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Holmium thin-disk laser based on Ho:KY(WO4), /
KY(WO,); epitaxy with 60% slope efficiency and

simplified pump geometry
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We report on the first Holmium (Ho?*) monoclinic double
tungstate thin-disk laser. It is based on a 250 um-thick 3 at.
% Ho:KY(WO4): active layer grown on a (010)-oriented
KY(WOu): substrate. When pumped by a Tm-fiber laser at
1960 nm with a single-bounce (single double-pass) pump
geometry, the continuous-wave Ho:KY(WO4): thin-disk
laser generated 1.01 W at 2057 nm corresponding to a slope
efficiency 1 of 60% and a laser threshold of only 0.15 W.
Implementing a double-bounce (second double-pass) for
the pump, the output of this laser was scaled to 1.57 W with
1 =55%. The maximum stimulated-emission cross-section
ose of the Ho* ions in the epitaxial layer reaches 2.5x10-%
cm? at 2056.5 nm for E || Nm. The Ho:KY(WOa): epitaxial
structures are promising for multi-watt mode-locked thin-
disk lasers at ~2.06 pm.

OCIS codes: (140.3380) Laser materials; (140.3580) Lasers, solid-state;
(300.0300) Spectroscopy; (140.3070) Infrared and far-infrared lasers.
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Holmium (Ho*) ions (electronic configuration [Xe]4f) are well-
known for the development of lasers emitting above 2 pm due to
the I; —3Is transition. The eye-safe emission of Ho lasers is used
in remote sensing [1], laser materials processing and laser
surgery and it is of interest for pumping of mid-IR optical
parametric oscillators (OPOs) [2]. The most efficient way to excite
the Ho* ions is their resonant (in-band) pumping to the °I- upper
laser level, e.g. by Thulium (Tm?*) lasers emitting at <2 pm [34].
Such a pump scheme offers high Stokes efficiency and
suppressed upconversion losses (e.g., as compared with the
Tm* Ho*-codoping scheme [5]) leading to weak heat loading
and high laser efficiency [6].

The thin-disk laser concept is attractive for both continuous-
wave (CW) and pulsed (mode-locked, ML) operation [7,8]. Such
a laser is based on a disk-shaped active element with a thickness
smaller than the size of the laser beam. One surface of the disk is
attached to the heat sink providing unidirectional heat flow and,
appropriately coated, serves as a cavity mirror [9,10]. Thin-disk
lasers offer reduced thermo-optic effects and high potential for



power scaling. Moreover, high slope efficiencies have been
demonstrated [11]. In addition, they are attractive for ML lasers
due to the diffraction-limited beam and the reduction of the
nonlinear effects in the active medium [8,12,13].

CW and ML thin-disk lasers have been extensively studied at
~1 pum utilizing Yb* ions in hosts such as YAG [7], Lw20Os [11],
KY(WOs) [12], CaGdAIOs [14], etc. Concerning, the 2 um
spectral range, the research focused mostly on Tm* ions in YAG,
LwOs or LiLuFs [7,15-17]. So far, Ho thin-disk lasers have been
realized only with Ho:YAG [18-20]. In[19], a2 at.% Ho:YAG thin-
disk operated with a rather complex pump geometry consisting
of 24 pump passes or 12 bounces (as typical for Yb:YAG thin-
disks) using a Tm:YLF laser as pump source, generating 9.4 W in
CW at ~2090 nm with a slope efficiency 1 of ~50% (with respect
to the absorbed pump power). Even higher output power, 22 W
with 1 ~27% was achieved in a similar mutipass-pumped
Ho:YAG laser [20] using an InP diode.

