Elsevier Editorial System(tm) for Applied

Energy

Manuscript Draft

Manuscript Number: APEN-D-17-02135R1

Title: Torrefaction of a solid recovered fuel (SRF) to improve the fuel properties for gasification processes.

Article Type: Research Paper

Keywords: SRF; torrefaction; gasification; syngas; tar; contaminants.

Corresponding Author: Dr. César Berrueco, Ph.D

Corresponding Author's Institution: IREC-Catalonia Institute for Energy Research

First Author: Javier Recari

Order of Authors: Javier Recari; César Berrueco, Ph.D; Neus Puy, PhD; Santiago Alier; Jordi Bartrolí, PhD; Xavier Farriol, PhD

Abstract: This work studies the torrefaction of a solid recovered fuel (SRF) and its effect on the fuel properties for gasification. The SRF (namely FL) was torrefied at two temperatures (290 °C and 320 °C) in a pilot auger reactor (capacity of up to 100 kg/h) and evaluated as a gasification feedstock. This evaluation included the characterization of the obtained torrefied materials (FL290 and FL320) and several gasification tests in a bench-scale fluidized bed reactor. These tests were performed with different gasification agents (air and oxygen/steam) and bed materials (sand, dolomite and olivine) at similar experimental conditions (T=850 $^{\circ}$ C and ER \sim 0.3). The evaluation of the gasification performance was presented in terms of product yields and gas composition together with the release of contaminants. Tar species (polycyclic aromatic hydrocarbons) and minor contaminants (H2S, HCl, HCN and NH3) were analysed by gas chromatography and ion-selective potentiometry, respectively. Additionally, the calculation of the process efficiency (gasification and its combination with torrefaction) based on the energy content of the producer gas and a preliminary cost analysis that evaluate the main benefits and drawbacks of the torrefaction process are included.. The results indicated that the torrefaction process improved the SRF gasification parameters (lower tar, higher H2/CO ratio, carbon conversion, etc.) and strongly affected the presence of HCl in the producer gas. However, the preliminary cost analysis advised the combination of both technologies only under certain gasification conditions.

Torrefaction of a solid recovered fuel (SRF) to improve the fuel properties for gasification processes.

J. Recari^a, C. Berrueco^{b*}, N. Puy^{c,d}, S. Alier^d, J. Bartrolí^c, X. Farriol^a

^aDepartament d'Enginyeria Química. Universitat Rovira i Virgili. Av. Països Catalans, 26. Tarragona, 43007 Spain

^bCatalonia Institute for Energy Research, IREC. C/ Marcel·lí Domingo, 2. Tarragona, 43007 Spain

^cDepartment of Chemistry. Universitat Autònoma de Barcelona. Edifici Cn- Campus UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain.

^dEnergies Tèrmiques Bàsiques SL. C/ Maó 22, 2-1, 08022 Barcelona, Spain.

*Corresponding author. Telephone: +34 977 297 921 Fax: +34 977 202 444. e-mail: cesar.berrueco@gmail.com

This work studies the torrefaction of a solid recovered fuel (SRF) and its effect on the fuel properties for gasification. The SRF (namely FL) was torrefied at two temperatures (290 °C and 320 °C) in a pilot auger reactor (capacity of up to 100 kg/h) and evaluated as a gasification feedstock. This evaluation included the characterization of the obtained torrefied materials (FL290 and FL320) and several gasification tests in a bench-scale fluidized bed reactor. These tests were performed with different gasification agents (air and oxygen/steam) and bed materials (sand, dolomite and olivine) at similar experimental conditions (T=850 °C and ER ~0.3). The evaluation of the gasification performance was presented in terms of product yields and gas composition together with the release of contaminants. Tar species (polycyclic aromatic hydrocarbons) and minor contaminants (H₂S, HCl, HCN and NH₃) were analysed by gas chromatography and ion-selective potentiometry, respectively. Additionally, the calculation of the process efficiency (gasification and its combination with torrefaction) based on the energy content of the producer gas and a preliminary cost analysis that evaluate the main benefits and drawbacks of the torrefaction process are included. The results indicated that the torrefaction process improved the SRF gasification parameters (lower tar, higher H₂/CO ratio, carbon conversion, etc.) and strongly affected the presence of HCl in the producer gas. However, the preliminary cost analysis advised the combination of both technologies only under certain gasification conditions.

Keywords: SRF, torrefaction, gasification, syngas, tar, contaminants.

1. INTRODUCTION

Municipal solid waste (MSW) is not only one of the main by-products of human society, but also a potential energy source that has attracted increasing attention over the years [1]. Among various waste-to-energy technologies, gasification is recognized as a promising method [1,2]. Gasification is usually defined as a partial oxidation of the fuel, which is treated in substoichiometric conditions, leading to the production of a syngas and a series of by-products. The potential benefits of gasification over traditional combustion of solid wastes are mainly related to the advantages of handling (and burning) a gas versus a solid waste [2]. In addition, gasification presents a high level of efficiency and the produced syngas can be used in different application, such as generation of electricity, fuels and chemicals.

At present, biomass is acting as the primary renewable source for gasification [3,4]. However, municipal solid waste (MSW) and related fractions (i.e. Solid Recovered Fuels, SRFs) have the potential to become an interesting alternative [5]. The high availability of waste and its continuous generation assures an almost inexhaustible source for thermal conversion routes as a way for energy recovery. However, waste gasification has still to overcome some problems related to gas quality and the release of contaminants. In this scenario, one possible route, scarcely explored with SRFs, is the use of thermal pretreatments such as torrefaction. These pretreatments have potential to improve the properties of biomass and SRFs making them better feedstocks for conversion into fuels and chemicals [6–9].

Biomass torrefaction involves heating the feedstock at temperatures between 200-300 °C in inert atmosphere, resulting in a hydrophobic product with less moisture, which prevents the biomass from decomposing, and higher energy density for subsequent thermochemical applications [6,10,11].

Considering the energy efficiency, the overall efficiency of a process that combines torrefaction and gasification has been reported to improve or to be slightly lower than the direct biomass gasification [10,12], depending on the process configuration. Several strategies can be adopted, such as include the heat integration of the torrefaction and gasification processes [13] or reinject the volatiles produced in the torrefaction step downstream the gasification unit [12]. Biomass torrefaction also presents positive effects on the gasification process from an operational point of view [6]. Various studies have reported lower storage and transportation costs, together

with increasing syngas yields and lower tar levels and acid contents [6,8,14,15] when comparing gasification of torrefied and original biomasses.

Nevertheless, the mentioned advantages of torrefaction may differ for a highly heterogeneous material as waste, composed by different sorts of residues: plastic, paper, cardboard, food waste, glass, etc. As observed with biomass, it is important to explore this route with waste fractions as it can lead to a more homogenous material and attenuate the release of pollutants during the energy valorization of the torrefied materials.

Few investigations have addressed waste torrefaction, such waste from food, kitchen and agricultural waste [11,16-21]. Yuan et al. [19] studied the properties of MSW samples torrefied at various temperatures (250-450 °C). They concluded that in the temperature range of 250-350 °C the calorific values were higher and chlorine contents decreased in the torrefied MSW. Another work by Poudel et al. [16] investigated the effects of torrefaction temperature and time on food waste, concluding that 290-330 °C was the optimum torrefaction region due to a high energy yield (> 90%) and high heating value (which increased > 10%). Manatura et al. [21] presented an exergetic evaluation of the gasification process of torrefied rice husk, an agricultural waste. The reported results depicted the contradictory effects of torrefaction on the gasification efficiency. On the one hand the increase of chemical energy (exergy) of syngas due to lower O/C and H/C in the torrefied material led to higher exergy efficiencies. On the other hand, the release of volatiles during torrefaction, more pronounced at higher torrefaction temperatures, provoked a decrease in overall efficiency. The authors reported that this adverse effect became dominant at a torrefaction temperature of 350 °C, whereas a torrefaction temperature close to 250 °C improved the biomass properties and resulted in enhanced gasification performance and energy efficiency. In contrast to gasification of torrefied biomass or torrefied agricultural waste, there is no published data of torrefied MSW as gasification feedstock.

