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Generation and control of locomotion patterns for

biped robots by using central pattern generators
Julián Cristiano, Domènec Puig and Miguel Angel Garcı́a

Abstract—This paper presents an efficient closed-loop locomo-
tion control system for biped robots that operates in the joint
space. The robot’s joints are directly driven through control
signals generated by a central pattern generator (CPG) network.
A genetic algorithm is applied in order to find out an optimal
combination of internal parameters of the CPG given a desired
walking speed in straight line. Feedback signals generated by
the robot’s inertial and force sensors are directly fed into the
CPG in order to automatically adjust the locomotion pattern
over uneven terrain and to deal with external perturbations in
real time. Omnidirectional motion is achieved by controlling the
pelvis motion. The performance of the proposed control system
has been assessed through simulation experiments on a NAO
humanoid robot.

Index Terms—Adaptive control, biologically inspired control,
central pattern generators, CPGs, Matsuoka’s oscillator.

I. INTRODUCTION

During the last decades, biped locomotion has basically

been tackled as an inverse kinematic problem, aiming to gen-

erate a dynamic locomotion pattern by calculating trajectories

for the robot arms and legs in the robot’s Cartesian space

under the constraint that the robot walks while keeping its

dynamical balance. This is a valid solution widely used in

humanoid robots. However, animals and humans do not need

to compute any Cartesian space trajectory nor require precise

models of their body or the environment, since their complex

nervous system is able to automatically learn motion patterns

by controlling extensor and flexor movements and then adapt

them according to internal changes or external environmental

conditions.

Many studies show the presence of specialized networks

of neurons able to generate the rhythmic patterns in animals

and humans, such as walking, running and swimming. These

networks are called central pattern generators (CPGs). The

term central indicates that sensory feedback is not necessary

for the generation of rhythmic signals. CPGs are modelled as

networks of neurons capable of generating stable and periodic

signals controlled through a set of constant parameters. In the

case of vertebrates, these networks are located in the central

nervous system within the spinal cord. The output signals from

these CPGs are sent to the muscles through the peripheral

nervous system. High-level commands are sent to the different

CPGs by the brain through the spinal cord. These commands

do not generate the periodic signal by themselves, since the
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oscillation is autonomously generated within the CPG in the

spinal cord.

Currently, many works about CPG-based locomotion con-

trol of legged robots and other types of robots have been

proposed ([1], [2]). The CPG networks have mainly been

used for controlling the robot gait in the robot’s task-space

or in the robot’s joint-space. Biped locomotion is a complex

problem since it involves the inherent instability of humanoid

robots. Therefore, it is important to develop an appropriate

control scheme capable of generating stable motions, and

CPGs have shown to be an appropriate model for solving

this problem adequately. Thus, the robotics community has

shown an increasing interest in locomotor central pattern

generators since these networks are able to generate complex

high-dimensional signals for controlling coordinated periodic

movements with simple input signals.

Within the task-space approach, a CPG network that gener-

ates the stepping and propulsive motion for locomotion control

of a biped robot was proposed in [3]. The feedback path-

ways for propulsive motion were obtained through a gradient

method, by using the pelvis angular velocity in the sagittal

and coronal planes as inputs in order to generate a feedback

signal that controls the trajectory of the legs in the walking

direction. However, only results on flat terrain were reported.

Alternatively, a control system that generates the motion of

a biped robot in the task-space by using nonlinear oscillators

was presented in [4]. These movements are modulated through

the signals provided by touch sensors. Later in [5], the same

authors extended their previous work in order to control the

turning behaviour of the biped robot. In [6], a method was

proposed to generate a walking pattern and stabilize it based on

coupled oscillators without real time computation of the zero

moment point (ZMP). In [7], a CPG is utilized to describe

and modulate the trajectory of the robot’s center of gravity

and, as a result, the trajectories of its limbs in the workspace.

