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Baitmet,	a	computational	approach	for	GC–MS	library-driven	

metabolite	profiling		

Introduction:	 Current	 computational	 tools	 for	 gas	 chromatography	 –	
mass	 spectrometry	 (GC–MS)	 metabolomics	 profiling	 do	 not	 focus	 on	
metabolite	 identification,	 that	 still	 remains	 as	 the	 entire	 workflow	
bottleneck	and	it	relies	on	manual	data	reviewing.	Metabolomics	advent	
has	 fostered	 the	 development	 of	 public	 metabolite	 repositories	
containing	 mass	 spectra	 and	 retention	 indices,	 two	 orthogonal	
properties	 needed	 for	metabolite	 identification.	 Such	 libraries	 can	be	
used	for	library-driven	compound	profiling	of	large	datasets	produced	in	
metabolomics,	 a	 complementary	 approach	 to	 current	 GC–MS	 non-	
targeted	 data	 analysis	 solutions	 that	 can	 eventually	 help	 to	 assess	
metabolite	identities	more	efficiently.�
Results:	 This	 paper	 introduces	 Baitmet,	 an	 integrated	 open-source	
computational	 tool	 written	 in	 R	 enclosing	 a	 complete	 workflow	 to	
perform	 high-throughput	 library-driven	 GC–MS	 profiling	 in	 complex	
samples.	 Baitmet	 capabilities	 were	 assayed	 in	 a	 metabolomics	 study	
involving	182	human	serum	samples	where	a	set	of	61	metabolites	were	
profiled	given	a	reference	library.�
Conclusions:	 Baitmet	 allows	 high-throughput	 and	 wide	 scope	
interrogation	 on	 the	 metabolic	 composition	 of	 complex	 samples	
analyzed	 using	 GC–MS	 via	 freely	 available	 spectral	 data.	 Baitmet	 is	
freely	available	at	http://CRAN.R-project.org/package=baitmet.	�
	

Introduction	

Reproducibility	of	electron	impact	(EI)	ionization	together	with	robustness	

of	capillary	columns	have	qualified	gas	chromatography	(GC)	coupled	to	

mass	 spectrometry	 (MS)	 as	 a	 long-standing	 analytical	 platform	 for	

metabolomics.	Metabolomics	has	fostered	both	the	expansion	of	publicly	

available	 mass	 spectral	 repositories	 (Hummel	 et	 al.	 2010;	 Horai	 et	 al.	

2010)	and	the	development	of	metabolic	databases	containing	spectral	

information	 (Wishart	 et	 al.	 2013;	 Vinaixa	 et	 al.	 2016).	 These	 contain	

tabulated	 EI	 mass	 spectra	 together	 with	 retention	 indices	 (RI),	 two	

orthogonal	properties	needed	for	metabolite	identification	and	eventual	

metabolite	profiling	 in	GC–MS	data	(Sumner	et	al.	2007).	 In	untargeted	

metabolomics	 profiling,	 where	 there	 is	 no	 previous	 knowledge	 of	

metabolites	occurring	in	samples,	pure	spectra	are	usually	extracted	from	

GC–MS	 data	 using	 either	 univariate	 (Stein	 1999)	 or	 multivariate	

(Domingo-Almenara	et	 al.	 2016)	deconvolutions;	 and	 these	 spectra	are	

posteriorly	 aligned	 across	 samples.	 Identification	 is	 subsequently	

performed	 by	 matching	 these	 pure	 spectra	 against	 EI	 spectral	

repositories.	However,	untargeted	spectral	deconvolution	and	alignment	

is	 a	 challenging	 process	 and	 therefore,	metabolite	 identification	 is	 still	

relying	on	user	input	curation	and	manual	data	reviewing.	On	the	other	

hand,	spectral	data	tabulated	in	the	above	mentioned	repositories	can	be	

used	for	a	wide-scope	screening	of	complex	samples.	Thus,	a	more	guided	

approach	 consisting	 in	 profiling	 anticipated	 compounds	 (from	 which	

spectral	 information	 and	 RI	 are	 a	 priori	 known)	might	 overcome	 some	

identification	challenges.		

