
Synthesis of a naphthodiazaborole and its
verification by planarization with AFM

Zsolt Majzik,∗,†,¶ Ana B. Cuenca,‡,¶ Niko Pavliček,† Núria Miralles,‡ Gerhard
Meyer,† Leo Gross,† and Elena Fernández∗,‡

†IBM Research - Zurich, 8803 Rüschlikon, Switzerland
‡Department Física Química i Inorgànica, University Rovira i Virgili, 43007 Tarragona

Spain
¶Both authors have contributed equally to this project

E-mail: zsolt.majzik@gmail.com; mariaelena.fernandez@urv.cat

Abstract
Aiming to develop materials with new function-
alities, we designed the synthesis of a naphtho-
diazaborinine (the BN isoster of the phenalenyl
anion) that is bonded to a hindered di-ortho-
substituted aryl system (9-anthracene). We
used atomic force microscopy (AFM) to verify
the structure of the molecule synthesized. To
determine it unambiguously, we planarized the
originally nonplanar molecule by removing H
atoms that cause steric hindrance.

Abbreviations
AFM = Atomic Force Microscopy, STM
= Scanning Tunneling Microscopy, DFT
= Density Functional Theory, Bdan =
Boron(1,8)diaminonaphtalene

Keywords
Bdan, AFM, STM, dehydrogentaion, radical,
steric hindrance

Introduction
The boron-nitrogen substitution of two adja-
cent carbon atoms in a C=C bond, referred

to as BN/CC isosterism (Scheme 1), increases
the chemical diversity of bioactive molecules1,2
by altering the electronic structure with mini-
mal geometric disruption.3–7 Furthermore, the
conjugated molecules and polymers containing
three-coordinate boron exhibit interesting opti-
cal and electronic properties, making them ap-
propriate for use in functional materials,8–11 or
as ligands in transition-metal complexes.12–19
In particular the BN orientation in conjugated
molecules with more than one BN unit can de-
velop new antiaromatic systems.20 It is impor-
tant to highlight that the BN/CC isosterism
can also be used as a molecular design strat-
egy to alter the inherent reactivity patterns,
which is consistent with the HOMO orbital co-
efficients determined in direct comparison with
all-carbon structures.21
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Scheme 1: BN isosterism and comparison with
the carbonaceous counterpart.

There is an increasing trend to synthe-
size new conjugated molecules that contain
BN units and in that context the 1,3,2-
naphthodiazaborole system (Bdan moiety,
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Scheme 2), where the boron is bonded to 1,8-
diaminonaphtalene, is a relevant example where
the substitution of the N-B-N unit into the aro-
matic carbonaceous phenalenyl anion22,23 sys-
tem changes the topology type of the aromatic
system, presumably due to a stronger bond
localization.24,25 Searching for new materials
containing the N-B-N unit, we designed the
preparation of the 9-anthracene naphthodiaz-
aborinine (1), where the Bdan unit is bonded
to a hindered di-ortho substituted aryl system
(9-anthracene).

CH
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Scheme 2: Comparative perspective between R-
Bdan species and the corresponding phenalenyl
anion. Synthesized 9-anthracene naphthodiaz-
aborinine (1) compound.

Atomic resolution of molecules by AFM
with functionalized tips26 enabled identifica-
tion of individual unknown molecules.27–29 It
also opened the possibility to study reaction
products formed by on-surface chemistry30–35 or
atomic manipulation.36–40 Dehalogenation38,41

and dehydrogenation37,40,42–44 by atomic ma-
nipulation were demonstrated for several molec-
ular systems.
In this paper, we report the synthesis of 1

and its structural verification via AFM. The
molecule was produced in a metal-catalyzed re-
action. The synthesized molecule is nonpla-
nar. The AFM-based identification of 1 in-
cluded the transformation of 1 into a planar
molecule by removing those hydrogen atoms
that induce steric hindrance. This route rep-
resents a direct method for scanning probe mi-
croscopy techniques to identify the structure of
nonplanar molecules.32,45