Experiments show that the robot is able to walk on both flat

and inclined terrain with slopes of +/-10 degrees. In [8], a

pattern generator system for biped locomotion based on CPG

networks is proposed. The system operates in the task-space.

The authors claim that the robot can walk on flat and inclined

terrain with slopes of +/- 7 degrees.

Regarding the joint-space approach, a CPG implemented

with coupled nonlinear oscillators was proposed in [9] in order

to control the biped locomotion of a humanoid robot. The

system is able to learn an arbitrary signal in a supervised

framework. It can modulate some parameters and allows

the introduction of feedback signals provided by the robot’s

sensors. However, well defined locomotion patterns must be
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defined in advance.

In [10], the signals for the robot’s joints are generated by

using coupled oscillator models based on sensory information

about the location of the center of pressure and its velocity.

However, results on flat terrain were only reported.

In turn, a feedback mechanism for phase regulation by using

load sensory information was proposed in [11]. The signals for

the motors are specified in the joint-space through mathemat-

ical formulations that define the angular displacement, with

the parameters that characterize the system’s behaviour being

hand-tuned. Later [12], the same authors proposed a multi-

objective staged evolutionary algorithm in order to find out

the parameters that characterize the open-loop behaviour of

the system. However, due to the reduced number of individuals

used by the genetic algorithm and that a hand-tuned gait was

included as an individual in a random initial population, thus

biasing the final convergence, there is no guarantee that the

algorithm ends up exploring the whole search space and, as a

result, that it finds out all feasible solutions. In addition, the

control system was only tested on flat and sloped terrain with

a maximum ascending slope of 4 degrees and a maximum

descending slope of 2.5 degrees.

In [13], a control scheme for qualitative adaptive reward

learning with success failure maps applied to humanoid robot

walking was proposed. However, that technique does not

ensure a stable interaction with the floor, since the robot tends

to drag its feet when walking, which is likely to lead to falls

on uneven terrain. The authors present results with the NAO

walking on slopes of +/-10 degrees.

Table I summarizes the most representative control schemes

for locomotion control of biped robots that have successfully

been tested on small-size humanoid robots. The proposed

technique belongs to the joint-space category, as the CPG

output signals directly drive the angular position of the robot’s

joints, and yields results comparable to those reported in [7]

in terms of walking speeds and types of terrain, although the

latter is a task-space approach that requires solving the inverse

kinematics, thus limiting the response time to unexpected

events, which may end up compromising the robot’s safety.

The proposed CPG guarantees that the open-loop control sys-

tem generates a locomotion pattern that correctly interacts with

the floor. In addition, it allows a straightforward modulation

of the locomotion patterns through sensory feedback in order

to cope with uneven terrain and transitions between different

types of ground, and eases the introduction of additional

feedback controllers to deal with external perturbations.

This paper is organized as follows. Section II describes

the control system. Experimental results are presented and

discussed in Section III. Finally, conclusions and future work

are given in Section IV.

II. CPG-BASED CONTROL SYSTEM

This section describes a CPG network and the associated

methodology to automatically estimate the configuration pa-

rameters of the system in order to generate well-characterized

locomotion patterns in straight line. The locomotion pattern is

automatically obtained with a genetic algorithm by evaluating

Fig. 1. CPG network of 4 neurons as proposed in [15].
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Fig. 2. Output signals of the 4-neuron CPG network.

the locomotion performance with different combinations of

parameters through dynamics simulations [14]. Some feedback

strategies are presented in order to continuously walk on var-

ious types of terrains and to deal with external perturbations.

A. CPG network and neuron’s model

The CPG utilized in this work is based on a network of

4 interconnected neurons with mutual inhibition previously

proposed by Matsuoka [15]. The topology of that CPG is

shown in Fig. 1. That network has been chosen as it generates

oscillatory output signals in phase, anti-phase and with phase

differences of π
2

and 3π
2

radians. These phase differences are

sufficient to control the robot’s movement directly in the joint

space, as shown in [10]. In the present work, however, that

network directly drives the robot’s joints instead of the phase

oscillators used in [10]. The interconnection weights between

the neurons of that CPG, which have been set according to

[3], are shown in Table II. Figure 2 shows the output signal

of each neuron of the CPG network.