Monoclinic double tungstates (MDTs), KRE(WOs). where RE
=Gd, Y or Lu (shortly KREW), are suitable hosts for Ho** doping
[21]. They offer the possibility to be doped with relatively high
Ho®* concentrations suitable for efficient lasing (up to 5 at.%) [21],
high transition cross-sections in polarized light and long lifetime
of the 5I7 upper laser level (~4.2 ms) [22,23]. These characteristics
make the Ho*-doped MDTs very promising for thin-disk lasers
with ultimately reduced number of pump passes. Efficient bulk
in-band-pumped Ho* MDT lasers were reported [6,21]. Among
the MDTs, KYW is very suitable for Ho* doping due to the
closeness of the ionic radii of VIII-fold coordinated Y* (1.019 A)
and Ho* (1.015 A) leading to a negligible lattice distortion [22].

Thin epitaxial layers of high optical quality MDTs can be
grown despite the low symmetry of this material. Such a concept
was used to demonstrate the first Tm MDT thin-disk lasers
[24,25]. A 250 pum-thick 5 at.%Tm:KLuW / KLuW thin-disk laser
pumped by an AlGaAs laser diode with only 2 pump bounces
(i.e. a simple retro-reflection) generated 5.9 W at 1855 nm with 1
=47% [25].

In the present work, we report an efficient Ho MDT thin-disk
laser using a Ho:KYW / KYW epitaxial structure.

The undoped KYW substrate was cut from a bulk crystal
grown by the Top-Seeded Solution Growth (TSSG) method and
oriented with the crystallographic b-axis normal to its face. It was
1 mm-thick. The crack- and inclusion-free active layer, a 3 at.%
HoKYW (Nho = 2.16x10%° cm?), was grown by the liquid phase
epitaxy (LPE) method, see Fig.1(a). It was polished down to
250410 um thickness. The face with the substrate was
antireflection (AR) coated for 1.8-2.1 pum (for both the pump and
laser wavelengths) while the face containing the Ho:KYW
epitaxial layer was coated for high reflection (HR) at 1.8-2.1 um.
It was further soldered to a Cu heat-sink, see Fig. 1(b), which was
water-cooled to 12 °C. The laser element was oriented for light
propagation along the b-axis (b | | Ny optical indicatrix axis).

Atfirst, we studied the spectroscopic properties of the epitaxial
layer. The absorption, oats, and stimulated-emission, ose, cross-
sections for the °Iz 0 °Is transition of Ho* ions are shown in Fig. 2(a)
for light polarization with E | | Nm. The maximum gaes = 2.3x10%
cm? at 1961.6 nm (the full width at half maximum, FWHM is 8.7
nm). The maximum ose reached 2.5x10% cm? at 2056.5 nm
(calculated with the reciprocity method). The Ho:KYW layer
exhibited broadband (1.88-2.1 um) luminescence, Fig. 2(a).

substrate epitaxy
3at.%Ho: KYW/(010)KYW
Fig. 1. (a) Photograph of the as-grown 3 at. % Ho:KYW/KYW epitaxy
and orientation of the crystallographic (a, b, c) and the orthogonal
optical indicatrix axes (Np, Nm, Ng); (b) cut, polished, and AR/HR
coated sample soldered on a Cu heat-sink (top view).

The Ho* ions represent a quasi-three-level laser scheme. To
predict the laser wavelength, the gain cross-sections, ggin = fost —
(1 - B)oabs, were calculated, Fig. 2(b). Here, § is the inversion ratio.
For small § <0.25, a maximum gain at ~2076 nm is observed and
for higher f, a different maximum gain at ~2056 nm dominates.
The determined spectroscopic data agree with those for bulk
Ho:KYW [22] confirming high quality of the epitaxial layer.
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Fig. 2. Spectroscopy of the 3 at.% Ho:KYW/KYW epitaxy: (a)

absorption, oas, and stimulated-emission (SE) cross-section, osg,

spectra, black line - luminescence spectrum; (b) gain cross-section, ogin
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The scheme of the thin-disk laser is shown in Fig. 3. The pump
source was a Tm-fiber laser (model IFL15, LISA Laser Products,
OHG) emitting up to 12.5 W at 1960 nm (FWHM = 1.5 nm). Its
unpolarized output (M2 ~1) was collimated and focused into the
laser element with a pair of AR-coated spherical CaF: lenses (fc. =
11 mm, fr. =75 mm) providing a pump spot size 2w of 30010



