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Weak fairness and the Shapley value.

Pedro Calleja and Francesc Llerena ∗

Abstract

The Shapley value (Shapley, 1953) has been axiomatically characterized
from different points of view. Van den Brink (2001) proposes a characteri-
zation by means of efficiency, fairness and the null player property. In this
paper, we characterize the family of single-valued solutions obtained by re-
laxing fairness into weak fairness. To point out the Shapley value, we impose
the additional axiom of weak self consistency and strengthen the null player
property into the dummy player property.

1 Introduction
Probably, the most relevant single-valued solution for cooperative games with
transferable utility (games, hereafter) is the Shapley value (Shapley, 1953). Many
characterizations of this solution, including his original axiomatic approach, use
the principle that if a player contributes zero to all coalitions, then she must receive
a zero payoff: the null player property.

Various authors have proposed alternative foundations of the Shapley value im-
posing the null player property. Particularly, van den Brink (2001) interprets the
Shapley value as the unique solution satisfying, additionally, efficiency (Pareto
optimality) and fairness, a property inspired in Myerson’s (1977) fairness. For
single-valued solutions, fairness essentially imposes that if a game suffers an im-
pact consisting in adding another game in which two players are symmetric, then
their payoffs should change by the same amount. If we measure the relevance of a
player in terms of her marginal contributions to all coalitions, fairness is a quite
natural requirement since adding such a game does not change the contributions of
symmetric players. Recently, Casajus and Yokote (2017) relax fairness into weak
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differential marginality to provide a new axiomatization of the Shapley value, to-
gether with efficiency and the null player property. Weak differential marginality
says that equal changes in two players’ marginal contributions to coalitions contain-
ing neither of them should entail that their payoffs change in the same direction.
Unfortunately, their characterization does not hold for two-player games. In order
to overcome the problem, they strengthen the null player property into the dummy
player property, stating that if a player contributes only her individual worth to
all coalitions, then she must receive her individual worth.

In this paper, we study what solutions emerge when weakening fairness into
weak fairness (van den Brink et al., 2016), combined again with efficiency and
either the null player property or the dummy player property. Weak fairness, a
property very much related to strong aggregate monotonicity (Arin, 2013), can
be viewed as a solidarity axiom in the sense that if only the worth of the grand
coalition varies, while the worth of all other coalitions remain unchanged, then
players’ payoffs shoud be afected equally.

Another different principle used from Hart and Mas-Colell (1989) to interpret
the Shapley value is self consistency. Consistency is an outstanding relational
property widely used in the axiomatic analysis of solutions imposing that an orig-
inal agreement should be reconfirmed in the underlying reduced game when some
agents leave.1 In this work, we impose weak self consistency, that is, self consis-
tency when only one or two agents stay, to select the Shapley value from the set
of solutions satisfying efficiency, weak fairness and the dummy player property.

The remainder of this paper is organized as follows. In Section 2, we introduce
some preliminaries. In Section 3, we characterize the family of single-valued solu-
tions satisfying efficiency, weak fairness and either the dummy player property or
the null player property. Remarkably, these characterizations can be extended to
any domain of games. In section 4, we provide a new axiomatization of the Shap-
ley value by means of weak self consistency, weak fairness and the dummy player
property. These properties still characterize the Shapley value on the domain of
convex games but, unfortunatly, they are incompatible on some well-established
domains of games, like superadditive or totally balanced games.

2 Preliminaries
The set of natural numbers N denotes the universe of potential players. A coali-
tion is a non-empty finite subset of N and let N denote the set of all coalitions of
N. Given S, T ∈ N , we use S ⊂ T to indicate strict inclusion, that is, S ⊆ T and
S 6= T . By |S| we denote the cardinality of the coalition S ∈ N . A transferable
utility coalitional game is a pair (N, v) where N ∈ N is the set of players and
v : 2N −→ R is the characteristic function that assigns to each coalition S ⊆ N a

1See Thomson (2012) for an essay on the consistency property.
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real number v(S), representing what S can achieve by agreeing to cooperate, with
the convention v(∅) = 0. For simplicity of notation, and if no confusion arises, we
write v(i), v(ij), . . . instead of v({i}), v({i, j}), . . .. By Γ we denote the class of all
games.