Results and discussion

Synthesis of 9-anthracene naphtho-
diazaborinine

In contrast to the well-established Miyaura bo-
rylation of aryl halides with diboronate esters
as reagents (bis(pinacolato)diboron = B2pin2
and others),46–56 the analogous direct introduc-
tion of Bdan boryl units from HBdan is much
less explored.57 In fact, it was only recently
that a chemoselective transfer of Bdan units
from (pin)B-B(dan) to a series of aryl halides
has been reported.58 However, as far as we are
aware, not a single example of Bdan trans-
fer to a bulky di-ortho-substituted aryl halide
has been described. Hence, a series of metal-
catalyzed direct Bdan borylation reactions of
9-bromoanthracene were conducted to prepare
9-anthracene naphthodiazaborinine (1). Ini-
tial catalytic conditions were examined with
3 mol% of Pd2(dba)3, 9 mol% of the Buch-
wald ligand XPhos, and KOAc as the base (Ta-
ble 1, entry 1). This catalytic system pro-
moted a complete conversion of the diboron
reagent and the formation of 1 in 66% NMR
yield. The reaction also produced anthracene
(Ar) as byproduct. Attempts to increase the
percentage of product 1 formation by chang-
ing the reaction temperature (from 100 ◦C to
70 ◦C) or using an stoichiometric amount of 9-
bromoanthracene versus (pin)B-B(dan), were
unsuccessful (Table 1, entries 2,3). Adjusting
the 9-bromoanthracene/(pin)B-B(dan) ratio to
1/1.5 led to an improved NMR yield formation
of 1 (82%), with 76% of isolated yield (Table 1,
entry 4). Notably, the CuI/nBu3P/KOtBu
combination, an alternative, well-established
borylation method in the literature,59 did not
show significant catalytic activity even when
the more reactive 9-iodoanthracene was used
(Table 1, entries 5 and 6). Noteworthy, 1 is the
first Bdan-borylated compound arising from a
di-ortho-substituted aryl halide.

AFM analysis

Compound 1 was deposited onto a Cu(1 1 1)
single crystal, which was partially covered
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Table 1: Conditions for the metal-catalyzed Bdan transfer to 9-bromoanthracene.a

9-bromoanthracene (Ar-X) pinB-Bdan

+ anthracene
(Ar)

TM (3-10 mol%)
Ligand (9-13 mol%)

Br      

O      

O      

B      

HN      

HN      

B      
NH      HN      

B      

1

Br      

O      

O      

B      

HN      

HN      

B      
NH      HN      

B      +
Base (3 equiv.)
Solvent, temp., 16h

entry metal ligand base ArX/(pin)B-
B(dan)

temp.
(◦C)

conv.
[%]

Ar NMR
yield(%)b

1 NMR
yield [%]b

1 Pd2(dba)3 XPhos KOAc 1/0.8 100 100 27 66
2 Pd2(dba)3 XPhos KOAc 1/0.8 70 77 23 51
3 Pd2(dba)3 XPhos KOAc 1/1 100 70 22 48
4 Pd2(dba)3 XPhos KOAc 1/1.5 100 85 3 82[76]c

5 CuI nBu3P KOtBu 1/1.5 r.t. 62 54 8
6d CuI nBu3P KOtBu 1/1.5 r.t. 84 73 9

aReaction conditions: 9-bromoanthracene (0.2 mmol), (pin)B-B(dan) (0.8-1.5 equiv.), Pd2(dba)3
(3 mol%), XPhos (9 mol%), KOAc (3 equiv.), 1,4-dioxane (0.86 mL), at 100 ◦C for 16 h.; bYields
were determined by 1H NMR analysis of the crude reaction mixture using ferrocene as an internal

standard.; cIsolated yield. d9-iodoanthracene was used as ArX.

by double layer NaCl islands (referred to as
NaCl(2ML)).
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Figure 1: (a) Molecular model, owing to steric
hindrance 1 is nonplanar. (b) Constant-height
(∆z = +1.2 Å) AFM frequency shift map
recorded with CO tip at 5 K and V = 0. (c)
Laplace-filtered image of (b).

A constant-height AFM image of 1 adsorbed
on Cu(1 1 1) is shown in Fig. 1b. The image
was recorded in constant-height mode with a
CO-functionalized tip (CO tip)26,60 at ∆z =
+1.2 Å. The tip height ∆z is defined with re-
spect to the STM set-point at It = 1 pA and
V = 0.1 V above Cu(1 1 1). In Fig. 1b, the
left edge of the anthracenyl head and the right

part of the naphthodiazaborinine unit appear
with bright contrast, indicating repulsive in-
teractions because of an increased adsorption
height.37,45 Owing to the steric hindrance be-
tween the H atoms bound to the N atoms
and the closest hydrogens of the anthracenyl
unit, the molecule is nonplanar (see model in
Fig. 1a). Because of the 3D shape of the
molecule, its structure could not be determined
unambiguously from the image presented in
Fig. 1b alone. The structure even remained un-
clear after Laplace filtering (see Fig. 1c). Only
after planarization of the molecule as described
in the next section could we conclude that the
molecule imaged in Fig. 1b is 1 adsorbed in the
geometry indicated in Fig. 1a.

Tip-induced dehydrogenation

To planarize the molecule and to determine
its structure unambiguously, we decided to re-
move the H atoms that cause steric hindrance
(see Fig. 2). Dehydrogenation was induced by
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increasing the bias voltage in constant-height
mode until a sudden change in the tunneling
current occurred. We positioned the tip with
open feedback loop at ∆z = −4.5 Å above
the center of the molecule and ramped the bias
voltage from +0.1 V to +4 V. At typically
V = +3.0 V we observed a sudden drop in
the tunneling current indicating a manipulation
event.
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Figure 2: Radical formation and planarization
via dehydrogenation: removal of the hydrogen
atoms allows the molecule to adapt a planar
adsorption geometry.