This work studies the torrefaction of a solid recovered fuel (SRF) and its effect on the fuel properties as gasification feedstock. The evaluated SRF was a fluff material (referred as FL) with high moisture (> 8%) and chlorine content (0.6%). In order to upgrade its properties as fuel, the FL sample was torrefied at two temperatures (290 and 320 °C) in a pilot auger reactor. The assessment of the torrefied materials as gasification feedstock was carried out through the materials characterization and a series of gasification tests. Gasification experiments were carried out in a laboratory scale fluidized bed reactor at fixed operation conditions (gasification temperature of 850 °C and equivalence ratio of 0.3) but varying the fluidizing agent (air or a mixture of oxygen/steam) and the bed material (sand, dolomite or olivine). The evaluation of the influence of torrefaction on the gasification performance was one of the key aspects of the work, focusing on the evolution of main compounds (H₂, CO, CO₂, CH₄...) and minor contaminants (tar, H₂S, HCl, HCN and NH₃) in the producer gas.

2. EXPERIMENTAL

2.1. SRF sample preparation and characterization

The studied SRF was a fluff material (namely FL) provided by a local waste management company. FL was obtained from a mechanical process of mixed domestic waste streams, composed by diverse fractions of paper, biomass and polymers (post-consumer plastics and textiles). More details about this fuel can be found elsewhere [22,23]. This SRF was subjected to a torrefaction pretreatment (see section 2.2) in order to obtain two torrefied batches (referred as FL290 and FL320) to be used as gasification feedstock. The parent SRF was grounded and sieved to a particle size of 8 mm for the torrefaction process and then all samples were milled to 1 mm for characterization and gasification purposes. A list of the main techniques and equipments used is shown as follows:

- Proximate analysis in a LECO Thermogravimetric (TGA 701), according to EN-15402:2011 and EN-15403:2011 standard methods.
- Ultimate analysis in a LECO TruSpec CHN-S analyser following the EN-15407:2011.
- Heating value conducted in a LECO calorimeter (AC-600) according to the EN- 15400:2011 standard method.
- Halogens (Cl, F and Br) content analysed by ionic chromatography (Dionex ICS-1100) following the EN- 15408:2011 standard method.
- Ash composition determined in Spectro Arcos 165 spectrophotometer after ash samples digestion in a microwave system (Berghof Speedwave 4), according to the EN-15410:2006 and EN-15411:2006 standard methods.

Table 1 presents the characterization results. Each analysis was performed by triplicate with uncertainties estimated at a 95% probability level.

2.2. Torrefaction process

The FL sample was torrefied at two final temperatures (290 and 320 °C) using a pilot auger reactor. The torrefaction and pyrolysis pilot plant comprises six main parts: the feeding system, a drying reactor, the torrefaction reactor, a cooling screw, the vessel for solids collection and the condensing system (see Figure 1). The drying and torrefaction reactors, together with the cooling screw, consisted in a horizontal pipe (i.d.:160 mm) with a screw conveyor that allowed a precise control of residence time of the different stages (varying the conveyor rotation speed). The drying and torrefaction reactors were temperature controlled using electrical heating elements whereas the last conveyor was cooled using a water jacket. Drying and cooling conveyors had a length of 3000 mm and the torrefaction reactor was 4000 mm long. The reactor, capable of operating at temperature of up to 600 °C, had a capacity up to 100 kg/h of biomass and/or wastes in size range of 1-10 mm.

The SRF was fed into the feeding system, moved along the drying reactor and followed to the torrefaction reactor where the conversion took place. The solid fraction was collected after exiting through a cooling screw. The gas fraction was led to the cyclone to remove particles and followed to a condenser, where the condensable gas was collected as liquid fraction.

In order to ensure inert conditions and remove the volatiles, each part of the reactor was purged with a nitrogen flow of about 8 NL/min. Feeder and screws were driven by individual motors allowing for basically independent setting of mass flow (feeder setting) and residence time (screw setting). Notice that the material was transferred between conveyors using rotary valves.

The process was carried out continuously, with a total mass flow rate of about 13 kg/h, and a torrefaction residence time of about 15 min in all the cases. A drying temperature of 125 °C was applied, whereas the final torrefaction temperature varied from 290 to 320 °C for the different tests. Apart from the temperature control system, temperature profiles along the different conveyors were measured and recorded using several thermocouples.

2.3. Gasification setup and procedure

The fluidized bed gasifier (PID ENG&Tech, Spain) consisted in a Hastelloy X reactor (450 mm long and 23.8 mm internal diameter) externally heated by an electrical furnace. The experimental rig was equipped with a control system (gas flow, feeding system, temperature and pressure) and was able to operate up to 900 °C and 20 bar.

The experiments were conducted at a gasification temperature of 850 °C and atmospheric pressure. Two gasification agents were tested (air and oxygen/steam) maintaining an equivalence ratio (ER) around 0.3 and employing three bed materials. ER is defined as the moles of oxygen available for gasification divided by the total moles of oxygen required for stoichiometric combustion. The selection of the conditions for the gasification process was based in our previous works of SRF gasification, evaluating the effect of the gasification parameters on the process performance, and the usual conditions in commercial fluidized bed gasifiers [23]. The temperature level (850 °C) was selected to promote steam reforming and steam gasification reactions (specially under O_2/H_2O conditions).

The operation flows, 795 NmL/min of air and ~200 NmL/min of O_2 and 0.4 mL/min of $H2O_{(1)}$ in the case of air and oxygen/steam experiments respectively, provided a fluidizing gas velocity five to six times the minimum fluidization velocity (U_{mf}), corresponding to gas residence time in the reactor of between 2-3 s.

The tested bed materials included quartz sand (J.T.Baker), dolomite (Productos Dolomíticos de Málaga S.A.) and olivine (Sibelco Hispania); all sieved to particle size range of 150-200 μ m and calcined in a furnace at 900 °C for 4 hours. The sample (FL290 or FL320) was placed in the hopper and introduced continuously into the reactor through a screw feeder at rates from 0.40 to 0.47 g/min.

The producer gas was cleaned prior to gas analysis by passing through a hot filter to remove particulates and a condenser system (Peltier and ice tar trap) to collect liquids and tar products. A Tedlar[®] gas bag was used to collect a fraction of the gas for the minor contaminants assessment whereas the rest was analysed in an on-line micro gas chromatograph. Overall mass and carbon balances of conducted tests closed higher than 95 %. Further details of the experimental setup and procedure can be found in previous studies [15,22,23].

2.4. Gas, tar and minor contaminants analyses

Syngas composition (H₂, O₂, N₂, CO, CO₂, CH₄ and hydrocarbons up to C₅) was analysed using a micro GC (Agilent 490) whereas the determination of contaminants (tar compounds and minor contaminants) followed different techniques. The quantification of polyaromatic hydrocarbons of the tar samples was carried out in a Hewlett Packard 6850 GC-FID (gas chromatograph with a flame ionization detector). The column configuration and methodology is described in a previous work [24].

Minor contaminants (HCl, H₂S, HCN and NH₃) were quantified by potentiometry through ion-selective electrodes (ISEs, Metrohm). For the assessment of these inorganic traces, a fraction of the gas was collected in a Tedlar[®] gas bag and afterwards it was pumped into a series of impingers filled with solutions to retain specific ions (Cl⁻, S₂⁻, CN⁻, and NH₄⁺). The aqueous solutions were analysed by ISEs. Additionally, in steam gasification experiments the condenser liquids were also analysed. All solutions were conditioned (adjusting ionic strength and pH) prior the ion determination on a 905 Titrando (Metrohm). A detailed procedure was described elsewhere [22,23].

3. RESULTS AND DISCUSSION

3.1 Characterization of raw and torrefied samples

Table 1 gathers the characterization results of the raw FL and torrefied samples (FL290 and FL320), together with the mass yield of the torrefaction process under the studied conditions.