As	 a	 complementary	 approach	 to	 non-targeted	 GC–MS	 data	 analysis	

solutions	(Wehrens	et	al.	2014;	Domingo-Almenara	et	al.	2016)	here	we	

introduce	Baitmet,	an	 integrated	open-source	R	package	allowing	high-

throughput	metabolite	relative	quantification	and	identification	through	

the	projection	of	 an	entire	mass	 spectral	 library	 into	 full-scan	acquired	

GC–MS	 data.	 Baitmet	 uses	 MS	 and	 RI	 libraries	 as	 a	 bait,	 to	 profile	

metabolites	 (met).	 Baitmet	 can	 quantify	 compounds	 using	 either	 (i)	

selective	mass	ions	for	each	compound	or	(ii)	multivariate	methods	which	

implies	that	no	prior	information	about	the	selective	masses	is	required.	

The	 latter	 confers	 advantages	 over	 current	 library-driven	 compound	

profiling	 solutions	 revolving	 around	 the	 concept	 of	 spectral	 mass	 tags	

(MSTs)	 (Luedemann	 et	 al.	 2008)	 or	where	 selective	 ions	 for	 extraction	

peak	apex	intensities	should	be	specified	(Cuadros-Inostroza	et	al.	2009).		

Methods	

Baitmet	 operational	 modules	 and	 computational	 workflow	 are	

summarized	in	Figure	1.	Baitmet	requires	as	input	data	i)	GC–MS	files	in	

commonly	accepted	chromatography	interchange	open	standard	formats	

(either	netCDF	or	mzXML);	 ii)	an	EI	spectral	 library	containing	retention	

indices	(RI)	and	iii)	RT/RI	reference	curve	for	the	chromatographic	method	

obtained	from	series	of	either	internal	or	external	RI	reference	standards	

such	as	n-alkanes	(ALK)	or	fatty	acid	methyl	esters	(FAME)	(Fig.	1A).	First,	

a	 preprocessing	 step	 is	 applied	 with	 baseline	 drift	 removal	 and	 a	 de-

noising	 using	 moving-minimum	 and	 Savitzky-Golay	 filters	 respectively.	

After	this	preprocessing	Baitmet	workflow	iterates	for	each	entry	in	the	

library	as	 follows:	an	Expected	Elution	Window	(EEW)	 is	determined	by	

extrapolating	 the	 corresponding	 tabulated	 compound	RI	 into	 the	 initial	

RT/RI	reference	curve	(Fig.	1B,	left	panel).	All	empirical	spectra	recorded	

in	scans	within	this	EEW	are	correlated	against	corresponding	compound	

tabulated	EI	spectrum.	RT	maximizing	this	correlation	is	retained	as	the	

center	 of	 a	 region	 of	 interest	 (ROI)	 with	 boundaries	 four	 times	 the	

minimum	 compound	 full	 width	 at	 half	 maximum	 (FWHMMIN),	 a	 user-

defined	 value	 (in	 seconds)	 (Fig.	 1B,	 bottom	 panel).	 Next,	 the	 resolved	



compound	chromatographic	profile	is	reconstructed	from	this	ROI	using	

least	absolute	deviation	(LAD)	regression,	a	special	case	of	least	squares	

approach	that	balances	all	ions	weight	in	the	regression	model.	Likewise,	

orthogonal	signal	deconvolution	(OSD)	(Domingo-Almenara	et	al.	2015)	is	

used	 to	 extract	 the	 corresponding	 compound	 pure	 empirical	 spectrum	

which	 is	 compared	 to	 the	 tabulated	one	by	computing	matching	 factor	

using	 either	 the	 Stein	 and	 Scott’s	 composite	 similarity	 (Stein	 and	 Scott	

1994)	or	the	dot	product	(Fig.	1B,	right	panel).	Finally,	Baitmet	computes	

empirical	RI	values.	Of	mention,	Baitmet	can	compute	empirical	RI	values	

by	adapting	the	RT/RI	 initial	curve	using	either	co-injected	standards	or	

naturally	occurring	–	and	user-defined	–	compounds	in	samples	as	internal	

RI	 reference.	Additionally,	 in	absence	of	 co-injected	 standards,	Baitmet	

includes	an	automatic	RT/RI	curve	correction	to	handle	possible	variations	

of	 the	 input	 RT/RI	 curve	 in	 each	 particular	 sample	 caused	 by	 small	

instrumental	 fluctuations	 (Supplementary	 Fig.	 S1).	 Refer	 to	

Supplementary	 Methods	 for	 an	 extended	 Baitmet	 computational	

workflow	 and	 built-in	 functionalities	 descriptions	 and	 a	 more	 detailed	

explanation	of	Baitmet	output	format.		