The CPG’s neurons are defined according to the well-known

Matsuoka’s neuron model:

τ u̇i = −ui −

N
∑

j=1

wijyj − βvi + ue + fi (1)

τ ′v̇i = −vi + yi (2)

yi = max(0, ui), i = 1, ..., N
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TABLE I
CPG-BASED LOCOMOTION CONTROL SYSTEMS TESTED ON SMALL SIZE HUMANOID ROBOTS

Authors Pattern generator Feedback strategies Tested terrain Employed robot

S. Aoi Coupled oscillators Phase resetting Flat terrain HOAP-1
et al. [4] (task space) through the impact instant

J. Morimoto Coupled oscillators COM used for modulation Flat terrain Qrio
et al. [10] (joint space) of phase resetting Maximum obstacle height of 3.5mm

V. Matos Coupled oscillators Phase regulation Flat terrain
et al. [11] (joint space) Maximum ascending slope of 4 degrees Darwin

Maximum descending slope of 2.5 degrees

C. Liu CPG-task space control Modulation of Flat terrain
et al. [7] (task space) the COM trajectory Maximum ascending slope of 10 degrees Nao

Maximum descending slope of 10 degrees

J. Nassour Neurobiological-inspired Inertial sensor used Flat terrain
et al. [13] learning algorithm to adjust the center of Maximum ascending slope of 10 degrees Nao

(joint space) oscillation of ankle joints Maximum descending slope of 10 degrees

K. Song CPG-task space control Posture controller Flat terrain
[8] (task space) Maximum ascending slope of 7 degrees Nao

Maximum descending slope of 7 degrees

Proposed approach CPG-joint space control Posture controller Flat terrain
J. Cristiano (joint space) Stepping controller Maximum ascending slope of 10 degrees Nao

et al. Stride length controller Maximum descending slope of 10 degrees
Phase resetting controller

TABLE II
CPG’S INTERCONNECTION WEIGHTS

w1,1 0.0 w1,2 0.0 w1,3 2 w1,4 0.5

w2,1 0.5 w2,2 0.0 w2,3 0.0 w2,4 2

w3,1 2 w3,2 0.5 w3,3 0.0 w3,4 0.0

w4,1 0.0 w4,2 2 w4,3 0.5 w4,4 0.0

The external input ue affects the amplitude of the neuron’s

output signal. The frequency of the output signal is determined

by the time constants τ and τ ′. The set of parameters must

satisfy some requirements in order to yield stable oscillations

([15], [16]). Term fi is a feedback variable that can be used

to control the output amplitude and to synchronize the output

signals with a periodic input signal. Parameter wij represents

the bidirectional interconnection weight between two neurons.

Those inteconnection weights determine the phase difference

among the output signals generated by the CPG. When a

network of neurons is set, they all oscillate together according

to their internal parameters and the network interconnections,

converging to specific patterns and limit cycles. Variable N

represents the number of neurons that constitute the CPG

(N = 4 in this work).

Parameter Kf has been introduced as proposed in [17] in

order to modulate the frequency of the output signal. The time

constants in (1) and (2) are thus reformulated as:

τ = τoKf

τ ′ = τ ′oKf ,

where τo and τ ′o are the original time constants.

The internal parameters that determine the behaviour of

each neuron are summarized in table III. The CPG generates

stable oscillations provided those parameters satisfy some

requirements ([15], [16]).