The parent material (FL) contained a moisture level of 8.4%, which predictably enough, decreased after torrefaction at 290 and 320 °C up to ~1%. As well, during torrefaction there was a change in volatiles levels with an initial increase at 290 °C from 72% to 74% followed by a decrease at 320 °C (71%). This variation in dry basis corresponded to a loss of volatiles from 79% for raw FL to 75% and 72% for FL290 and FL320, respectively. The content of ashes remained ca. 15%, observing a slight and steady augment as torrefaction level increased. Fixed carbon content rose from 5.8% to 10.4-11.6% with the increase of torrefaction temperature. This increment of fixed carbon can also be related to the increase of carbon content in the sample. The ultimate analysis reflects that C content raised 1.25 times up to 57.6% for FL290. On

the other hand, the loss of moisture and some oxygenated volatiles provoked a steep decrease of oxygen, ranging between 19.3-22.3% for the torrefied samples versus the 31.7% of FL. H scarcely decreased from 7.5% to 7.0% and 6.6% for FL290 and FL320, respectively. The content of minor components also changed with torrefaction. N rose by 14-22% with the torrefaction severity, however Cl decreased from 0.6% to < 0.5%. Regarding the percentage of S, this parameter slightly oscillated around 0.3% in both torrefied samples. The calorific content improved only in the torrefied sample at 290 °C, i.e. the sample with higher carbon content and less moisture. Apparently, higher temperatures provoked a substantial loss of volatiles and a consequent increase of ash content, affecting the calorific content of the sample. Regarding ash composition, the major compounds detected were aluminium, calcium, phosphorous and silicon. In general, the compounds concentration seemed to increase with the torrefaction temperature but taking into account the levels of ashes, some elements were preferentially released during the torrefaction pretreatment (i.e. calcium, lead, etc.) whereas others slightly increased (i.e. silicon, potassium, etc.).

3.2 Gasification test

3.2.1 Product Yields

Table 2 presents the product yields of the gasification experiments in terms of gas, tar and char. The sum of the yields is above 100% as the oxygen introduced with the gasification agent (air and oxygen/steam) reacts with the feedstock to form compounds as CO and CO₂ during gasification.

Considering the results from air gasification tests with sand, both torrefied feedstocks showed similar gas yields ranging from 96.9%-110.8% but slightly lower gas levels for the material torrefied at the highest temperature. FL320 also yielded lower tar and higher char than FL290, which is consistent with the proximate analysis results (lower volatiles and higher fixed carbon content). The use of dolomite as bed material exhibited a positive effect on the gasification performance. There was a significant reduction of all tar yields (2 times lower than with sand) due to the promotion of tar cracking and polymerization reactions, leading to a slight increase of gas and char yields.

The use of O_2/H_2O as gasification agent resulted in an increase of gas yields ranging between 127.9-138.7% whereas tar results were similar to those obtained with air and dolomite (~ 3%). The presence of oxygen and steam in the gasification media

promoted a general decrease of char due to char combustion and steam gasification reactions. In addition, the replacement of sand with catalyst (dolomite or olivine) in the bed also improved the gasification (gas yields above 130% and the lowest tar and char yields). Comparing the catalytic activity of both dolomite and olivine, dolomite decreased significantly tar yield, however olivine reported similar tar yields as those obtained with sand as bed material. This lower efficiency of olivine for tar depletion, in comparison to dolomite, was recently reported in a previous work [25]. In that paper the effect of both catalysts was studied under oxygen/steam gasification of two SRFs.

3.2.2 Gas composition

This section discusses the evolution of the gas composition produced from gasification of two torrefied SRFs (FL290 and FL320) at a gasification temperature of 850 °C and ER ~0.3. Sand or catalyst (dolomite, olivine) were used as bed material and air or oxygen/steam as gasification agent. Figures 2 and 3 plot the main components of the producer gas with different gasification mediums (air and oxygen/steam, respectively).

Both feedstocks produced a similar gas composition (Fig. 2), under air gasification conditions and sand as bed material. However, the most torrefied fuel presented a slightly better gas quality, with higher volumetric composition (% vol.) of H₂ than the obtained with FL290 (8.5% for FL320 and 7.9% for FL290). On the other hand, the concentration of CO with FL290 was 9.3% compared to the 8.5% of FL320. These variations in the main gas compounds resulted in the H₂/CO and CO/CO₂ ratios displayed in Table 3. H₂/CO ratios were 0.85 for FL290 and 0.99 for FL320 whereas CO/CO₂ ratios were 0.80 and 0.69, respectively. The reported H₂/CO increase with torrefaction level is consistent with the results presented in previous studies of gasification of torrefied biomass [8,26,27]. This effect can be related to the reduction of oxygenated volatiles during the torrefaction process (that would rapidly evolve towards CO), and the formation of a slightly less reactive char, declining the effect of char steam reforming towards CO and H₂. Additionally, in the case of SRFs, the reactions of pyrolysis of polymers are also relevant, leading to the formation of H₂ as final product [28].

Other evaluated parameters were carbon conversion and gas heating value (Table 3). The higher levels of hydrocarbons (CH₄, C_2H_4 , C_2H_6 ...) present in the gas

produced from FL320 gasification resulted not only in a higher gas calorific value in contrast to FL290 (~5 versus ~4 MJ/Nm³, respectively) but also in a higher carbon conversion (69.1 and 66.5%, respectively). The substitution of sand by dolomite resulted in different trends in the gas compositions but a similar response on the overall gasification performance. Both fuels exhibited a drop of H₂/CO ratio (to values close to 0.7) and an increase of CO/CO₂ mainly due to the rise of CO concentration (to a greater extent for FL320). The presence of calcined dolomite might have promoted char gasification reactions (Boudouard and water gas) leading to an increase of CO [29]. As well hydrocarbons (CH₄, C₂H₄, C₂H₆ and higher) presented a marked decrease attributed to the enhancement of cracking reactions. Despite the reduction of olefins with high heating value, the gas LHV remained almost constant and carbon conversion increased by 5%.

Fig. 3 shows the results of gas composition of the experiments performed with oxygen/steam as gasification agent. Compared to Fig. 2, the concentration of the main gas compounds increased due to the absence of N2 from air in the producer gas. In air gasification experiments, N₂ accounted for about 60% of the volumetric composition meanwhile in O₂/H₂O tests, it was lower than 10%. This percentage of nitrogen stem from a small inlet of N₂ (50 NmL/min) in the hopper to facilitate the continuous feeding. Furthermore, the use of pure oxygen and steam enhanced the production of H₂ associated to steam reforming, water gas and shift reactions [30]. In comparison to air gasification results, H₂/CO ratio rose above 2.0, CO/CO₂ ratio ranged between 0.2-0.4 and LHV levels were doubled. The obtained results were also useful to assess the effect of varying the bed material (sand or catalyst). In general, the combination of catalyst and steam reinforced tar cracking and steam tar reforming reactions, which consumed the heaviest hydrocarbons to produce lighter hydrocarbons such as C₂ and CH₄. Hydrogen and carbon monoxide rose and CO₂ concentration diminished when dolomite was used as bed material. The small changes observed in CO and CO₂ percentages in the case of FL290, might be linked to a slight higher equivalence ratio (i.e. larger degree of oxidation) in this test. Among all evaluated conditions, gasification of FL320 with dolomite led to the most satisfactory conditions. H₂/CO ratio was around 2.8, the gas calorific value reached a value about 11.0 MJ/Nm^3 and carbon conversion was close to 85%. These results corroborated the positive effect of combining torrefaction and gasification using dolomite as bed material. The effect of an additional bed material was tested using olivine, a common bed material in

biomass gasification processes. The use of calcined olivine as bed material hardly raised H_2 and CO concentrations nor barely reduced tar content in comparison to sand tests. The values of gas LHV and carbon conversion were in between the results obtained with sand and dolomite.

Summarizing, the producer gas from FL320 presented higher calorific content and lower tar levels than FL290 both with air and oxygen/steam as gasification agents. These results were enhanced with the use of catalyst, especially with dolomite.

3.2.3 Tar characterization

3.2.3.1 Tar content

Tar content results (Table 3) are in agreement with the evolution of the discussed tar yields. In air gasification experiments with sand as bed material, tar concentration in the dry producer gas ranged between 25-30 g/Nm³, however it experienced a drastic decrease of 50 % with dolomite in the bed. The obtained values under these conditions (around 13 g/Nm³) are similar to other air gasification tests with SRFs [22,23,31–33] and closer to those obtained in biomass gasification [34,35]. Even though when comparing air experiments to those with O₂/H₂O could seem that the implementation of O₂/H₂O as gasification agent barely reduced tar content, in this case it is convenient to express the content in N₂ free basis (note that N₂ represents about 60% of gas composition in air experiments). As an example of N₂ diluting effect, the tar content of the syngas obtained with FL320 decreased from 34 g/Nm³ (with dolomite and air) to 11.3 g/Nm³ (dolomite and O₂/H₂O) when expressed in N₂ free basis. Besides, among the two torrefied SRFs, the syngas produced with FL320 showed the lowest tar concentration (10.9 g/Nm³ or 11.3 g/Nm³ inert free basis).