Results	and	Discussion	

Baitmet	capabilities	for	library-driven	compound	profiling	were	evaluated	

using	 a	 GC–MS	 dataset	 consisting	 of	 analytical	 triplicates	 of	 serum	

samples	from	56	age	and	body	weight-matched	subjects	diagnosed	with	

chronic	kidney	disease	and	 the	 respective	quality	 controls	 (182	GC–MS	

injections	 in	 total,	 see	Supplementary	Material	 for	extended	details	on	

sample	preparation	and	GC–MS	analysis).	The	complete	processing	of	the	

entire	dataset	was	performed	in	2	hours	and	15	minutes	(45	seconds	per	

sample	in	a	2.9	GHz	Intel	Core	i5	computer).	The	library	used	was	a	subset	

of	 the	 the	 Golm	Metabolome	 Database	 (GMD,	 Version	 at	 2011-11-21)	

(Hummel	 et	 al.	 2007)	 including	 only	 those	 entries	 containing	 KEGG	

reference	 (a	 total	of	1152)	and	excluding	FAME.	 Initial	RT/RI	curve	was	

determined	using	mean	RT	across	samples	for	a	series	of	internal	FAME	

(C10	–	25)	spiked	to	each	sample.	The	RI	error	was	set	to	0.5%	according	

to	thresholds	proposed	by	Strehmel	et	al.	(Strehmel	et	al.	2008)	and	the	

FWHMMIN	 was	 set	 to	 1	 second.	 Baitmet	 detected	 127	 metabolites	 (RI	

error<1%)	with	61	of	them	accounting	for	spectral	matching	factors	above	

85%,	appearing	 in	at	 least	80%	of	samples	and	known	to	be	present	 in	

serum	 according	 to	 HMDB.	 The	 identity	 of	 these	 metabolites	 was	

reported	 with	 a	 level	 2	 according	 to	 The	 Metabolomics	 Standards	

Initiative	(MSI)	guidelines	(Sumner	et	al.	2007).	The	Baitmet	typical	output	

for	 these	 61	metabolites	 is	 summarized	 in	 Table	 S1.	 Spectral	matching	

factors	 (MF)	 are	 indicated	 together	 with	 coefficient	 of	 determination	

obtained	 from	 regressing	 areas	 computed	 from	 Baitmet	 reconstructed	

chromatographic	 profiles	 against	 areas	 from	 the	 extracted	 ion	

chromatograms	of	particularly	selected	quantitative	ions.	Additionally,	for	

each	 compound	 in	 Table	 S1	 a	 comparison	 between	 relative	 RI	 error	

deviations	 (RIe)	 is	 shown	 for	 empirical	 RI	 computed	 either	 using	 RT/RI	

internal	 calibration	 curve	 (internal	 standards	 co-injection)	or	 automatic	

Baitmet	 RI/RT	 curve	 correction.	 In	 the	 first	 case,	 Baitmet	 input	 library	

included	a	set	of	MS	and	RI	for	each	FAME	spiked	in	the	samples	and	these	

FAME	were	automatically	detected	by	Baitmet.	 In	 the	second	case,	 the	

FAME	information	was	removed	from	the	library,	and	Baitmet	computed	

RI	 making	 use	 of	 a	 set	 of	 pre-defined	 naturally	 occurring	 metabolites	

instead.	The	absolute	mean	difference	between	internal	and	automated	

Baitmet	 calibration	 was	 0.02%,	 which	 is	 significantly	 less	 than	 the	

commonly	 accepted	 identification	 RI	 error	 (0.5	 –	 1%)	 (Strehmel	 et	 al.	

2008)	 (Supplementary	 Fig.	 S3).	 Thus,	 internal	 RI	 standards	 addition	 to	

each	individual	sample	can	be	avoided	by	adapting	external	RI	calibration	

to	 each	 sample	 instead.	 This	 prevents	 sample	 chromatograms	 being	

cluttered	 with	 unnecessary	 peaks	 that	 can	 otherwise	 mask	 potential	

compound	peaks.	Moreover,	the	majority	of	metabolites	 listed	 in	Table	

S1	 showed	 coefficients	 of	 determination	 close	 to	 0.90	 and	 matching	

factors	above	85%.	This	demonstrates	Baitmet	capability	to	reconstruct	

chromatographic	profiles	and	extract	pure	mass	spectra	in	real	samples	

enabling	library-driven	metabolite	profiling	in	GC–	MS	metabolomics.		