Given N ∈ N and ∅ 6= N ′ ⊆ N , the unanimity game (N, uN ′) associated to
N ′ is defined as uN ′(S) = 1 if N ′ ⊆ S and uN ′(S) = 0 otherwise. Given a game
(N, v) and ∅ 6= N ′ ⊂ N , the subgame (N ′, v|N ′) is defined as v|N ′(S) = v(S) for
all S ⊆ N ′. For any two games (N, v), (N,w), and α ∈ R, we define the game
(N, v+w) as (v+w)(S) = v(S)+w(S), and the game (N,α·v) as (α·v)(S) = α·v(S),
for all S ⊆ N .

Given N ∈ N , let RN stand for the space of real-valued vectors indexed by N ,
x = (xi)i∈N , and for all S ⊆ N , x(S) = ∑

i∈S xi, with the convention x(∅) = 0.
Given ∅ 6= S ⊆ N , eS ∈ RN is defined as eS,i := 1 if i ∈ S and eS,i := 0
otherwise. For each x ∈ RN and T ⊆ N , x|T denotes the restriction of x to T :
x|T = (xi)i∈T ∈ RT .

Let N ∈ N . The preimputation set of (N, v) contains the efficient payoff
vectors, that is, X(N, v) := {x ∈ RN |x(N) = v(N)}, and the core is the set
of preimputations where each coaliton gets at least its worth, that is C(N, v) =
{x ∈ X(N, v) | x(S) ≥ v(S) ∀ S ⊆ N}. A games (N, v) is balanced if it has a
non-empty core, and it is totally balanced if, for all S ⊆ N , the subgame (S, v|S)
is balanced. A game (N, v) is superadditive if v(S ∪ T ) ≥ v(S) + v(T ) for all
S, T ⊆ N with S ∩ T = ∅. A game (N, v) is convex if v(S ∪ T ) + v(S ∩ T ) ≥
v(S) + v(T ) for all S, T ⊆ N .

Player i ∈ N is called a dummy player in (N, v) if v(S ∪ {i}) − v(S) = v(i)
for all S ⊆ N \ {i}, and is called a null player in (N, v) if v(S ∪ {i}) = v(S) for
all S ⊆ N \ {i}. By D(N, v) and N(N, v) we denote the set of dummy and null
players in (N, v), respectively.

We say that players i and j are symmetric in (N, v) if v(S∪{i}) = v(S∪{j})
for all S ⊆ N\ {i, j}.

A single-valued solution on Γ′ ⊆ Γ is a function σ : Γ′ → ⋃
N∈N

RN that
associates with each game (N, v) ∈ Γ′ an |N |-dimensional real vector σ(N, v). The
Shapley value, Sh, is defined by

Shi(N, v) :=
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!
|N |! (v(S ∪ {i})− v(S)) for all i ∈ N.

3 Efficiency, weak fairness and dummy or null
player property

Van den Brink (2001) characterizes the Shapley value on the full domain of games
making use of fairness together with efficiency and the null player property.
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A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Efficiency (E): if for all N ∈ N and all (N, v) ∈ Γ′ it holds that σ(N, v) ∈
X(N, v).

• Null player property (NP): if for all N ∈ N , all (N, v) ∈ Γ′ and all i ∈ N ,
if i is a null player in (N, v), then σi(N, v) = 0.

• Fairness (F): if for all N ∈ N , all (N, v), (N, v′) ∈ Γ′ with (N, v + v′) ∈
Γ′ and all i, j ∈ N such that i and j are symmetric in (N, v′), we have
σi(N, v + v′)− σi(N, v) = σj(N, v + v′)− σj(N, v).

Casajus and Yokote (2017) relax fairness into weak differential marginality and
strengthen the null player property into the dummy player property to obtain a new
characterization of the Shapley value on the full domain of games. In this section,
we investigate what single-valued solutions appear when weakening fairness into
weak fairness combined with efficiency and either the dummy player property or
the null player property.

A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Weak Fairness (wF): if for all N ∈ N , all (N, v), (N, v′) ∈ Γ′ such that
v(S) = v′(S) for all S ⊂ N and all i, j ∈ N , we have σi(N, v′) − σi(N, v) =
σj(N, v′)− σj(N, v).