Additionally, olivine was tested as bed material only for FL320 gasification under oxygen/steam conditions. However, in line with a previous work [25], olivine just decreased tar content by 9% in comparison with sand (from 24.4 to 22.2 g/Nm³). Therefore, tar and gas composition results reinforced the argument that dolomite might be a suitable catalyst for this type of fuels and gasification conditions.

3.2.3.2 GC-FID analysis

The characterization of tar samples was carried out in a GC with flame ionization detector (GC-FID) to determine the presence of polynuclear aromatic hydrocarbons (PAHs). A standard of 16 PAHs (EPA 610 PAH Mix) was used for the identification

of these hydrocarbons. Three additional compounds (1- and 2-menthylnaphtalene, and biphenyl) were also identified and quantified [25].

Fig. 4 compares the total amount of tar and PAHs produced by 100 g dry FL (torrefied at 290 and 320 °C) during gasification experiments under different gasification agents and bed materials. As previously commented, tar yields were higher when air was used as gasification agent in comparison with oxygen/steam experiments. This fact may be attributed to a higher extent of tar cracking reactions with steam and the higher reactivity of oxygen. Similarly to the results observed for torrefied biomass [8,15], a greater degree of torrefaction in FL samples showed lower tar production. Therefore, torrefaction level favoured tar depletion. Despite the observed decrease on tar yield, PAH compounds represented on average the 65% of total tar for both torrefied materials. When dolomite was used as bed material, tar yields decreased by 50% and PAHs yields by 60%.

Fig. 5 and 6 plot the yield of the studied PAHs on tars obtained from air and oxygen/steam gasification experiments, respectively. In all cases, naphthalene, acenaphtylene and phenanthrene were the three main PAH compounds, and among them naphthalene was the dominant aromatic compound. The increase of the torrefaction level led to a clear decrease of naphthalene together with a reduction, to a lesser degree, of the other PAH species, for both studied gasification agents.

The substitution of bed material from sand to dolomite also presented a positive effect on tar depletion. There was a substantial decrease of tar compounds with this catalyst; practically all tar species halved their yield. These trends were similar for both gasification agents, although dolomite seemed more active for tar cracking under steam rather than under air gasification conditions [36]. An additional test to evaluate the effect of another mineral catalyst (calcined olivine) with FL320 was performed. The use of olivine reduced PAHs but could not reach the levels obtained with dolomite, in particular with the main PAHs compounds (naphthalene, acenaphtylene and phenanthrene). This lower efficiency of olivine on tar cracking was also reported in other works with waste-derived fuels and biomass [25,37] under similar gasification conditions. It is also worth mentioning that in that previous study [25], oxygen/steam gasification of raw FL produced larger amounts of tars (> 60 g/Nm³).

3.2.4 Minor contaminants

This section presents the evolution of the concentration of minor contaminants in the producer gas from gasification experiments with torrefied FL (FL290 and FL320), two gasification agents (air and oxygen/steam) and different bed materials (sand, dolomite or olivine) Additionally, previous results obtained with the parent FL [23,25], have been included to facilitate the discussion. The studied minor contaminants determined through ISEs were hydrogen chloride (HCl), hydrogen sulphide (H₂S), hydrogen cyanide (HCN) and ammonia (NH₃).

3.2.4.1 Air gasification experiments

Fig. 7 displays the minor contaminants concentration produced in air gasification of FL [23], FL290 and FL320 tests with two bed materials (sand and dolomite). In contrast to previous air gasification experiments with raw FL under similar conditions (T=850 °C and ER 0.3) [23] there was a steep diminishment on HCl release after the torrefaction pretreatment, especially at 290 °C (< 50 mg/Nm³). This fact indicates a relevant positive effect of torrefaction (discussed in more detail in the next section).

Comparing both torrefied fuels, HCN and H_2S were the dominant minor contaminants released in the gas. The gasification experiments performed with FL320 showed higher concentration of all contaminants even when dolomite was used as bed material. This fact can be connected to the higher level of tar cracking for the most torrefied material. The heteroatoms (S and N) contained in the tar compounds could evolve towards HCN, NH₃ or H₂S, when tar cracking is more severe [23].

The influence of dolomite on contaminants release was more relevant in some cases depending on the level of torrefaction, but in general the reduction of contaminants followed equivalent trends. HCN levels decreased from ca. 1350 mg/Nm³ to 450 mg/Nm³ on FL290 gasification, whilst the decrease with FL320 was much less remarkable (from 1635 to 1510 mg/Nm³). The presence of metals like Fe and alkaline earth metals (Mg) in dolomite may catalyse N-fuel conversion ending up with lower HCN concentration [22,23].

The emissions of HCl with FL320 was higher than with FL290, this can be related to the larger amount of aluminium (Al) and silicon (Si) in ashes from FL320. The mentioned compounds may react with alkali chlorides (i.e. KCl) to form HCl [38]. In addition, it should be noted that the concentration of elemental chlorine (in mass percentage) was slightly higher in this feedstock.

In addition, use of dolomite seemed to slightly favour the production of ammonia. NH₃ was hardly produced (< 1 mg/Nm³) in the experiments performed with sand but increased on those with dolomite (3 and 55 mg/Nm³ for FL290 and FL320, respectively). This effect might be related to the decrease of HCN, as dolomite may favour the release of the fuel-N, forming preferentially NH₃ [39] instead of HCN. Moreover, this study shows an important increase of H₂S in the gas from torrefied samples in comparison to the original feedstock where hydrogen sulphide was scarcely detected. The mechanisms of release of sulphur species are complex and can influenced by many factors, for instance by the presence of inorganic sulphates or other elements in the fuel ash [40,41]. The release of H_2S has been reported to be highly dependent on the affinity between potassium and sulphur, however the competition with Cl and Si at temperatures above 700 °C may prevent the formation of K₂S in solid phase and therefore favour H₂S release [40]. The lower levels of the Ca/Si ratio of the torrefied samples in comparison to the parent SRF may partially explain the observed results. Other plausible explanation is the evolution of the chlorine derived from the dechlorination of PVC. Part of the released Cl could have reacted with the Ca and K of the fuel ash, making these compounds unavailable for sulphur, leading to the release of H₂S. Another fact that supports the hypothesis of the reaction of the released Cl during torrefaction with the SRF ash compounds, is the drop in HCl concentration when dolomite is used as bed material, due to the larger amounts of Ca and Mg available in the dolomite bed. This reduction was about 36-40% for both torrefied materials. The utilization of dolomite reduced H_2S concentration by 30% for both FL290 and FL320 (final values of 405 and 580 mg/Nm^3 , respectively). The results of H₂S diminishment are similar to those presented by Pinto et al. [32], and can be related to the presence of Ca available in the bed, which favours the formation of CaS that would probably remain in the ashes [22,23].

3.2.4.2 Oxygen/steam gasification experiments

Fig. 8 plots the contaminants concentration produced in oxygen/steam gasification of raw FL and torrefied samples at equivalent experimental conditions (T=850 °C, ER 0.3). In this case an additional bed material (olivine) was tested with the FL320 sample. The contaminants released in higher level were HCN and NH₃ for both

torrefied samples. Contaminants concentration increased with tar cracking, especially increasing NH₃ and decreasing HCN concentration.

Concerning the experiments with sand, HCN was the major contaminant released with concentration values around 2200 mg/Nm³ for FL290 and the double for FL320. As observed in air gasification experiments (Fig. 7), the replacement of sand with dolomite produced a reduction of hydrogen cyanide together with a rise of ammonia more marked in the FL290 sample. In fact, that increase of NH₃ (2860 mg/Nm³) surpassed the levels of HCN (1470 mg HCN/Nm³). These results may confirm that the presence of steam together with dolomite clearly have promoted the conversion of the fuel-N to NH₃. In particular, the important decrease of tar could provoke the release of part of the nitrogen present in the tar compounds as ammonia. This trend was also observed in a previous work [25] regarding the oxygen/steam gasification of the parent fuel FL (results included in Fig.8). In that study the concentration of NH₃ increased with dolomite for two different SRFs. On the other hand, H₂S content was reduced by 75-95% ranging between 40-140 mg/Nm³. In fact, the most remarkable difference was the low formation of HCl detected for the tests performed with torrefied FL compared to the data obtained with the parent FL (HCl levels > 5000 mg/Nm³). As commented in the air gasification section, this fact manifests the positive effect of torrefaction, reducing the release of chlorine in the gas phase to a range of 90-230 mg/Nm³. This reduction seemed to be in contradiction with the slight decrease of chlorine content in the torrefied samples, in comparison to the parent fuel. However, the results pointed out that most of the chlorine released as HCl in the producer gas in the experiments with the FL sample stem from some polymers (in the polymer formulation or as additives) and would be released during the torrefaction process. On the other hand, inorganic chlorine present in salts would remain as ashes under the gasification conditions [42,43]. Therefore, although the reduction of chlorine between FL and torrefied samples is limited, the effect of the torrefaction process on HCl release is key. Lower levels of HCl in the producer gas would reduce the risk of corrosion, affecting not only to the design of the syngas conditioning process, but the materials selection for the gasification and syngas cleaning sections.