pm. The angle of incidence of the pump beam was about 10°. The
total pump absorption (single-bounce), was measured by
monitoring the residual pump, Abs = 14%. This agrees with the
small-signal absorption calculated from the spectroscopic data,
~15% (the polarization-averaged absorption cross-section is
Dol =1.54x102 cm). Optionally, a double-bounce of the pump
beam was realized with a HR concave mirror (radius of
curvature, R = 100 mm), Fig. 3, resulting in a total absorption of
Abs =25%. The pump beam was also optionally modulated with
a mechanical chopper (duty cycle: 1:2, i.e. reducing the average
power to Y, frequency: 20 Hz) inserted between the two pump
lenses (CL and FL). The plano-concave thin-disk laser cavity
consisted of a flat HR mirror deposited on the disk surface and a
concave output coupler (OC) with a radius of curvature Roc of 75
mm and a transmission Toc of 0.5%, 1.5%, 3%, 5% or 10% at 1.82-
2.07 um. The laser generated a linearly polarized output (E | | Nm)
and the polarization was naturally-selected by the gain
anisotropy.
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Fig. 3. Thin-disk Ho:KYW laser: (a) laser set-up, CL and FL —
collimating and focusing lenses, respectively, HR and AR — high-
reflective and antireflection coatings, respectively, OC — output
coupler.

Fig. 4. Input-output dependences for the Ho:KYW thin-disk laser in
CW (a) and quasi-CW (duty cycle 1:2) (b) operation modes: symbols
are the experimental data, lines are fits for the determination of the
slope efficiency 7 (single-bounce pumping).
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The results on the true CW laser performance with a single
bounce pumping are presented in Fig. 4(a). For Toc = 3%, the
maximum output power was 1.01 W at 2057 nm corresponding
to a slope efficiency 1 of 60% (with respect to the absorbed pump
power Pas). The laser threshold was at Pas = 0.15 W and the
optical-to-optical efficiency 1ot with respect to the incident pump
power was 8%. No thermal roll-over was observed when using
this OCs. For higher Toc = 5% and 10%, the laser performance
deteriorated due to upconversion losses and, hence, an increased
heat deposition, leading to lower i and thermal roll-over at Pabs >
128 W.

Using the chopper (in quasi-CW mode) with the optimum Toc
= 3%, the peak output power reached 1.10 W with an increased n
=66% (due to the relaxed heat problems), Fig. 4(b). Still, the used
duty cycle (1:2) was not enough to improve the performance of
the laser for Toc >5%.

The typical emission spectra from the Ho:KYW thin-disk laser
are shown in Fig. 5. For Toc=1.5% and higher, the laser emission
extended from 2056 to 2059 nm while only for Toc = 0.5%, the
main emission shifted to 2072-2075 nm. This behavior agrees well
with the gain spectra, cf. Fig. 2(b). The multi-peak spectra are due
to the etalon effects in the KYW substrate.
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Fig. 5. Typical laser emission spectra for the Ho:KYW thin-disk laser
for various OCs (CW mode, single bounce pumping, Pas = 1.52 W).
The emission spectrum of the Tm-fiber laser is shown for
comparison.
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Fig. 6. Comparison of the output performance of the Ho:KYW thin-
disk laser in CW and quasi-CW operation modes for 1 and 2 bounces
of the pump: 1 is the slope efficiency, Toc=3%.

Further power scaling of the thin-disk laser was achieved by
implementing a second bounce of the pump, see Fig. 6. For the
optimum Toc = 3%, the CW output power reached 1.57 W with 5
=55% and 1jopt = 12%. The output dependence was clearly linear;
while the deterioration of the slope efficiency and increase of the
laser threshold (Pas = 0.34 W) as compared with the single-
bounce scheme is attributed to worse mode-matching and
stronger heat loading in the active medium. Indeed, for quasi-
CW operation mode, the peak output power was as high as 1.90
W with 1= 65%.