• Dummy player property (DP): if for all N ∈ N , all (N, v) ∈ Γ′ and all
i ∈ N , if i is a dummy player in (N, v) then σi(N, v) = v(i).

By taking weak fairness a large family of single-valued solutions emerge. In
order to describe such a family when considering the dummy player property for
any domain of games, we first introduce some concepts. In the remaining of this
section we deal with a fixed player set N and, consequently, a game (N, v) is only
described by its characteristic function v.

Let Γ′ ⊆ Γ be a certain domain of games with player set N . Given v ∈ Γ′, a
player i ∈ N is called a potential dummy player in v if v(S ∪{i})− v(S) = v(i)
for all S ⊂ N \{i}. By PD(v) we denote the set of potential dummies in v. Notice
that D(v) ⊆ PD(v) and, moreover, any player i ∈ PD(v)\D(v) will become
into a dummy player in game w ∈ Γ′ with w(S) = v(S) for all S ⊂ N and
w(N) = v(i) + v(N\ {i}). Moreover, from Lemma 3 in Calleja et al. (2012), it
turns out that PD(v) 6= ∅ and v(N) = ∑

i∈PD(v)
v(i) + v(N\PD(v)) if and only if

PD(v) = D(v) 6= ∅. Hence, if PD(v) 6= ∅ then either PD(v) = D(v) or D(v) = ∅.
We next define the equivalence relation R on Γ′ as follows: for all v, w ∈ Γ′

vRw if and only if v(S) = w(S) for all S ⊂ N .
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The equivalence class containing v ∈ Γ′ is denoted by [v] = {w ∈ Γ′ : wRv}.
Let Γ′�R = {[v] : v ∈ Γ′} be the quotient set. For every equivalence class [v] ∈
Γ′�R we fix a representative element, denoted by v∗. If there is w ∈ [v]
such that D(w) 6= ∅ then v∗ = w; notice that w is unique. Otherwise, choose an
arbitrary v∗ ∈ [v].

Let Γ′∗ stand for the set of representative games, one for each equivalence
class. Notice that any v ∈ [v∗] can be expressed as

v = v∗ + (v(N)− v∗(N)) · uN .

Moreover, PD(v) = PD(v∗) and v∗(N) = ∑
i∈PD(v)

v(i) + v(N\PD(v)), whenever

D(v∗) 6= ∅.

Definition 1. A dummy-adapted Γ′∗−selection is a function F : Γ′∗ → RN such
that ∑

i∈N
Fi(v∗) = v∗(N) and Fi(v∗) = v∗(i) for all i ∈ D(v∗).

A dummy-adapted Γ′∗−selection associates an efficient vector to every repre-
sentative game, with the particularity that if dummy players appear they receive
exactly their individual worth.

Let F ′D denote the class of dummy-adapted Γ′∗−selections. Given F ∈ F ′D,
we can define the associated single-valued solution σF as follows: for all v ∈ Γ′,
v ∈ [v∗],

σF (v) = F (v∗) + v(N)− v∗(N)
|N |

· eN . (1)

Let F ∈ F ′D. The interpretation of σF is as follows: given v ∈ [v∗], σF first
distributes v∗(N) among players according to F , and then it distributes what is
left of the gains of cooperation equally. Geometrically, σF is the set of straight
lines (one for every element of Γ′�R) going through F (v∗) with direction vector
eN

|N | .
Let us consider an example.

Example 1. Let Γ′ = Γ. An example of dummy-adapted Γ∗−selection is the
Shapley value, that is, F (v∗) = Sh(v∗) for all v∗ ∈ Γ∗. Alternatively, define
F ∈ FD as follows: for all v∗ ∈ Γ∗, Fi(v∗) = v∗(i) if i ∈ D(v∗) and Fi(v∗) =
v∗(N)−

∑
i∈D(v∗) v∗(i)

|N\D(v∗)| if i /∈ D(v∗). Denote by σSh and σF the corresponding single-
valued solutions. Notice that σSh = Sh, since the Shapley value satisfies efficiency
and weak fairness. To illustrate these solutions we consider two different cases,
depending on the existence or not of potential dummy players.