Conclusions	

Here	we	introduced	Baitmet,	an	integrated	modular	and	open-source	R	

package	for	high	throughput	GC–MS	library-driven	metabolite	profiling.	It	

allows	dumping	publicly	available	EI-based	spectral	repositories	such	as	

MassBank	 or	 GMD	 into	 GC–MS	 experimental	 data.	 Baitmet	 is	

implemented	 as	 an	 easy-to-use	 workflow	 with	 a	 high	 runtime	

performance	 allowing	 high	 throughput	 processing	 of	 large	 datasets	

typically	measured	 in	metabolomics.	 Additionally,	 Baitmet	 provides	 an	

easy-to-interpret	 output	 that	 simplifies	 user-guided	 metabolite	

identification	and	assignment	review,	a	common	bottleneck	in	other	GC–

MS	 analysis	 pipelines.	 A	 Baitmet	 distinctive	 feature	 from	other	 library-

driven	approaches	 is	 that	 it	offers	 the	possibility	 to	profile	metabolites	

without	 prior	 selective	 masses	 input.	 Additionally,	 it	 includes	 a	 novel	

strategy	to	automatically	correct	an	external	RT/RI	calibration	curve	for	

each	 particular	 sample,	 allowing	 accurate	 computation	 of	 RI	 values	

without	 internal	 calibration	 (standards	 co-injection).	 Altogether,	 we	

present	an	integrated	open-source	tool	that	allows	a	high-throughput	and	

wide	 scope	 interrogation	 on	 the	 metabolic	 composition	 of	 complex	

samples	analyzed	using	GC–MS	via	freely	available	spectral	data.	Baitmet	

is	freely	available	at	http://CRAN.R-	project.org/package=baitmet.		
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Figure	1	(A)	Baitmet	workflow.	(B)	For	each	compound	in	the	library,	an	
expected	 elution	 profile	 window	 (EEW)	 is	 determined	 by	 projecting	
corresponding	 tabulated	RIj	 into	 the	 initial	RT/RI	model	 (left	panel).	MS	
spectrum	for	each	tabulated	compound	 is	correlated	against	all	 spectra	
acquired	within	 the	 scan	 range	 falling	 in	 this	EEW	and	a	ROI	 (region	of	
interest)	is	defined	with	center	position	at	RT	maximizing	this	correlation	
(bottom	panel).	 For	 each	 compound,	 pure	 empirical	 spectrum	 (black)	 is	
extracted	which	is	further	compared	to	the	tabulated	reference	spectrum	
in	the	MS	library	(green)	(right	panel).		

Compliance	with	ethical	standards		

Ethical	 approval:	 The	 ethics	 committee	 of	 the	 Hospital	 das	 Clinicas,	

University	 of	 São	 Paulo	 (Brazil)	 approved	 the	 study	 (protocol	 number	

3759/12/015).		

Informed	 consent:	 Informed	 written	 consent	 was	 obtained	 from	 all	

participants	in	the	study.		

Conflict	of	Interest:	The	authors	declare	no	conflict	of	interest.	

References	

Cuadros-Inostroza,	 A.,	 Caldana,	 C.,	 Redestig,	 H.,	 Kusano,	 M.,	 Lisec,	 J.,	

Peña-Cortés,	H.,	et	al	(2009).	TargetSearch	-	a	Bioconductor	package	for	

the	 efficient	 preprocessing	 of	 GC–MS	 metabolite	 profiling	 data.	 BMC	

Bioinformatics,	10,	428.		

Domingo-Almenara,	X.,	Perera,	A.,	Ramirez,	N.,	Canellas,	N.,	Correig,	X.,	

Brezmes,	J.	(2015).	Compound	identification	in	gas	chromatography/mass	

spectrometry-based	metabolomics	by	blind	source	separation.	Journal	of	

Chromatography	A,	1409,	226–233.		

Domingo-Almenara,	X.,	Brezmes,	J.,	Vinaixa,	M.,	Samino,	S.,	Ramirez,	N.,	

Ramon-Krauel,	M.	 et	 al	 (2016).	 eRah:	 a	 computational	 tool	 integrating	

spectral	 deconvolution	 and	 alignment	 with	 quantification	 and	

identification	 of	metabolites	 in	GC–MS-based	metabolomics.	Analytical	

Chemistry,	88(19),	9821–9829.		

Horai,	H.,	Arita,	M.,	Kanaya,	S.,	Nihei,	Y.,	Ikeda,	T.,	Suwa,	K.	et	al	(2010).	

MassBank:	 a	 public	 repository	 for	 sharing	 mass	 spectral	 data	 for	 life	

sciences.	Journal	of	Mass	Spectrometry,	45(7),	703–714.		