The spatial beam profiles of the laser output from the thin-disk
laser (CW mode, Toc = 3%, single-bounce pumping) were
captured with a pyrocamera SPIPICON PY-III-C-B at 20 cm from
the OC using an AR-coated 50 mm CaF: focusing lens. The beam
profiles are shown in Fig. 7 for low and high Pass. Atlow absorbed
pump power, the beam is nearly-circular. With the increase of the
Paxs, it becomes elliptic. This indicates the astigmatism of the
thermal lens [26] induced in the disk. The measured M2 factor of
the output laser beam was <1.2 (at the maximum Pixs).

In Fig. 7(b), A and B denote the major and minor semiaxes of
the elliptic beam, respectively. Physically, these directions
correspond to the principal meridional planes of the astigmatic
thermal lens [27]. The orientation of these planes is linked to the
anisotropy of the thermal expansion [26]. For a b-cut
Ho:KYW/KYW disk, there are two principal axes of the thermal
expansion tensor in the disk plane, X1 and X They do not
coincide with the optical indicatrix axes (the angle Nm"X1=Ng"X's
=30.9° for KYW [28]), see Fig. 7(a). According to Fig. 7(b), A | | X5
and B || X' It should be noted that the use of the epitaxial
structure Ho:KYW / KYW for the thin-disk laser design is
beneficial for suppressing the unwanted end-bulging of the disk
[29], as the substrate acts as an undoped cap.
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Fig. 7. Spatial profiles of the output laser beam from the Ho:KYW
thin-disk laser measured at (a) low Pas = 0.39 W and (b) high Paxs =
1.78 W (CW mode, single bounce pumping, Toc = 3%). A and B —
major and minor semiaxes of the elliptic laser beam; Xi" and Xs" —
principal axes of the thermal expansion tensor of KYW, respectively.

The achieved maximum slope efficiency of the true CW
Ho:KYW thin-disk laser (17 = 60%) represents a record among all

the Ho thin-disk lasers reported so far. However, it is lower than
the Stokes efficiency, ns: = Ap/AL ~ 95% (Ap and Av are the pump
and laser wavelengths, respectively) and the maximum slope
efficiency achieved in bulk in-band-pumped Ho MDT lasers (1=
88% for 3 at. % Ho:KLuW [30]). We attribute this difference to the
non-optimum mode-matching due to the strongly anisotropic
thermal lensing in a b-cut laser disk and notable heat loading
when using a relatively small pump beam (2w, =300 pm). Power
scaling and further improvement of the efficiency of the
Ho:KYW thin-disk laser is expected by increasing the pump
beam, optimization of the pump geometry and the Ho* doping
concentration as well as Ho:KYW active layers grown on KYW
substrates with different orientations.

In conclusion, we report on the first Holmium thin-disk laser
based on monoclinic double tungstate crystals using an epitaxial
composite consisting of a thin active Ho:KYW layer grown by the
liquid phase epitaxy method on an undoped bulk KYW
substrate. The thin-disk laser was pumped at 1960 nm by a Tm-
fiber laser in a single double-pass and emitted at ~2057 nm. The
output power was scaled up to the watt-level in the CW
operation mode representing a record slope efficiency of =60%.
The possibility of further power scaling is demonstrated with a
double-bounce of the pump, leading to an almost 2-fold increase
of the output power. Higher doping level with simultaneous
reduction of the active layer thickness is expected to improve the
results substantially. The presented Ho:KYW thin-disk laser can
be considered as a proof-of-concept for the further development
of highly-efficient multi-watt Ho MDT thin-disk lasers with a
diffraction-limited laser output. Due to the broadband emission
characteristics, the epitaxial Ho:KYW / KYW structures are
attractive for mode-locked laser oscillators above 2 pm.
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