Gasification of FL320 led generally to higher concentrations of minor contaminants than FL290 experiments. One possible explanation for this result is related to the higher level of tar cracking (lower level of tar yields) during the gasification of FL320. The tar produced during MSW derived fuels gasification can

contain N and S compounds, that would evolve towards H_2S , NH_3 and/or HCN during tar cracking reactions, increasing the release of these contaminants. Apart from the use of dolomite, another catalyst (olivine) was tested with the most torrefied FL. According to our previous study [25], olivine reduced nitrogenous contaminants in a higher extent than dolomite. In this study olivine also resulted in a diminishment of HCN concentration compared to the utilization of sand as bed material, and similar ammonia levels. On the other hand, HCl diminished (to 113 mg/Nm³) and H₂S slightly increased (to 99 mg/Nm³). Usually the decrease of hydrogen chloride led to an increase of hydrogen sulphide due to the interaction of ash constituents (mainly K), under oxygen/steam gasification conditions [13].

3.3. Overall efficiency. Torrefaction combined with gasification

The overall efficiency of the process (torrefaction and gasification) was determined as the energy content (calculated as LHV) in the producer gas in relation to energy content of the raw feedstock [25] (Eq. 1). Fig. 9 displays a diagram that explains the mass and energy balances of the overall process. Notice that efficiency is evaluated at 25 °C and does not take into account the sensible heat of the gas at the gasifier exit.

$$\eta_{LHV}(\%) = 100 \left(\frac{LHV_{producer gas}[MW]}{LHV_{raw feedstock} [MW]} \right) \qquad Eq.1$$

The efficiency values (η_{LHV}) displayed in Table 4 varied in the range of 42 to 44% for air gasification experiments. There was a slight decrease of the overall efficiency with the level of torrefaction. This reduction could be attributed to the loss of volatiles (from plastic fractions of FL) during torrefaction, causing a smaller gas production. However the efficiency results were close for both torrefaction levels. Under oxygen/steam conditions η_{LHV} increased up to a range of 45-55%. The lower formation of tar and the steady increase of carbon conversion and gas LHV could explain this fact. The efficiencies at these conditions also decreased with the torrefaction severity but for the combination of FL320 with dolomite. This experiment led to higher gas LHV than the obtained with FL290, probably linked to lower degree of oxidation (i.e. lower equivalence ratio). Additionally, η_{LHV} values for experiments with the parent material (FL) were calculated using data from a previous work [23]. The obtained results varied in the range of 47-55% for air gasification tests, slightly higher values than those obtained with the torrefied samples. Tests with oxygen/steam resulted in higher efficiencies (49-65%), especially when using dolomite as bed material (with an efficiency peak of 65%).

In order to evaluate the gasifier performance, the cold gas efficiency (CGE) of the gasification process has been included in Table 4. CGE is calculated according to the energy in the gas (as LHV) in relation to the energy of feedstock introduced in the gasifier (Eq. 2).

$$CGE_{LHV}(\%) = 100 \left(\frac{LHV_{producer gas}[MW]}{LHV_{gasifier feedstock}[MW]} \right)$$
 Eq. 2

CGE results ranged between 42-52% for air and between 45-67% for oxygen/steam experiments of torrefied materials. In general, CGE values with the FL320 material led to higher efficiencies due to the lower LHV of the feedstock compared to FL290. This fact could be related to the loss of hydrocarbons from the partial pyrolysis of polymers during torrefaction at 320 °C. As commented for air experiments, the use of catalyst increased the producer gas LHV and hence cold gas efficiency. Contrasting these results with calculated CGE for experiments with FL [25], they followed similar trends to air experiments. Note that part of energy present in the volatiles of the torrefaction process could be reintroduced in the process and therefore improve the overall efficiency.

3.4. Preliminary cost evaluation of SRF gasification using torrefaction as pretreatment.

The results presented in the previous section indicated that the use of torrefaction led to a slight reduction in overall process efficiency for all the evaluated cases. Nevertheless, this assessment does not take into account other benefits associated with the use of torrefaction.

The high levels of HCl in the syngas is one of the main drawbacks when evaluating SRF gasification. This issue could be considerably overcome using torrefaction, particularly if the level of chlorine was reduced to that of conventional biomass. In addition, other positive effects include the reduction of all the considered minor contaminants, depletion of tar release, and other benefits related to feedstock handling

(grindability, hydrophobicity, more stable product, higher energy density, higher material density, etc.).

In an attempt to include these additional parameters in the equation, this section evaluates the performance of the combination of SRF torrefaction and gasification using a preliminary cost analysis, stabilising the cost difference between the evaluated case (at a particular torrefaction temperature, gasification agent and bed material) and the correspondent basis case (direct gasification of FL using the same gasification agent and bed material).

The parameters that were evaluated to determine the cost difference included: cost of torrefaction, cost of tar cleaning, cost of minor contaminants cleaning, cost reduction due to heat integration, and reduction of process revenues due to the decrease of global efficiency. This procedure allowed a preliminary evaluation of the main advantages (i.e. reduction of contaminants) associated with the combination of torrefaction and gasification processes, and the drawbacks associated with the cost increase and the overall process efficiency.

The cost evaluation related to the higher or lower presence of tar and minor contaminants was carried out using as reference the studies of [44,45]. Regarding the tar cleaning, the investment cost was considered constant for all the cases, and the only variation considered was the change in the operating cost. The cost increment was directly proportional to the basis operational cost of 10.1 \notin /tonne_{feedstock} [45] for a syngas with a tar content of about 11 g/Nm³, taking into account the tar content in each evaluated case. A similar approach was used to evaluate the cost change due to the emission level of minor contaminants (HCl, H₂S, HCN and NH₃). The additional gas cleaning for gases obtained from non-woody biomasses was evaluated as 30 \notin /tonne_{feedstock} [44]. About half of this cost corresponds to the investment cost, and was kept constant in all the cases. On the other hand, a direct proportion was applied to evaluate the operational cost, assigning an operational cost of 15 \notin /tonne_{feedstock} for the cleaning of a gas containing a concentration of all the considered contaminants of about 6000 mg/Nm³.

The assessment of the torrefaction cost was based in the study of Shah et al. [46]. This study allows the calculation of torrefaction cost, including the influence of different parameters, such as initial feedstock moisture content, torrefaction temperature, plant operating window and initial capital investment. The analysis of this study led to an estimation of torrefaction cost of about 19 ± 3 €/tonne_{feedstock} and

 23 ± 3 €/tonne_{feedstock} for the torrefaction at 290 and 320 °C, respectively. An initial moisture in the range of 5-10% and a plant operating window of 10 months/year were used. In addition, a plausible reduction of torrefaction cost was considered, given that a heat integration between gasification and torrefaction could be applied. This reduction was estimated in a 30 % of the total torrefaction cost.

Finally, the changes in overall process efficiency were evaluated considering the variation of energy produced (as syngas). The cost evaluation was carried out considering that the syngas was converted to electricity (with an estimated efficiency of 70%) and consequently a reduction in overall process efficiency would provoke a reduction in the revenues for electricity sale (at a price of 50 €/MWh). The revenue difference was calculated using the difference between the overall efficiency of each case and the efficiency of the correspondent basis case (Table 4). This value was multiplied by the LHV of the SRF sample, the electric efficiency and the electrical price.