Let (N, v) be a game with N = {1, 2, 3}, v(i) = 0 for all i ∈ N , v({1, 2}) =
v({1, 3}) = v(N) = 1 and v({2, 3}) = 0. Since PD(v) = ∅, as a representative
element of [v] we can take the game v∗, being v∗(N) = 0 and v∗(S) = v(S) for any
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other coalition S ⊂ N . Then,

σSh(v) = Sh(v∗) +
(1

3 ,
1
3 ,

1
3

)
=
(1

3 ,
−1
6 ,
−1
6

)
+
(1

3 ,
1
3 ,

1
3

)
=
(2

3 ,
1
6 ,

1
6

)
and

σF (v) = F (v∗) +
(1

3 ,
1
3 ,

1
3

)
= (0, 0, 0) +

(1
3 ,

1
3 ,

1
3

)
=
(1

3 ,
1
3 ,

1
3

)
.

Figure 1 gives a geometric interpretation of σSh and σF in this case.

Figure 1

Now consider the game (N,w) with w(1) = w({1, 3}) = 1
2 , w(2) = w(3) =

w({2, 3}) = 0, w({1, 2}) = 1 and w(N) = 2. Since PD(w) = {3}, the represen-
tative element v∗ ∈ [w] is given by v∗(N) = 1 and v∗(S) = w(S) for any other
coalition S ⊂ N . Hence,

σSh(w) = Sh(v∗) +
(1

3 ,
1
3 ,

1
3

)
=
(3

4 ,
1
4 , 0

)
+
(1

3 ,
1
3 ,

1
3

)
=
(13

12 ,
7
12 ,

1
3

)
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and

σF (w) = F (v∗) +
(1

3 ,
1
3 ,

1
3

)
=
(1

2 ,
1
2 , 0

)
+
(1

3 ,
1
3 ,

1
3

)
=
(5

6 ,
5
6 ,

1
3

)
.

Figure 2 gives a geometric interpretation of σSh and σF in this case.

Figure 2

Now, we are in a position to obtain our characterization result.

Theorem 1. A single-valued solution σ satisfies efficiency, weak fairness and
the dummy player property on Γ′ if and only if there exists a dummy-adapted
Γ′∗−selection F ∈ F ′D such that σ = σF .

Proof Let σ be a single-valued solution on Γ′ and F ∈ F ′D such that σ = σF .
Then, E follows directly from F ∈ F ′D. To check DP, let v ∈ Γ′, v ∈ [v∗], with
D(v) 6= ∅. Then, v = v∗. Consequently, for all i ∈ D(v), σi(v) = Fi(v∗) = v(i)
where the last equallity follows from F ∈ F ′D. To check wF, let v, w ∈ Γ′ be such
that v(S) = w(S) for all S ⊂ N . Hence, v, w ∈ [v∗] and, for all i ∈ N ,

σi(w)− σi(v) = Fi(v∗) + w(N)−v∗(N)
|N | − Fi(v∗)− v(N)−v∗(N)

|N |
= w(N)−v(N)

|N | .
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To show the reverse implication, let σ be a single-valued solution on Γ′ satisfying
E, wF and DP. Define F : Γ′∗ → RN as F (v∗) = σ(v∗) for all v∗ ∈ Γ′∗. By E and
DP, it follows directly F ∈ F ′D. To finish, let us show that σ = σF with F ∈ F ′D
as defined above. Let v ∈ Γ′, v ∈ [v∗]. Since v = v∗ + (v(N) − v∗(N)) · uN , by E
and wF,

σ(v) = σ(v∗) + v(N)−v∗(N)
|N | · eN

= F (v∗) + v(N)−v∗(N)
|N | · eN

= σF (v).

The properties in Theorem 1 are non-redundant on Γ′ provided that Γ′ is rich
enough. The equal division solution, ED, defined by EDi(v) := v(N)

|N | for all
v ∈ Γ′ and all i ∈ N meets all properties but DP. The single-valued solution ρ
defined as ρi(v) = v(i) for all v ∈ Γ′ and all i ∈ N meets all properties but E.
Let π be a permutation on N , the marginal contribution solution relative to
π, mcπ, defined as mcπi (v) := v ({j ∈ N |π(j) ≤ π(i)})− v ({j ∈ N | π(j) < π(i)})
for all v ∈ Γ′ and all i ∈ N meets all properties but wF.

