Copper-mediated S_N2 ' Allyl-Alkyl and Allyl-Boryl Couplings of Vinyl Cyclic Carbonates

Núria Miralles,† José Enrique Gómez, § Arjan W. Kleij,*,8,‡ Elena Fernández*†

- † Department Química Física i Inorgànica, University Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
- § Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
- [‡] Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain.

ABSTRACT: A method for the copper-catalyzed borylmethylation and borylation of vinyl cyclic carbonates through an S_N2 ' mechanism is reported. These singular reactions involve selective S_N2 ' allylic substitutions with concomitant ring opening of the cyclic carbonate, and with extrusion of CO_2 and formation of a useful hydroxyl functionality in a single step. The stereoselectivity of the homoallylic borylation and allylic borylation processes can be controlled, and synthetically useful unsaturated (*E*)-pent-2-ene-1,5-diols and (*E*)-but-2-ene-1,4-diols accessed.

Molecular diversity through organoboron chemistry provides easy-to-handle and shelf-stable materials that can be utilized in diverse transformations. The great potential of boron-selective reactions in simplifying experimental operations is due to the direct generation of C-B bonds formed from diboron reagents.¹ Alternatively, the use of 1,1-diborylalkane reagents to conduct nucleophilic borylmethylation has been less studied, despite the tremendous interest that homologated organoboron products offer as scaffolds in organic synthesis. Gem-diborylated compounds have shown to be useful reagents with alkyl-2 and arylbased electrophiles,³ as well as with carbonyl compounds⁴ mainly via base-induced deborylation. Diborylmethane reacts with allylic electrophiles to promote selective substitution reactions via S_N2 pathways under Pd/Cu catalysis or metal-free conditions (Scheme 1, top left).5 However, to the best of our knowledge, there has only been one example related to the nucleophilic borylmethylation through an S_N2' mechanism, based on a copper-catalyzed selective allylic substitution of primary and secondary allylic chlorides with 1.1-diborylalkanes (Scheme 1, top right). 6a Despite the usefulness of this approach, for substrates such as alkyl cinnamyl carbamates, the S_N2' allylalkyl coupling reaction proved to be unproductive.

Inspired by this limitation and in order to be able to extend the nucleophilic borylmethylation reaction through an S_N2 ' mechanism, we have explored copper (I)-catalyzed S_N2 ' allylic alkylation of vinyl cyclic carbonates with diborylmethane (1) (Scheme 1). This new approach would allow additional functionality to be retained in the homoallylic borylated product since a hydroxyl group is generated with the concomitant loss of CO_2 , providing access to scaffolds that are not easily pre-

pared through other routes. For the sake of comparison, the copper(I)-catalyzed S_N2 ' allylic borylation of the same allylic cyclic carbonates with B_2pin_2 2 has also been studied and control over the stereoselectivity of the allylic borylated product was explored since both E to Z isomers can be formed. Stereoselective synthesis of allylboronates with a hydroxyl terminus would potentially provide an unprecedented route towards functionalized allylboronates.⁷

Scheme 1. Allyl-Alkyl Couplings using Allylic Electrophiles and *Gem*-Diborylated Compounds (eq 1), and New Allyl-Alkyl or Allyl-Boryl Couplings using Vinyl Cyclic Carbonates and Diborylmethane or B₂pin₂ (eq 2)

Initially we carried out the reaction between the vinyl cyclic carbonate **3** and diborylmethane **1** in the presence of MeOH as solvent and base to *in situ* generate the Cu-OMe derivative from CuCl (Table 1). The estimated copper salt loading and ligand

(where required) was 9 and 13 mol %, respectively. At rt, substrate 3 (0.2 mmol scale) reacted with reagent 1 (1.2 equiv) providing moderate conversions of the desired homoallylic borylated product (E)-(5-hydroxy-4-phenylpent-3-en-1yl)boronate ester 4 mediated by CuCl/SIPr or CuCl/PPh3 (Table 1, entries 1 and 2). The exclusive formation of the new C-C bond at the terminal position exemplifies the regiocontrol of the allyl-alkyl cross-coupling reaction, but of particular note is that the S_N2' process allows for simple extrusion of CO₂ from the cyclic carbonate precursor, keeping a synthetically useful OH functionality. In the absence of any ligand, the unmodified copper species generated product (E)-4 in up to 58% yield (Table 1, entry 3). Neither the use of a double amount of diborylmethane nor the presence of alternative bases such as LiOtBu improved the reaction outcome (Table 1, entries 4 and 5). A higher Cs₂CO₃ loading (50 mol %) was optimal to achieve quantitative conversion and 4 was obtained in a yield of 75% (E/Z = 4:1) (Table 1, entry 6). Interestingly, the ratio of E/Z stereoisomers is higher than the E/Z ratios observed in the cross-coupling of vinyl cyclic carbonates with arylboronic acids catalyzed by Pd nanoparticles.6b