The results of the cost evaluation are presented in Fig. 10 and 11. Two main conclusions can be extracted from the obtained results. First, the use of SRF torrefaction when the feedstock is treated via air gasification leads to an increase in the process cost that would not recommend the use of torrefaction. The main cost both for FL290 and FL320 using sand as bed material corresponded to the increment of cost due to the torrefaction process, and the relative low variation in tar or minor contaminants cleaning cost. When dolomite was used as bed material, the main cost for the torrefied samples corresponded to the reduction of revenues due to the decrease of the global efficiency.

On the other hand, the evaluation of O_2/H_2O gasification showed a promising cost reduction for all the evaluated cases, but particularly when a torrefaction temperature of 290 °C was applied using sand as bed material, and for the FL320 sample and dolomite as bed material. These results are mainly connected with the lower tar and minor contaminants produced under these conditions, leading to a more pronounced cost reduction, together with a lower variation in the product revenue due to the reduction of global process efficiency. Again, when dolomite was used as bed material, the main cost for the torrefied samples corresponded to the reduction of revenues due to the decrease of the global efficiency.

Although the obtained results present torrefaction as a promising pretreatment for SRF in some particular conditions, these are preliminary results and only evaluate the

cost difference among each condition and its basis case. A complete techno-economic study should be performed in order to determine the total cost of the process under the different conditions, assessing for instance the additional costs related to the use of different bed materials, the oxygen separation, etc.

In addition, the global efficiency of the process could be improved by applying some strategies, such us the reintroduction in the gasification of the volatiles produced in the torrefaction step [12], leading to a slight reduction in the cost due to the reduction of the revenues.

4. CONCLUSIONS

 This paper studies the torrefaction of a solid recovered fuel (SRF) and its influence on the fuel properties for gasification purposes.

The torrefaction pretreatment in the range of 290-320 °C improved the gasification performance of the SRF (lower tar, higher H₂/CO ratio, carbon conversion, etc.) at expense of increasing the release of some minor contaminants (H₂S and NH₃), particularly when using air as gasification agent. However, a relevant fact is that HCl concentration was greatly reduced from > 5000 mg/Nm³ for oxygen/steam gasification of raw FL to values below 250 mg/Nm³ for torrefied feedstocks, showing an additional benefit of torrefaction for this type of feedstock.

The results of process global efficiency indicate that the torrefaction process could provide a series of relevant benefits without a significant reduction in overall efficiency. Nevertheless, the preliminary cost evaluation showed that the combination of torrefaction of SRF materials and gasification is more adequate for processes of gasification using O_2/H_2O rather than for air gasification conditions.

In addition, a series of strategies, such as an energy integration between both processes (not feasible at lab-scale), or the use of the produced volatiles during torrefaction, could result in a more efficient SRF gasification using torrefaction as pretreatment, from an energetic and operational point of view.

ACKNOWLEDGEMENTS

This research was supported by the European Regional Development Funds (ERDF, "FEDER Programa de Competitivitat de Catalunya 2007-2013") and the Spanish Government (project MAT2014-52416-P). C. Berrueco is grateful to the

Spanish Ministry of Economy and Competitivity for funding his Ramon y Cajal contract (RYC-2011-09202). N. Puy appreciates the funding through the Torres Quevedo subprogram from the Spanish Ministry of Economy and Competitivity (PTQ-12-05545). J. Recari expresses his gratitude to the Universitat Rovira i Virgili for funding his PhD contract.

REFERENCES

- [1] Zhang Q, Wu Y, Dor L, Yang W, Blasiak W. A thermodynamic analysis of solid waste gasification in the Plasma Gasification Melting process. Appl Energy 2013;112:405–13. doi:10.1016/j.apenergy.2013.03.054.
- [2] Arena U. Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 2012;32:625–39. doi:http://dx.doi.org/10.1016/j.wasman.2011.09.025.
- [3] Alimuddin Z, Zainal B, Lahijani P, Mohammadi M, Rahman A. Gasification of lignocellulosic biomass in fluidized beds for renewable energy development : A review. Renew Sustain Energy Rev 2010;14:2852–62. doi:10.1016/j.rser.2010.07.026.
- [4] Ahmad AA, Zawawi NA, Kasim FH, Inayat A, Khasri A. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renew Sustain Energy Rev 2016;53:1333–47. doi:10.1016/j.rser.2015.09.030.
- [5] Arena U. Gasification: An alternative solution for waste treatment with energy recovery. Waste Manag 2011;31:405–6. doi:10.1016/j.wasman.2010.12.006.
- [6] Sarkar M, Kumar A, Tumuluru JS, Patil KN, Bellmer DD. Gasification performance of switchgrass pretreated with torrefaction and densification. Appl Energy 2014;127:194–201. doi:10.1016/j.apenergy.2014.04.027.
- [7] Arnsfeld S, Senk D, Gudenau HW. The qualification of torrefied wooden biomass and agricultural wastes products for gasification processes. J Anal Appl Pyrolysis 2014;107:133–41. doi:10.1016/j.jaap.2014.02.013.
- [8] Dudyński M, van Dyk JC, Kwiatkowski K, Sosnowska M. Biomass gasification: Influence of torrefaction on syngas production and tar formation. Fuel Process Technol 2015;131:203–12. doi:10.1016/j.fuproc.2014.11.018.
- Chew JJ, Doshi V. Recent advances in biomass pretreatment–Torrefaction fundamentals and technology. Renew Sustain Energy Rev 2011;15:4212–22. doi:http://dx.doi.org/10.1016/j.rser.2011.09.017.

- [10] Huang Y-F, Cheng P-H, Chiueh P-T, Lo S-L. Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency. Appl Energy 2017. doi:10.1016/j.apenergy.2017.03.007.
- [11] Chen WH, Lu KM, Tsai CM. An experimental analysis on property and structure variations of agricultural wastes undergoing torrefaction. Appl Energy 2012;100:318–25. doi:10.1016/j.apenergy.2012.05.056.
- [12] Prins MJ, Ptasinski KJ, Janssen FJJG. More efficient biomass gasification via torrefaction. Energy 2006;31:3458–70. doi:10.1016/j.energy.2006.03.008.
- [13] Kirsanovs V, Zandeckis A. Investigation of Biomass Gasification Process with Torrefaction Using Equilibrium Model. Energy Procedia 2015;72:329–36. doi:10.1016/j.egypro.2015.06.048.
- [14] Chen W-H, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sustain Energy Rev 2015;44:847–66. doi:10.1016/j.rser.2014.12.039.
- [15] Berrueco C, Recari J, Güell BM, Alamo G Del. Pressurized gasification of torrefied woody biomass in a lab scale fluidized bed. Energy 2014;70:68–78. doi:10.1016/j.energy.2014.03.087.
- [16] Poudel J, Ohm T-I, Oh SC. A study on torrefaction of food waste. Fuel 2015;140:275–81. doi:10.1016/j.fuel.2014.09.120.
- [17] Benavente V, Fullana A. Torrefaction of olive mill waste. Biomass and Bioenergy 2015;73:186–94. doi:10.1016/j.biombioe.2014.12.020.
- [18] Liu S, Qiao Y, Lu Z, Gui B, Wei M, Yu Y, et al. Release and Transformation of Sodium in Kitchen Waste during Torrefaction. Energy & Fuels 2014;28:1911–7. doi:10.1021/ef500066b.
- [19] Yuan H, Wang Y, Kobayashi N, Zhao D, Xing S. Study of Fuel Properties of Torrefied Municipal Solid Waste. Energy & Fuels 2015:150728062838002. doi:10.1021/ef502277u.
- [20] Ahmed II, Gupta AK. Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics. Appl Energy 2010;87:101–8. doi:10.1016/j.apenergy.2009.08.032.
- [21] Manatura K, Lu J-H, Wu K-T, Hsu H-T. Exergy analysis on torrefied rice husk pellet in Fluidized Bed gasification. Appl Therm Eng 2016;111:1016–24. doi:10.1016/j.applthermaleng.2016.09.135.
- [22] Berrueco C, Recari J, Abelló S, Farriol X, Montané D. Experimental investigation of solid recovered fuel (SRF) gasification: Effect of temperature and equivalence ratio on process performance and release of minor contaminants. Energy & Fuels 2015:151009130829006.

doi:10.1021/acs.energyfuels.5b02032.