In this work, the proposed control system has been tested

on the NAO platform [18], which is a small size humanoid

robot with 21 degrees of freedom, 56 cm tall and weighting

TABLE III
INTERNAL PARAMETERS FOR EACH NEURON

Parameter Value Parameter Value

τo 0.2800 ue 0.4111
τ ′o 0.4977 fi 0
β 2.5000

4.8 Kg. Notwithstanding, the same control system can easily

be adapted to other humanoid robots with a similar kinematic

structure.

The locomotion control of humanoid robots in the joint

space must control the pitch and roll motion of the different

robot’s joints from the output signals generated by the CPG.

In this work, the controllers proposed in [10] have been used

to determine the angle in radians of the following joints of the

NAO robot:

RHipPitch = bias1 + a(−ξ(y1 − y3) + (y2 − y4))

LHipP itch = bias1 + a(ξ(y1 − y3)− (y2 − y4))

LKneeP itch = bias2 + b(y2 − y4)

RKneeP itch = bias2 + b(y4 − y2)

RAnkleP itch = bias3 + c(ξ(y1 − y3) + (y2 − y4))

LAnkleP itch = bias3 + c(−ξ(y1 − y3)− (y2 − y4))

RHipRoll = d(y2 − y4)

LHipRoll = d(y2 − y4)

LAnkleRoll = e(y4 − y2)

RAnkleRoll = e(y4 − y2)

RShouldP itch = bias4 + f(y1 − y3)

LShouldP itch = bias4− f(y1 − y3) (3)

Those controllers depend on 10 internal parameters: 4 biases

(bias1, ..., bias4) and 6 gains (a, b, c, d, e, f ). Parameter ξ

controls the stride length. Both the latter and the locomotion

frequency, which is controlled through the value of Kf , deter-

mine the robot’s walking velocity. By taking into account the

relationship between locomotion frequency and stride length
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in the human gait, which has been studied in [19], table IV

shows the pairs (Kf , ξ) that have experimentally been chosen

in this work for 5 reference velocities of the NAO robot. The

remaining joints have experimentally been set to the constant

values shown in table V in order to yield a stable upright

position.

TABLE IV
PARAMETERS RELATED TO LOCOMOTION FREQUENCY AND STRIDE

LENGTH FOR SOME VELOCITIES IN ACCORDANCE WITH HUMAN GAIT

Velocity [cm/s] 1 3 5 7 9

Kf 1.0010 0.8546 0.7410 0.6583 0.6046

ξ 1.1318 1.3445 1.5760 1.8262 2.0950

B. Estimation of CPG parameters through evolutionary com-

putation

The genetic algorithm (GA) proposed in [20] has been

applied in order to estimate the best combination of all internal

parameters of the locomotion controllers specified in the pre-

vious section. In the present work, the input parameter of the

GA is the required velocity in straight line. The chromosome

structure is composed of 10 traits associated with the respec-

tive gains and biases that constitute the internal parameters of

the locomotion controllers: (a, b, c, d, e, f ) and (bias1, bias2,

bias3, bias4). Table VI shows the allowed intervals for those

parameters, which constitute the GA’s search space. Those

limits were experimentally delimited by taking into account

the range of variation of the optimum solutions found by the

GA after an extensive set of executions.

The GA’s fitness function evaluates each individual of the

current population at the end of a constant simulation period

(30 seconds in this work) in which the robot is allowed to walk

using the Webots real-time simulator. In particular, the fitness

function that is maximized in order to sort out the individuals

evaluated by the GA in each generation is the average of

four terms. The first term applies a Gaussian function to the

difference between the required velocity in straight line and

the velocity reached at the end of the simulation period for

the evaluated individual. The second term applies a Gaussian

function to the difference between the distance that the robot

should travel in straight line at the required velocity at the

end of the simulation period and the final distance traveled by

the evaluated individual. That term is maximized if the robot

follows a straight path during the whole simulation period. The

third term corresponds to the deviation distance with respect

to the straight-line path at the end of the simulation period.