Hummel,	 J.,	 Selbig,	 J.,	 Walther,	 D.,	 Kopka,	 J.	 (2007).	 The	 Golm	

Metabolome	Database:	a	database	for	GC–MS	based	metabolite	profiling.	

Topics	in	Current	Genetics,	18,	75–95.		

Hummel,	J.,	Strehmel,	N.,	Selbig,	J.,	Walther,	D.,	Kopka,	J.	(2010).	Decision	

tree	 supported	 substructure	 prediction	 of	 metabolites	 from	 GC–MS	

profiles.	Metabolomics,	6(2),	322–333.		

Luedemann,	A.,	Strassburg,	K.,	Erban,	A.,	Kopka,	J.	(2008).	TagFinder	for	

the	quantitative	analysis	of	gas	chromatography–mass	spectrometry	(GC–

MS)-based	metabolite	profiling	experiments.	Bioinformatics,	24(5),	732–

737.		

Stein,	 S.	 E.	 and	 Scott,	 D.	 R.	 (1994).	 Optimization	 and	 testing	 of	 mass	

spectral	library	search	algorithms	for	compound	identification.	Journal	of	

the	American	Society	for	Mass	Spectrometry,	5(9),	859–866.	

Stein,	 S.	 E.	 (1999).	 An	 integrated	method	 for	 spectrum	 extraction	 and	

com-	pound	identification	from	gas	chromatography/mass	spectrometry	

data.	Journal	of	the	American	Society	for	Mass	Spectrometry,	10(8),	770–

781.		

Strehmel,	 N.,	 Hummel,	 J.,	 Erban,	 A.,	 Strassburg,	 K.,	 Kopka,	 J.	 (2008).	

Retention	index	thresholds	for	compound	matching	in	GC–MS	metabolite	

profiling.	Journal	of	Chromatography	B,	871(2),	182–190.		

Sumner,	L.	W.,	Amberg,	A.,	Barrett,	D.,	Beale,	M.	H.,	Beger,	R.,	Daykin,	C.	

RIj

Expected Elution Window (EEW)

Region of 
Interest (ROI)

Chromatogram

Correlation

Retention Time (min)

T
IC

R
e
te

n
ti

o
n
 I
n

d
e
x

RT/RI Model Curve

0

1

m/z

MS/RI
Library

Raw Data
(.ncdf/.mzXML)

List of metabolites with relative
quantification by deconvolved elution

profile and/or selective mass

Baitmet

FAMES or ALK
mixed?

1) Preprocessing
 

2) Expected elution window (EEW)
 

3) Chromatographic profile 
and spectra deconvolution
 

4) Match factors computation
 

5) Empirical RI computation

FAMES or ALK
m

ixed?

FAMES or ALK
mixed?

RT/RI curve by
internal/external

calibration
FAMES or ALK

mixed?

A)

B)
R

e
la

ti
v
e
 I
n
te

n
si

ty

1

0

-1

Retention Time

Ornithine (4TMS)

EEW

Match
Factor: 98.2%



A.	 et	 al	 (2007).	 Proposed	 minimum	 reporting	 standards	 for	 chemical	

analysis	 Chemical	 Analysis	 Working	 Group	 (CAWG)	 Metabolomics	

Standards	Initiative	(MSI).	Metabolomics,	3(3),	211–221.		

Vinaixa,	M.,	 Schymanski,	 E.	 L.,	Neumann,	 S.,	Navarro,	M.,	 Salek,	 R.	M.,	

Yanes,	O.	 (2016).	Mass	spectral	databases	 for	LC/MS	and	GC/MS-based	

metabolomics:	state	of	the	field	and	future	prospects.	Trends	in	Analytical	

Chemistry,	78,	23–35.		

Wehrens,	 R.	Weingart,	 G.,	 Mattivi	 F.	 (2014).	 metaMS:	 an	 open-source	

pipeline	 for	 GC–MS-based	 untargeted	 metabolomics.	 Journal	 of	

Chromatography	B,	966,	109–116.		

Wishart,	D.	S.,	 Jewison,	T.,	Guo,	A.	C.,	Wilson,	M.,	Knox,	C.,	Liu,	Y.	et	al	

(2013).	 HMDB	 3.0-The	 Human	 Metabolome	 Database	 in	 2013	Nucleic	

Acids	Research,	41,	801–807.		

	

	

	

	

	

	

	

	

	

	

	

	