- [23] Recari J, Berrueco C, Abelló S, Montané D, Farriol X. Gasification of two solid recovered fuels (SRFs) in a lab-scale fluidized bed reactor: Influence of experimental conditions on process performance and release of HCl, H2S, HCN and NH3. Fuel Process Technol 2016;142:107–14. doi:10.1016/j.fuproc.2015.10.006.
- [24] Berrueco C, Montané D, Matas Güell B, del Alamo G. Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed. Energy 2014;66:849–59. doi:10.1016/j.energy.2013.12.035.
- [25] Recari J, Berrueco C, Abelló S, Montané D, Farriol X. Effect of bed material on oxygen/steam gasification of two solid recovered fuels (SRFs) in a benchscale fluidized bed reactor. Energy & Fuels 2017. doi:Submitted to journal/Unpublished results.
- [26] Woytiuk K, Campbell W, Gerspacher R, Evitts RW, Phoenix A. The effect of torrefaction on syngas quality metrics from fluidized bed gasification of SRC willow. Renew Energy 2017;101:409–16. doi:10.1016/j.renene.2016.08.071.
- [27] Couhert C, Salvador S, Commandré JM. Impact of torrefaction on syngas production from wood. Fuel 2009;88:2286–90. doi:10.1016/j.fuel.2009.05.003.
- [28] Mastral JF, Berrueco C, Ceamanos J. Pyrolysis of high-density polyethylene in free-fall reactors in series. Energy and Fuels 2006;20:1365–71. doi:10.1021/ef060007n.
- [29] He M, Hu Z, Xiao B, Li J, Guo X, Luo S, et al. Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): Influence of catalyst and temperature on yield and product composition. Int J Hydrogen Energy 2009;34:195–203. doi:10.1016/j.ijhydene.2008.09.070.
- [30] Hwang IH, Kobayashi J, Kawamoto K. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF. Waste Manag 2014;34:402–10. doi:10.1016/j.wasman.2013.10.009.
- [31] Dunnu G, Panopoulos KD, Karellas S, Maier J, Touliou S, Koufodimos G, et al. The solid recovered fuel Stabilat®: Characteristics and fluidised bed gasification tests. Fuel 2012;93:273–83. doi:10.1016/j.fuel.2011.08.061.
- [32] Pinto F, André RN, Carolino C, Miranda M, Abelha P, Direito D, et al. Gasification improvement of a poor quality solid recovered fuel (SRF). Effect of using natural minerals and biomass wastes blends. Fuel 2014;117:1034–44. doi:10.1016/j.fuel.2013.10.015.
- [33] Arena U, Di Gregorio F. Gasification of a solid recovered fuel in a pilot scale

fluidized bed reactor. Fuel 2014;117:528-36. doi:10.1016/j.fuel.2013.09.044.

- [34] Miccio F, Piriou B, Ruoppolo G, Chirone R. Biomass gasification in a catalytic fluidized reactor with beds of different materials. Chem Eng J 2009;154:369– 74. doi:10.1016/j.cej.2009.04.002.
- [35] Campoy M, Gómez-Barea A, Ollero P, Nilsson S. Gasification of wastes in a pilot fluidized bed gasifier. Fuel Process Technol 2014;121:63–9. doi:10.1016/j.fuproc.2013.12.019.
- [36] Abdoulmoumine N, Adhikari S, Kulkarni A, Chattanathan S. A review on biomass gasification syngas cleanup. Appl Energy 2015;155:294–307. doi:10.1016/j.apenergy.2015.05.095.
- [37] Devi L, Ptasinski KJ, Janssen FJJG, Van Paasen SVB, Bergman PC a, Kiel JH a. Catalytic decomposition of biomass tars: Use of dolomite and untreated olivine. Renew Energy 2005;30:565–87. doi:10.1016/j.renene.2004.07.014.
- [38] Chen H, Chen X, Qiao Z, Liu H. Release and transformation behavior of Cl during pyrolysis of torrefied rice straw. Fuel 2016;183:145–54. doi:10.1016/j.fuel.2016.06.031.
- [39] Jeremiáš M, Pohořelý M, Bode P, Skoblia S, Beňo Z, Svoboda K. Ammonia yield from gasification of biomass and coal in fluidized bed reactor. Fuel 2014;117:917–25. doi:10.1016/j.fuel.2013.10.009.
- [40] Tchapda AH, Pisupati S V. A review of thermal co-conversion of coal and biomass/waste. Energies 2014;7:1098–148. doi:10.3390/en7031098.
- [41] Bläsing M, Zini M, Müller M. Influence of feedstock on the release of potassium, sodium, chlorine, sulfur, and phosphorus species during gasification of wood and biomass shells. Energy and Fuels 2013;27:1439–45. doi:10.1021/ef302093r.
- [42] Montané D, Abelló S, Farriol X, Berrueco C. Volatilization characteristics of solid recovered fuels (SRFs). Fuel Process Technol 2013;113:90–6. doi:10.1016/j.fuproc.2013.03.026.
- [43] Ma W, Hoffmann G, Schirmer M, Chen G, Rotter VS. Chlorine characterization and thermal behavior in MSW and RDF. J Hazard Mater 2010;178:489–98. doi:10.1016/j.jhazmat.2010.01.108.
- [44] Van Paasen, S.V.B; Cieplik, M.K; Phokawat NP. Gasification of Non-woody Biomass. Economic and Technical Perspectives of Chlorine and Sulphur Removal from Product Gas. 2006.
- [45] Boerrigter H, van Paasen SVB, Bergman PC a, Könemann JW, Emmen R, Wijnands A. "Olga" Tar Removal Technology. 2005.

[46] Shah A, Darr MJ, Medic D, Anex RP, Khanal S, Maski D. Techno-economic analysis of a production-scale torrefaction system for cellulosic biomass upgrading. Biofuels, Bioprod Biorefining 2012;6:45–57. doi:10.1002/bbb.336.

TABLES

 Table 1. Characterization and torrefaction yields of studied samples (as received basis).

		FL	FL290	FL320
Torrefaction yield (g/100g SRF fed)		100	90.9	83.5
	Moisture	8.39±0.41	0.91 ± 0.14	1.12 ± 0.10
Proximate	Volatiles	72.58±0.86	74.10±0.67	71.47 ± 0.05
Analysis (wt.%)	Fixed carbon	5.78±0.44	10.42 ± 0.28	11.55±0.24
(((((((((((((((((((((((((((((((((((((((Ash	13.24±1.01	14.57±0.33	15.86±0.17
	С	46.03±0.54	57.55±0.90	53.68±0.53
	Н	7.49 ± 0.02	7.07±0.15	6.55±0.07
Illtimate	O (by difference)	31.71±0.55	19.31±0.92	22.28±0.54
Analysis	Ν	0.66 ± 0.06	0.75 ± 0.06	0.85 ± 0.01
(wt.%)	S	0.26±0.01	0.31 ± 0.02	0.27 ± 0.02
	\mathbf{F}	< 0.02	< 0.02	< 0.02
	Cl	0.59 ± 0.06	0.42 ± 0.04	0.49 ± 0.04
LHV (MJ kg ⁻¹)	23.29±0.22	25.44±0.38	23.06±0.18
	Aluminium as Al ₂ O ₃	30754±584	30802 ± 556	33659 ± 1226
	Calcium as CaO	39541±539	40107 ± 1214	43436 ± 2041
	Chrome as Cr	143±20	205 ± 23	192 ± 8
	Iron as Fe ₂ O ₃	4094±214	4586 ± 102	7699 ± 443
	Lead as Pb	642±17	520 ± 23	733 ± 21
	Magnesium as MgO	4319±573	4667 ± 122	4947 ± 236
Ash composition (mg kg ⁻¹ fuel ar)	Manganese as MnO	241±8	275 ± 5	277 ± 8
	Nickel as Ni	87±7	120 ± 11	119 ± 2
	Phosphorus as P ₂ O ₅	13385±541	13709 ± 583	15272 ± 554
	Potassium as K ₂ O	2162±126	2498 ± 272	2708 ± 44
	Silicon as SiO ₂	20262±837	24780 ± 620	25585 ± 128
	Sodium as Na ₂ O	4104±183	4299 ± 72	4750 ± 70
	Titanium as TiO ₂	2436±357	3347 ± 211	$\overline{3637 \pm 170}$
	Vanadium as V	<50	<50	<50
	Zinc as Zn	631±80	669 ± 21	670 ± 23

	Gasification agent	ER	Bed material	Yield (g/100 g dry SRF)		
SKF				Gas	Tar	Char*
FL290	Air	0.29	Sand	104.5±0.8	7.9±0.3	3.9±0.1
FL290	Air	0.31	Dolomite	110.8 ± 0.8	3.5±0.1	5.3±0.2
FL320	Air	0.29	Sand	96.9±0.7	5.7±0.2	6.4±0.2
FL320	Air	0.29	Dolomite	99.5±0.7	3.0±0.1	7.2 ± 0.2
FL290	O_2/H_2O	0.32	Sand	132.6±1.3	3.3±0.7	3.7±0.6
FL290	O_2/H_2O	0.32	Dolomite	138.7±1.4	$2.0{\pm}0.4$	2.5 ± 0.4
FL320	O_2/H_2O	0.30	Sand	127.9±1.0	3.1±0.6	5.9±1.0
FL320	O_2/H_2O	0.31	Dolomite	133.5±1.0	1.5 ± 0.3	4.2 ± 0.7
FL320	O_2/H_2O	0.31	Olivine	130.3±1.0	2.9±0.6	$1.0{\pm}0.2$

Table 2. Product yields of torrefied SRFs gasification experiments. (T= 850 °C and Steam/SRF ~ 1).