After the tip-induced reaction, to investi-
gate the outcome, constant-height AFM imag-
ing with a CO tip was performed. As a result
of the manipulation the entire molecule could
be imaged with atomic resolution and the sym-
metric appearances of the anthracenyl and the
naphthodiazaborinine groups indicate a planar
adsorption geometry (see Fig. 3). The steric
hindrance could have been eliminated by re-
moving the hydrogens either from the N atoms
or from the closest C atoms of the anthracenyl
unit (see 2 and 3 in Fig. 2, respectively). How-
ever, the exact location of the dehydrogenation
cannot be explicitly determined from Fig. 3.
To clarify the mechanism of the planarization,

we probed the orbital structure of the manipu-
lated molecule. A two-monolayer-thick NaCl

5 Å

(a)

-6.3 Δf (Hz) -2.2

5 Å

(b)

0 (arb. units) 1

Figure 3: (a) Constant-height (∆z = +2.5 Å)
AFM image with CO tip at V = 0 taken after
the tip-induced reaction of 1 on Cu(1 1 1). (b)
The same image after Laplace filtering.

film was used to electronically decouple the
molecule from the metal substrate.61 On NaCl
the molecule could be also dehydrogenated at
a similar bias as on Cu(1 1 1). We were able
to image the manipulated molecule at its first
negative ion resonance. At increased negative
biases, the molecule started to move before
the bias voltage reached the energy of its posi-
tive ion resonance. The negative ion resonance
started to dominate the STM contrast at volt-
ages higher than V = +1.3 V (see Fig. 4). In
the measurement, the highest orbital density is
observed above the naphthodiazaborinine part,
whereas the anthracenyl head of the molecule
exhibits only a faint contrast. Our DFT calcu-
lations show that the orbitals with the lowest
unoccupied character are located at the naph-
thodiazaborinine in the case of 2, whereas they
shift to the anthracenyl head in the case of 3

10 Å

2 3

(a) (c)

0 3.2z (Å)

10 Å 10 Å

Figure 4: (a) STM measurement of
product after dehydrogenation of 1 on
NaCl(2ML)/Cu(1 1 1) with a metal tip
(V = +1.3 V and I = 0.5 pA). (b, c) Cal-
culated density of lowest unoccupied orbitals
of the dehydrogenated molecule 2 and 3,
respectively.
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(for more details, see supplementary informa-
tions). Therefore we can conclude that the de-
hydrogenation took place at the N sites. With
this knowledge we can unambiguously assign
the compound imaged in Fig. 3 as 2 and the
compound imaged in Fig. 1 as 1.
The Laplace-filtered image (Fig. 3b) shows

apparent bonds between the N atoms and the
closest C atoms of the anthracene unit. The
contrast at this position is unlikely to originate
from any kind of bonding configuration. There-
fore, we attribute this feature to artifacts that
are related to the CO tilting at the tip, which
is known to produce sharp features that appear
similar as bonds at the positions of ridges of the
potential.45,62–65

Conclusion
We presented the synthesis of a naphthodiaz-
aborole, namely, 9-anthracene naphthodiaza-
borinine (1), from a di-ortho substituted aryl
halide. The yield has been maximized by ad-
justing the 9-bromoanthracene/(pin)B-B(dan)
stoichiometry. The structure of the molecule
synthesized was verified via atomic force mi-
croscopy.
We demonstrated that planarization by

atomic manipulation is a possible route for
extending molecular identification by AFM to
nonplanar molecular systems that are difficult
to be probed with AFM directly.

Experimental
Measurements were performed using a home-
built combined STM and AFM operating
in ultrahigh vacuum (base pressure below
10−10 mbar) at a temperature of 5 K. The
bias voltage V was applied to the sample. The
AFM is based on a qPlus sensor66 (stiffness
k = 1800 N/m, eigenfrequency f0 = 29664 Hz,
quality factor Q = 2 × 105) operated in
frequency-modulation mode.67 The PtIr tip
was cut to length and sharpened using a fo-
cused ion beam setup. The oscillation ampli-
tude was 0.5 Å to maximize the lateral resolu-
tion.68 A Cu(111) single crystal was cleaned

by several sputtering and annealing cycles.
Ultrathin NaCl films were grown by thermal
evaporation of NaCl on Cu(111) at a sample
temperature of about 270 K. Defect-free (100)-
terminated islands of mainly two atomic layers
were formed.69 Low coverages of 1 and CO
molecules were adsorbed at sample tempera-
tures below 10 K. CO tips were prepared by
picking up a single CO molecule from NaCl.26
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