A natural observation is to ask for the consequences of weakening the dummy
player property into the null player property in Theorem 1. It is not difficult to
extend the notion of potential dummy player to potential null player in order to
characterize the family of single-valued solutions satisfying efficiency, weak fairness
and the null player property.

Let v ∈ Γ′, a player i ∈ N is called a potential null player in v if v(S∪{i}) =
v(S) for all S ⊂ N\{i}. Let PN(v) be the set of potential null players in v. Clearly,
N(v) ⊆ PN(v) and, moreover, PN(v) 6= ∅ and v(N) = v(N\PN(v)) if and only
if PN(v) = N(v) 6= ∅. For every equivalence class [v] ∈ Γ′�R we choose the
representative element v∗ as follows: if there is w ∈ [v] such that N(w) 6= ∅
then v∗ = w; otherwise, choose an arbitrary v∗ ∈ [v].

Now, we can define a null-adapted Γ′∗−selection analogously to Definition 1.
Note that F ′D ⊂ F ′N , where F ′N denotes the class of null-adapted Γ′∗−selections.

Theorem 2. A single-valued solution σ satisfies efficiency, weak fairness and the
null player property on Γ′ if and only if there exists a null-adapted Γ′∗−selection
F ∈ F ′N such that σ = σF .

The single-valued solutions used to prove the independence of the properties
in Theorem 1 also show that properties in Theorem 2 are non-redundant on Γ′
provided that Γ′ is rich enough.
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4 Consistency, weak fairness and dummy or null
player property

Consistency is a kind of internal stability requirement that relates the solution of
a game to the solution of a reduced game that appears when some agents leave.
The different ways in which the coalitions of the remaining agents are evaluated
give rise to different notions of reduced game. Here we deal with the self reduced
game (Hart and Mas-Colell, 1989).

Definition 2. Let σ be a single-valued solution, N ∈ N , (N, v) ∈ Γ, and ∅ 6=
N ′ ⊂ N . The self reduced game relative to N ′ at σ is the game

(
N ′, rN

′
σ (v)

)
defined by

rN
′

σ (v)(R) :=
{

0 if R = ∅,
v(R ∪N ′′)−∑i∈N ′′ σi(R ∪N ′′, v|R∪N ′′ ) if ∅ 6= R ⊆ N ′,

where N ′′ = N \N ′.

In the self reduced game (relative to N ′ at σ), the worth of a coalition R ⊆ N ′

is determined under the assumption that R joins all members of N ′′ = N \ N ′,
provided they are paid according to σ in the subgame associated to R ∪N ′′.

A single-valued solution σ on Γ′ ⊆ Γ satisfies

• Self consistency (SC): if for all N ∈ N , all (N, v) ∈ Γ and all ∅ 6= N ′ ⊂ N,

then
(
N ′, rN

′
σ (v)

)
∈ Γ′ and σ(N, v)|N ′ = σ

(
N ′, rN

′
σ (v)

)
.

The consistency principle states that in the corresponding reduced game the
original agreement should be reconfirmed. Weak self consistency (wSC) im-
poses this internal stability requirement for reduced games with at most two play-
ers.

Self consistency has been used to characterize the Shapley value by Hart and
Mas-Colell (1989). It turns out that imposing weak self consitency, in addition
to those properties in the statement of Theorem 1, provides a new axiomatic
interpretation of the Shapley value on the full domain of games. However, these
properties are redundant, what allows us to drop efficiency leading to the following
non-redundant characterization.

Theorem 3. The Shapley value is the unique single-valued solution on Γ that
satisfies weak self consistency, weak fairness and the dummy player property.