* Residual char given in ash free basis. Ash content ~ 14.70 g/100g dry FL290 and ~ 16.04 g/100g dry FL320.

SRF	Gasification agent	Bed material	H ₂ /CO	CO/CO ₂	Gas LHV (MJ/Nm ³ dry)	Xc	Tar content (g/Nm ³ dry)	Tar content (g/Nm ³ dry N ₂ free)
FL 290	Air	Sand	0.85 ± 0.04	0.80 ± 0.12	4.08±0.10	66.5±1.8	29.61±1.65	89.49±4.98
FL 290	Air	Dolomite	0.72 ± 0.03	0.91 ± 0.14	4.21±0.10	70.8±1.9	13.07±0.73	37.84±2.11
FL 320	Air	Sand	0.99 ± 0.04	0.69 ± 0.11	5.09±0.13	69.0±1.9	24.65±1.37	68.46±3.81
FL 320	Air	Dolomite	0.72 ± 0.03	1.20 ± 0.19	5.14±0.13	71.6±1.9	12.79±0.71	34.01±1.89
FL 290	O2/H2O	Sand	2.60 ± 0.07	0.25 ± 0.03	9.18±0.75	76.0±1.7	26.33±4.27	29.09±4.72
FL 290	O2/H2O	Dolomite	2.57 ± 0.07	0.28 ± 0.03	9.95 ± 0.82	81.8±1.9	14.84 ± 2.41	16.29±2.64
FL 320	O2/H2O	Sand	2.58 ± 0.07	0.29 ± 0.03	9.83±0.81	80.1±1.8	24.36±3.95	26.74±4.34
FL 320	O2/H2O	Dolomite	2.75 ± 0.08	0.37 ± 0.04	10.99±0.90	85.1±1.9	10.88 ± 1.76	11.34±1.84
FL 320	O2/H2O	Olivine	2.33 ± 0.06	0.34 ± 0.04	10.25 ± 0.84	83.1±1.9	22.20±3.60	24.28±3.94

Table 3. Gasification parameters of experiments. (T= 850 °C and Steam/SRF ~ 1).

SRF*	Gasification agent	Bed material	$\eta_{ m LHV}$	CGE _{LHV}		
FL 290	Air	Sand	42.14±0.52	42.47±0.33		
FL 290	Air	Dolomite	44.10±0.55	44.44 ± 0.34		
FL 320	Air	Sand	41.73±0.52	50.51±0.39		
FL 320	Air	Dolomite	43.23±0.54	52.33±0.41		
FL 290	O_2/H_2O	Sand	45.00±1.23	45.35 ± 0.89		
FL 290	O_2/H_2O	Dolomite	51.62 ± 1.41	52.03 ± 1.02		
FL 320	O_2/H_2O	Sand	44.19 ± 1.21	53.48 ± 1.05		
FL 320	O_2/H_2O	Dolomite	55.22±1.51	66.83±1.31		
FL 320	O_2/H_2O	Olivine	47.41±1.30	57.38±1.12		
FL	Air	Sand	47.41±0.39	47.41±0.39		
FL	Air	Dolomite	54.88 ± 0.45	54.88 ± 0.45		
FL	O_2/H_2O	Sand	49.24±1.12	49.24±1.12		
FL	O_2/H_2O	Dolomite	64.76 ± 1.48	64.76 ± 1.48		
FL	O_2/H_2O	Olivine	49.93±1.14	49.93±1.14		
* Data for EL air appariments from [22] and for EL apparent/staam appariments from						

Table 4. Efficiencies of the process (overall efficiency and CGE).

* Data for FL air experiments from [23] and for FL oxygen/steam experiments from [25].

FIGURE CAPTIONS

Fig. 1. Scheme of torrefaction process.

Fig. 2. Gas composition (dry basis) in air gasification experiments (T= 850 °C, ER ~0.3).

Fig. 3. Gas composition (dry basis) in oxygen/steam gasification experiments (T= 850 °C, ER ~0.3 and Steam/SRF ~ 1).

Fig. 4. Total tar and PAHs yields in: a) air and b) oxygen/steam gasification experiments. (T=850 °C, ER ~0.3 and Steam/SRF ~ 1).

Fig. 5. Tar composition of FL290 and FL320 air gasification experiments (T=850 °C, ER 0.3 and bed materials: sand and dolomite).

Fig. 6. Tar composition of FL290 and FL320 oxygen/steam gasification experiments (T= 850 °C, ER ~0.3, bed materials: sand, dolomite and olivine).

Fig. 7. Minor contaminants in air gasification experiments (T=850 C and ER~0.3). Data for FL experiments from [16].

Fig. 8. Minor contaminants in oxygen/steam gasification experiments. (T=850 C, ER~0.3 and Steam/SRF~1). (T=850 C and ER~0.3). Data for FL experiments from [25].

Fig. 9. Scheme of the mass and energy balances for the combination of torrefaction and gasification.

Fig. 10. Preliminary cost evaluation for SRF air gasification experiments.

Fig. 11. Preliminary cost evaluation for SRF oxygen/steam gasification experiments.

Fig. 1. Scheme of torrefaction process.

Fig. 2. Gas composition (dry basis) in air gasification experiments (T= $850 \degree$ C, ER ~0.3).

Fig. 3. Gas composition (dry basis) in oxygen/steam gasification experiments (T= $850 \degree$ C, ER ~0.3 and Steam/SRF ~ 1).

Fig. 4. Total tar and PAHs yields in: a) air and b) oxygen/steam gasification experiments. (T= $850 \degree$ C, ER ~0.3 and Steam/SRF ~ 1).

Fig. 5. Tar composition of FL290 and FL320 air gasification experiments (T=850 °C, ER 0.3 and bed materials: sand and dolomite).

Fig. 6. Tar composition of FL290 and FL320 oxygen/steam gasification experiments (T= 850 °C, ER ~0.3, bed materials: sand, dolomite and olivine).

Fig. 7. Minor contaminants in air gasification experiments (T=850 C and ER~0.3). Data for FL experiments from [16].

Fig. 8. Minor contaminants in oxygen/steam gasification experiments. (T=850 C, ER~0.3 and Steam/SRF~1). (T=850 C and ER~0.3). Data for FL experiments from [25].

Fig. 9. Scheme of the mass and energy balances for the combination of torrefaction and gasification.

Fig. 10. Preliminary cost evaluation for SRF air gasification experiments.

Fig. 11. Preliminary Cost evaluation for SRF oxygen/steam gasification experiments.

May, 19th 2017

Dear Professor Jinyue Yan,

Please find enclosed the revised manuscript entitled "Torrefaction of a solid recovered fuel (SRF) to improve the fuel properties for gasification processes" by J. Recari, C. Berrueco, N. Puy, S. Alier, J. Bartrolí and X. Farriol

The revised version of the manuscript takes into account the comments and suggestions made by the reviewers and journal editors. The following items are also attached:

- $\hfill\square$ The detailed responses to reviewers/editors
- \Box A copy of the revised paper that includes the track changes of the revisions
- $\hfill\square$ The final revised manuscript.

Looking forward to hearing from you.

Best regards,

Dr. C. Berrueco.