥ Ls dmin,s.

Thus, ∀τ ∈
]
−∞,−

αbt dmin,s

Fs

]
, the optimal bandwidth that should be allocated to the swarm without violating the

constraint (Gain(ws, s) ≥ τ) is ws = Ls dmin,s

∀τ ∈

]
−∞,−

αbt dmin,s

F

]
,

(
Gain(

??
ws, s) = τ

)
⇒

(
ws = Ls dmin,s

)
2. lim2 and Gain(lim2, s): We have already found that lim2 = dmin,s . Now, we need to calculate Gain(dmin,s, s)

for both cases II and IV and we should obtain the same value to which we will refer to as: Gain(lim2, s)

Gain(dmin,s, s) case II
= 1 −

dmin,s

Ls dmin,s
−
αbt dmin,s

Fs Ls
= 1 −

1
Ls
−
αbt dmin,s

Fs Ls

case IV
= Gain(dmin,s, s)

We obtain finally that: Gain(lim2, s) = 1 −
1
Ls
−
αbt dmin,s

Fs Ls
.

- Resolution of the equation Gain(
??
ws, s) = τ, ∀τ ∈

[
−
αbt dmin,s

Fs
, 1 − 1

Ls
−

αbt dmin,s

Fs Ls

]
Since τ ∈

[
−
αbt dmin,s

Fs
, 1 − 1

Ls
−

αbt dmin,s

Fs Ls

]
and Gain(

??
ws, s) = τ.

This leads to Gain(
??
ws, s) ∈

[
−
αbt dmin,s

Fs
, 1 − 1

Ls
−

αbt dmin,s

Fs Ls

]
, which corresponds to the formula of the gain related to

case II.

30

Let’s try now to invert that formula in order to get an estimation of ws

Gain(
??
ws, s) = τ

case II
⇐=====⇒ 1 −

ws

Ls dmin,s
−
αbt ws

Fs Ls
= τ⇐⇒ 1 − τ = ws

(
1

Ls dmin,s
+

αbt

Fs Ls

)
⇐⇒ 1 − τ = ws

(
Fs + dmin,s αbt

Fs Ls dmin,s

)
⇐⇒ ws =

(1 − τ)Fs Ls dmin,s

Fs + dmin,s αbt

We can then conclude that:

∀τ ∈

[
−
αbt dmin,s

Fs
, 1 −

1
Ls
−
αbt dmin,s

Fs Ls

]
,
(
Gain(

??
ws, s) = τ

)
⇒ ws =

(1 − τ) Fs Ls dmin,s

Fs + dmin,s αbt

3. lim3 and Gain(lim3, s): the definition of these parameters is very similar to the one done for lim4 and
Gain(lim4, s) in Case A.
Since ws can only be positive (or equal to 0), we can suppose that lim3 = 0 even thought attaining that limit
means that the download might be interrupted.
We need now to calculate lim

ws→lim3
Gain(ws, s) that will be considered as the upper bound of the gain values:

lim
ws→lim3

(Gain(ws, s)) caseIV
= lim

ws→0

(
1 −

1
Ls
−
αbt.ws

Fs Ls

)
= 1 −

1
Ls

= Gain(lim3, s)

- Resolution of the equation Gain(
??
ws, s) = τ, ∀τ ∈

[
1 − 1

Ls
−

αbt dmin,s

Fs Ls
, 1 − 1

Ls

[
We have: Gain(

??
ws, s) = τ and τ ∈

[
1 − 1

Ls
−

αbt dmin,s

Fs Ls
, 1 − 1

Ls

[
This means that Gain(

??
ws, s) ∈

[
1 − 1

Ls
−

αbt dmin,s

Fs Ls
, 1 − 1

Ls

[
which corresponds to the formula of the gain related to

case IV.
Let’s try now to invert that formula in order to get an estimation of ws

Gain(
??
ws, s) = τ

case IV
⇐=====⇒ 1 −

1
L
−
αbt ws

Fs Ls
= τ⇐⇒

αbt ws

Fs Ls
= 1 −

1
Ls
− τ

⇐⇒ ws =
Fs Ls

αbt

(
Ls (1 − τ) − 1

Ls

)
⇐⇒ ws =

Fs [Ls(1 − τ) − 1]
αbt

We can then conclude that:

∀τ ∈

[
1 −

1
Ls
−
αbt dmin,s

Fs Ls
, 1 −

1
Ls

[
,
(
Gain(

??
ws, s) = τ

)
⇒ ws =

Fs (Ls (1 − τ) − 1)
αbt

(A.1)

General conclusion for Case B: ws = f (τ)

The equation: Gain(
??
ws, s) = τ has the following solution.

wbt
s =

Ls dmin,s, ∀τ ∈

]
−∞,−

αbt dmin,s

Fs

]
(1 − τ)Fs Ls.dmin,s

Fs + dmin,s αbt
, ∀τ ∈

[
−
αbt dmin,s

Fs
, 1 −

1
Ls
−
αbt dmin,s

Fs Ls

]
Fs [Ls(1 − τ) − 1]

αbt
, ∀τ ∈

[
1 −

1
Ls
−
αbt dmin,s

Fs Ls
, 1 −

1
Ls

[
@, ∀τ ∈

[
1 −

1
Ls
,+∞

[

31