Proof. Clearly the Shapley value satisfies wSC, wF and DP. Let σ be a single-
valued solution on Γ satisfying these properties. To prove that σ = Sh, we will use
an induction argument on the number of players. First, we show that wSC and
DP imply E. Let ({i}, v) be a one-player game, since player i is a dummy player, by
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DP σ({i}, v) = v(i), which means that σ satisfies efficiency for one-player games.
Let N ∈ N with |N | ≥ 2, (N, v) ∈ Γ and i ∈ N . Then, efficiency for one-player
games implies σi

(
{i}, r{i}σ (v)

)
= r{i}σ (v)(i) = v(N) −∑j∈N\{i} σj(N, v). By wSC,

σi(N, v) = σi
(
{i}, r{i}σ (v)

)
and thus σi(N, v) = v(N) − ∑j∈N\{i} σj(N, v), which

proves E.
Thus, from E, σ = Sh for one-player games. Now, let N = {i, j} ∈ N

and (N, v) ∈ Γ. If v(N) = v(i) + v(j), then by DP it follows directly that
σ(N, v) = (v(i), v(j)). If v(N) 6= v(i) + v(j), consider the associated game (N, v′)
defined as follows: v′(k) = v(k) for all k ∈ N , and v′(N) = v(i) + v(j). Clearly
v = v′+ (v(N)− v(i)− v(j)) · uN . Then, by wF, DP and E we obtain σk(N, v) =
v(k) + 1

2 (v(N)− v(i)− v(j)) for all k ∈ N . Thus, σ = Sh for two-player games.
Induction hypothesis: for all (N, v) ∈ Γ with |N | ≤ t, t ≥ 2, it holds σ(N, v) =

Sh(N, v).
Let (N, v) be a game with |N | = t+ 1. Denote x = σ(N, v) and y = Sh(N, v).

Let N ′ = {i, j} ⊂ N and take k ∈ N ′. Since (N ′, rN ′σ (v)) is a two-player game,
then by E and wSC,

xk = σk(N ′, rN
′

σ (v)) = rN
′

σ (v)(k) + 1
2(xi + xj − rN

′
σ (v)(i)− rN ′σ (v)(j)). (2)

Moreover,

yk = Shk(N ′, rN
′

Sh(v)) = rN
′

Sh(v)(k) + 1
2(yi + yj − rN

′
Sh(v)(i)− rN ′Sh(v)(j)). (3)

By the induction hypothesis, if N ′′ = N \N ′, we have

Sh(k ∪N ′′, v|k∪N ′′ ) = σ(k ∪N ′′, v|k∪N ′′ ),

which leads to
rN
′

Sh(v)(k) = v(k ∪N ′′)−∑l∈N ′′ Shl(k ∪N ′′, v|k∪N ′′ )
= v(k ∪N ′′)−∑l∈N ′′ σl(k ∪N ′′, v|k∪N ′′ )
= rN

′
σ (v)(k).

(4)

Now, combining (2), (3) and (4) we obtain

xk − yk = 1
2(xi + xj)− 1

2(yi + yj).

Hence, by taking any possible two-person reduction, we have xi − yi = xj − yj
for all i, j ∈ N . Equivalently, for all i ∈ N it holds xi − yi = α for some α ∈ R.
Finally, by E it comes out that 0 = ∑

i∈N xi −
∑
i∈N yi = nα, which implies α = 0

and, consequently, σ(N, v) = Sh(N, v).

The properties in Theorem 3 are non-redundant on Γ. The equal division
solution meets all properties but DP. The single-valued solution ρ meets all prop-
erties but wSC, and the marginal contribution solution meets all properties
but wF.
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At this point, a natural question is to ask for the applicability of Theorem 3
to some domains of games. Because of the definition of self reduced game, it only
makes sense to consider classes of games such that all subgames belong to the class,
like the well-established domains of convex games, superadditive games and totally
balanced games. Although the domain of convex games is not closed under the
self reduction operation for the Shapley value, Hokari and Gellekom (2003) show
that it satisfies weak self consistency on this domain. This observation allows us
to follow the same arguments as in the proof of Theorem 3 to conclude that on the
domain of convex games weak self consistency, weak fairness and the dummy player
property still characterize the Shapley value. Unfortunately, for superadditive or
totally balanced games, these three properties are incompatible.

Proposition 1. There is no single-valued solution on the domain of superadditive
games that satisfies weak self consistency, weak fairness and the dummy player
property.