That deviation is negated in order to be maximized. This term

is maximized when the robot reaches the desired destination

along the straight path at the end of the simulation period. The

fourth term is the percentage of time within the simulation

period that the robot’s ZMP stability margin is above a given

threshold. That term is maximized when the robot’s stability is

optimal during the various motion stages (both single-support

and double-support modes).

In order to obtain acceptable locomotion patterns, two

restrictions were imposed to the solutions yielded by the

TABLE V
NAO’S JOINTS WITH CONSTANT ANGLES

Joint name Angle (rad) Joint name Angle (rad)

HeadP itch 0 LShouldRoll 0.23
HeadY aw 0 LElbowY aw -1.61

RShouldRoll -0.23 LElbowRoll -0.5
RElbowY aw 1.61 HipY awPitch 0
RElbowRoll 0.5

TABLE VI
GENETIC ALGORITHM SEARCH SPACE

CPG Parameter CPG Parameter

parameters range parameters range

a 0.1 to 0.5 f 0 to 2
b 0.4 to 0.9 bias1 -1.7 to 0.5
c 0.1 to 0.5 bias2 0.5 to 2
d 0.95 to 2.15 bias3 -1 to -0.2
e 0.95 to 2.15 bias4 1.35 to 1.43

GA. The first restriction prevents solutions with large torso

inclinations. In particular, solutions with a torso inclination

above 16 degrees were rejected in this work. With lower

thresholds, the GA hardly found valid solutions, whereas

higher thresholds led to unnatural bent postures while walking.

The second restriction is associated with the ground clearance.

Specifically, it is required that the swing foot be parallel to the

floor and with the sole’s height higher than 1 cm for the swing

leg most of the time. That guarantees a correct interaction

between the robot and the floor, as well as the avoidance of

small obstacles.

C. Feedback strategies

Some feedback pathways have been introduced in the CPG

described above in order to adjust the locomotion pattern in

real time.

1) Posture controller: The posture controller keeps the

robot’s trunk in an upright position by using information

provided by the robot’s gyrometer and accelerometer. The

trunk inclination in the sagittal plane can be controlled by

changing the value of parameter bias1 in (3). This parameter

is set proportionally to the difference between the reference

inclination θ and the current trunk inclination estimated from

the sensors, θ̂, as well as to the derivative of that difference,

both in radians:

bias1 = bias10 + k1(θ − θ̂) + k2
d(θ − θ̂)

dt
,

where bias10 is the original bias1 parameter.

2) Stepping controller: It regulates the interaction between

the robot’s feet and the ground by synchronizing the output

signals generated by the CPG with the real time interaction

between the robot and the floor by using the measures provided

by the force sensors located in the robot’s feet soles. Such

synchronization is performed by taking advantage of the

entrainment property of neural oscillators. Thus, the frequency

of the generated locomotion pattern is adjusted according to

the current interaction between the feet soles and the floor.

This allows the control system to compensate for both external

perturbations and mismatches related to the robot’s mechanical
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parts. Furthermore, if the stride length is set to zero, this

controller guarantees the correct stepping.

Let Lf , Lb, Ll and Lr be the force measures corresponding

to the four force sensors located at the front, back, left and

right positions of the left foot, respectively. Likewise, let Rf ,

Rb, Rl and Rr be the corresponding force measures for the

right foot. The stepping controller is defined as:

FL = Lf + Lb + Ll + Lr

FR = Rf +Rb +Rl +Rr

f1 = f2 = k3(−FL + FR)

f3 = f4 = −f1,

where f1, f2, f3 and f4 are the feedback inputs corresponding

to the respective 4 neurons of the CPG (1).

3) Stride length controller: It modulates the stride length ξ

by taking into account the stability margin along the sagittal

plane, µX , which is measured in centimetres. The goal is

to lower the stride length whenever the stability margin is

reduced in order to recover stability. The stride length is

redefined as:

ξ =

{

k4µX , µX <= κ

ξ0, µX > κ,

where κ is a threshold that has experimentally been set to 3

cm and ξ0 is the original stride length.