Proof. Suppose, on the contrary, there exists a sinlge-valued solution σ on the
domain of superadditive games satisfying weak self consistency, weak fairness and
the dummy player property. Consider the superadditive game (N, v) with N =
{1, 2, 3} and characteristic function v(i) = 0 for all i ∈ N , and v(S) = 1 for any
other coalition S ⊆ N . Let N ′ = {1, 2} and

(
N ′, rN

′
σ (v)

)
be the self reduced game

relative toN ′ at σ. SincewSC together withDP imply E (see proof of Theorem 3),
by E, wF and DP we have that σ3

(
{1, 3}, v|{1,3}

)
= 1

2 and σ3
(
{2, 3}, v|{2,3}

)
= 1

2 .
Hence,

rN
′

σ (v)(1) = v({1, 3})− σ3
(
{1, 3}, v|{1,3}

)
= 1

2 ,

rN
′

σ (v)(2) = v({2, 3})− σ3
(
|{2, 3}, v|{2,3}

)
= 1

2
and

rN
′

σ (v)(N ′) = v(N)− σ3(N, v) = 1− σ3(N, v).

By wSC,
(
N ′, rN

′
σ (v)

)
must be a superadditive game, which means that 1

2 + 1
2 ≤

1 − σ3(N, v) or, equivalently, σ3(N, v) ≤ 0. In a similar way, but considering the
self reduced games

(
{1, 3}, r{1,3}σ (v)

)
and

(
{2, 3}, r{2,3}σ (v)

)
, it can be checked that

σ2(N, v) ≤ 0 and σ1(N, v) ≤ 0, in contradiction with efficiency.

Proposition 2. There is no single-valued solution on the domain of totally bal-
anced games that satisfies weak self consistency, weak fairness and the dummy
player property.

Proof. Suppose, on the contrary, there exists a sinlge-valued solution σ on the
domain of totally balanced games satisfying weak self consistency, weak fairness
and the dummy player property. Consider the totally balanced game (N, v) with
N = {1, 2, 3} and characteristic function v(i) = 0 for all i ∈ N , v({1, 2}) =
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v({1, 3}) = 1, v({2, 3}) = 0 and v(N) = 1. Let N ′ = {1, 2} and
(
N ′, rN

′
σ (v)

)
be

the self reduced game relative to N ′ at σ. Let us recall that wSC together with
DP imply E (see proof of Theorem 3). Thus, by E, wF and DP we have that
σ3
(
{1, 3}, v|{1,3}

)
= 1

2 and σ3
(
{2, 3}, v|{2,3}

)
= 0. Hence,

rN
′

σ (v)(1) = v({1, 3})− σ3
(
{1, 3}, v|{1,3}

)
= 1

2 ,

rN
′

σ (v)(2) = v({2, 3})− σ3
(
{2, 3}, v|{2,3}

)
= 0

and
rN
′

σ (v)(N ′) = v(N)− σ3(N, v) = 1− σ3(N, v).

By wSC,
(
N ′, rN

′
σ (v)

)
must be a totally balanced game, which means that 1

2 +0 ≤
1 − σ3(N, v) or, equivalently, σ3(N, v) ≤ 1

2 . In a similar way, but considering the
self reduced games

(
{1, 3}, r{1,3}σ (v)

)
and

(
{2, 3}, r{2,3}σ (v)

)
, it can be checked that

σ2(N, v) ≤ 1
2 and σ1(N, v) ≤ 0. Thus, by efficiency, σ(N, v) =

(
0, 1

2 ,
1
2

)
, which

leads to
r{1,3}σ (v)(1) = 1

2 , r
{1,3}
σ (v)(3) = 0

and
r{1,3}σ (v)({1, 3}) = 1− 1

2 = 1
2 .

By E and DP, σ
(
{1, 3}, r{1,3}σ (v)

)
=
(

1
2 , 0

)
6= σ(N, v)|{1,3}, contradicting wSC.

To finish, let us remark that weak self consistency, weak fairness and the null
player property do not characterize the Shapley value on the full domain of games.
Indeed, the zero solution z(N, v) = (0, ..., 0) ∈ RN for all (N, v) ∈ Γ satisfies
these three properties. Notice that the single-valued solution z does not satisfy
efficiency. If we additionally impose efficiency, the Shapley value meets all these
properties but uniqueness still remains open.
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