D. Omnidirectional controller

In real applications, it is necessary that the robot explores its

workspace by changing its walking direction at any moment.

In particular, a joint located in the robot’s pelvis is used to

control the walking direction in order to describe a circular

motion in either the clockwise or counterclockwise directions.

That joint in the NAO is referred to as HipY awPitch.

The following controller is utilized to determine its angle in

radians:

HipY awPitch = k5(y1 − y3),

where y1 and y3 are the corresponding CPG’s output signals

and k5 is a variable whose magnitude is inversely proportional

to the curvature radius and whose sign determines whether

the direction of circular motion is clockwise (negative sign)

or counterclockwise (positive sign).

E. Phase resetting controller

Phase resetting is a fast and simple feedback strategy that

has also been used to change the phase of the locomotion

pattern generated by the control system in order to recover the

robot’s balance whenever an external perturbation is applied to

the robot’s body. This effective feedback strategy is suitable

for humanoid robots with reduced computational capability

since it does not require a complex processing of data [21].

The closed-loop system for locomotion control of biped

robots with phase resetting must detect the external force

applied to the robot’s body through the fast analysis and

tracking of the measures provided by the robot’s sensors. Once

the external perturbation is detected by the system, it must

react by activating the phase resetting mechanism in order to

quickly recover balance.

This controller synchronizes the neurons’ output signals in

order to modify the current phase of the locomotion pattern

generated by the system to a desired phase given an external

event or stimulus, such as an external force applied to the

robot’s body. The aim of this mechanism is the generation

of a force in the direction opposite to the one of the force

generated by the external perturbation by changing the phase

of the current locomotion pattern in order to guarantee the fast

recovery of balance.

The information provided by the 3-axis accelerometer is

used to detect the instant at which the external force is applied

to the robot’s body and also to estimate the magnitude and

direction of the external force applied to the robot’s body.

According to the current phase of the generated locomotion

pattern and the external force applied to the robot, the phase

resetting controller must react by changing the current phase of

the locomotion pattern to another phase that allows the robot

to recover its balance. The phase change is effective after ∆t

seconds.

III. EXPERIMENTAL RESULTS

The proposed locomotion control system has been tested on

a NAO biped robot in simulation on the Webots simulator. For

determining the gains and biases of the locomotion controllers

for any given velocity, the GA interacts with the Webots simu-

lator in order to evaluate the different individuals belonging to

every generation. A total of 12,000 individuals were evaluated

for every generation in order to cover a wide range of possible

solutions within the search space. Each individual requires the

simulation of the robot while walking in straight line during

the evaluation period, which was set to 30 seconds in this

work.

The proposed system has been evaluated upon 5 reference

velocities: 1, 3, 5, 7 and 9 cm/s, which span the same speed

range as tested in [11]. For each reference velocity, the GA

was executed 50 times in order to find out the best combination

of internal parameters of the locomotion controllers. The GA

stops whenever either the fitness function does not significantly

vary for a predefined number of generations (3 generations

with a fitness variation below 0.001 in this work) or a

maximum number of generations is reached (8 generations

in this work). Only the solutions whose fitness values were

above a predefined threshold (2.4 in this work) were selected

and the median of their corresponding parameters computed.

Table VII shows the median values of those parameters for the

5 tested velocities. A total of 7 solutions had a fitness value

above the predefined threshold for 1, 3 and 7 cm/s, whereas

4 solutions passed that threshold for 5 and 9 cm/s. Those

solutions represent optimal locomotion patterns for the given

reference velocities. Intermediate velocities can be obtained

without changing the selected pattern by slightly modifying

the values of the stride length, ξ, and/or the frequency gain,

Kf , as is shown in fig. 4 and fig. 6.
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TABLE VII
OPTIMAL PARAMETERS OF LOCOMOTION CONTROLLERS FOUND BY THE

GA FOR SEVERAL VELOCITIES

Velocity
1 3 5 7 9

[cm/s]

a 0.19016 0.28748 0.33363 0.36681 0.40146

b 0.40524 0.58164 0.67348 0.72823 0.90000

c 0.20877 0.20030 0.22286 0.28086 0.35967

d 1.68173 1.84968 1.93682 1.94680 2.01228

e 2.14299 2.07704 1.93374 1.83895 1.67558

f 0.73806 0.85100 0.93300 1.21052 1.28011

bias1 -0.99668 -0.88754 -1.02878 -1.08941 -1.09422

bias2 1.68364 1.47947 1.47344 1.41980 1.50161

bias3 -0.74073 -0.68465 -0.62478 -0.54938 -0.54021

bias4 1.37688 1.37644 1.36787 1.35089 1.42999

Fig. 3. System behaviour in closed-loop

The control scheme proposed was evaluated in simulation

studies using a workspace that consists of an ascending 10-

degree slope, followed by a flat surface and a final descending

10-degree slope. The robot started and stopped walking on the

flat surface on both sides of the slope. Figure 3 contains a

sequence of snapshots showing the performance of the system

while successfully traversing the workspace at a velocity

of 5 cm/s. The feedback gains that successfully deal with

that environment at that speed were heuristically found in

simulation. Future work will aim at automatically finding those

feedback gains according to the available sensory information

in order to deal with increasingly challenging environments.

A. Step length modulation

Using the parameters found by the GA for the velocity

of 5 cm/s, variable ξ was modulated to change the straight-

line velocity on-line. Figure 4 shows the relation between

the robot’s measured straight-line velocity while variable ξ is

modulated. This is another option for controlling the velocity

of the locomotion pattern in real-time with the proposed

control scheme. Figure 5 presents the footsteps generated by

the robot when variable ξ is used to modify the walking

velocity on-line. In the plot, the footsteps are colored blue

and red for the robot’s left and right soles, respectively.

B. Frequency modulation

Variable Kf can be modulated to change the frequency of

the locomotion pattern and, therefore, its velocity. Figure 6

shows the relation between the robot’s measured straight-line

velocity while variable Kf is modulated. The set of parameters

used were those obtained for the locomotion pattern at 5 cm/s.

C. Omnidirectional locomotion experiment

Figure 7 shows an example of a circular motion in the

counterclockwise direction described by the robot using the
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Fig. 6. Velocity modulation by varying parameter Kf

omnidirectional controller and the optimal parameters found

for the walking velocity of 5 cm/s. The stride length ξ in that

case was set to zero in order to be able to turn in place.

D. Phase resetting experiment

In this section, a simple experiment is presented to show the

suitability of the phase resetting controller for fast recovery of

balance in biped robots. In the experiment described below,

the external force was considered to be applied to the robot’s
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Fig. 7. Turning behaviour with the omnidirectional controller
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Fig. 8. Measures provided by the accelerometer located in the robot’s trunk.
The measures are in m

s2
. In the plots, the red line represents the system

response when there is no external force applied to the robot’s body. Thus,
the robot is just walking. The blue line represents the behaviour when the
external force is applied to the robot’s head and the phase resetting controller
is not activated. Finally, the green line represents the behaviour when the
phase resetting controller is activated and the external force is applied to the
robot’s head.

head along a known direction defined manually. This force

guarantees that the robot will fall down when the feedback

mechanism is not activated. Therefore, it has been used to

test the system operating in both open and closed loop. The

simulator allows the definition of the exact point in the robot’s

body in which the force is applied, as well as its desired

magnitude and direction. The external force was also applied

at a known phase of the locomotion pattern and at the same

point on the robot’s body in order to test the system under the

same dynamic conditions.

The external force was applied at the instant in which the

robot is standing on a single foot (right foot at the highest

position and left foot supporting the full robot’s weight). This

pose was chosen as an example to validate that the control

system is able to deal with unstable situations. Figure 10

represents the instant at which the external force is applied

to the robot’s head while the robot is standing on its left foot.

The locomotion pattern was generated by means of the

proposed CPG-joint-space control scheme, with the parameters

found for the straight-line locomotion pattern by considering

a walking speed of 5 cm/s. In the experiment, the controller’s

response time (∆t) was set to 40 ms. However, this time could

be smaller according to the desired system’s response.

Figure 8 represents the measures provided by the robot’s

accelerometer for 3 possible situations, namely, the system

response in open-loop without any external force applied to

the robot’s head (red), the system response in open loop with
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Fig. 9. Output signals of the 4-neuron CPG network shown in fig. 1. The
plots represent the system’s response without (top) and with (bottom) the
proposed phase resetting mechanism.

the external force applied to the robot’s head (blue) and,

finally, the system response in closed-loop with the external

force applied to the robot’s head (green). The sampling time

was set to 1.7 ms. The information provided by the robot’s

accelerometer was used in order to determine the instant in

which the external force is applied to the robot’s body and

thus the phase resetting controller is activated. The effect of

the phase resetting mechanism in the output signals generated

by the CPG network used to control the generated locomotion

pattern is shown in fig. 9. From these figures it can be observed

the fast and stable response produced by the system.

The effect of the phase resetting mechanism can be appre-

ciated in fig. 9 and in the plots shown in fig. 8. The external

force is detected by the system in sample number 3064. The

feedback mechanism is activated at that instant. After the con-

troller’s response time (40 ms) the system compensates for the

external force applied to the humanoid robot’s head through a

fast motion that generates a force in the opposite direction.

This minimizes the effect of the external perturbation and

manages to recover balance quickly.

A sequence of snapshots showing the performance of the

robot when phase resetting is off and on are shown in fig. 10

and fig. 11, respectively. These experiments have shown that

the closed-loop response is fast and effective, which makes this

system suitable for humanoid robots with reduced processing

capabilities. This system can also deal with larger forces than

those tackled by other control strategies.

Experimental results showing the behaviour of the overall

system in the simulated workspace can be found on the

companion website1.

IV. CONCLUSIONS

The proposed system belongs to the joint-space category, as

the CPG output signals drive the angular position of the robot’s

joints through a set of controllers whose optimal configuration

of internal parameters is computed through an evolutionary

GA given a desired walking speed in straight line. The

proposed CPG guarantees that the open-loop control system

generates a locomotion pattern that correctly interacts with

1Companion website: https://youtu.be/Pl71G04ujws

https://youtu.be/Pl71G04ujws
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Fig. 10. System behaviour with phase resetting off.

Fig. 11. System behaviour with phase resetting on.

the floor. It also straightforwardly modulates the locomotion

patterns through sensory feedback so that the robot can cope

with uneven terrain and transitions between different types of

ground, and facilitates additional feedback controllers to deal

with external perturbations. This is a very important feature

because it enables the system to be improved incrementally by

adding controllers so that more complicated situations can be

copes with. The performance of the proposed control system

has been assessed through simulation experiments on a NAO

humanoid robot, showing the effectiveness of the proposed

approach, although it can also be applied to other families of

humanoid robots with a similar kinematic structure.

Future work will include the rigorous study of feedback

controllers in order to cope with more complex types of

terrain and external perturbations. Furthermore, a rigorous

study about the variation of the internal parameters of the

locomotion controllers (gains and biases) will be conducted

with the final aim of establishing mathematical models that al-

low the system to automatically determine optimal parameters

for any required velocity and direction, without executing the

GA-based optimization process for every new speed. Finally,

it is necessary to define feasible strategies to automatically

compute the feedback gains based on sensory information

about the environment in order to be able to cope with

increasingly challenging real environments.
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