Table 1. Allyl-Alkyl Couplings between Diborylmethane and the Vinyl Cyclic Carbonate 3.^a

° (Bpin Bpin 1 CuCl MeOH, - CO ₂ -MeOBpin	HO———Bpin +	Ph (Z)-4	Bpin
entry	Cu/ligand	base (mol %)	E/Z	yield $(E)^b$
1	CuCl/SIPr	Cs ₂ CO ₃ , 15	3.9:1	35
2	CuCl/PPh3	Cs ₂ CO ₃ , 15	4:1	13
3	CuCl	Cs ₂ CO ₃ , 15	4:1	58
4^c	CuCl	Cs ₂ CO ₃ , 15	4:1	40
5	CuCl	t-OBuLi, 15	4:1	24
6	CuCl	Cs ₂ CO ₃ , 50	4:1	75

^aConditions: carbonate (0.2 mmol), CH₂(Bpin)₂ (1.2 equiv), CuCl (9 mol %), ligand (13 mol %), Cs₂CO₃ (50 mol %), MeOH (0.10 mL), rt, 16 h. ^bNMR yield using naphthalene as internal standard. ^cCH₂(Bpin)₂ (2 equiv).

Since the only examples known for copper-catalyzed Sn2'-selective allylic substitution reaction between 1,1-diborylal-kanes and allylic chlorides were unproductive for allylic acylic carbonates, the newly developed protocol (Table 1) provides complementary reactivity. In addition, no sign of Sn2-substitution could be detected and the proposed copper-catalyzed Sn2'-selective allylic substitution thus represents a carbonate ring opening reaction under relatively high stereocontrol.

We next explored the allyl-alkyl coupling of a series of substituted vinyl cyclic carbonates and diborylmethane to further expand this Cu-catalyzed process (Scheme 2) (conditions: Table 1, entry 6). A general trend is observed in the formation of the borylated products 5-11 with the E isomer being the favored stereoisomer. In all crude reaction products, the E/Z ratios were close to 4:1 independent from the substituent present in the vinyl cyclic carbonates. Both stereoisomers could be isolated from the reaction media; the corresponding isolated yields of the E isomer are shown in Scheme 2 (Supporting Information, SI, for details on the Z-isomers). Electron-donating or -withdrawing substituents in the aryl group (as well as their relative position) did not interfere in the formation of the homoallyl boronates (E)-5, (E)-6, (E)-7, (E)-8 and (E)-10, with yields of

up to 70%. The reaction is also tolerant towards other functionalities present in the vinyl cyclic carbonate substrate, including thiophenyl groups (cf(E)-9), and an interesting butadiene derivative (E)-11, which was isolated in high yield (82%).

Scheme 2. Substrate Scope for the Allyl-Alkyl Couplings between Diborylmethane and Vinyl Cyclic Carbonates.

To further test the viability of the C–B bond formation from vinyl cyclic carbonates, we carried out the reaction between substrate **3** and B₂pin₂ **2** in the presence of MeOH as solvent and base (Table 2). When CuCl (9 mol %) was used (Table 2, entry 1), the conversion of **3** was quantitative with the principal formation of the allyl boronate (*E*)-**12** (isolated yield 60%) together with a minor amount of a secondary product. Interestingly, the latter was isolated as a result of an *in situ* intramolecular cyclization process from the *Z* stereoisomer. The nucleophilic attack of the boryl moiety onto the vinyl cyclic carbonate **3** readily takes place at rt through a "Cu-Bpin" intermediate that is formed *in situ* from a CuCl/MeOH/base/B₂pin₂ combination.⁸ Notably, the transition-metal free version does not allow for the allylic borylation of vinyl cyclic carbonates.⁹

The copper catalyzed reaction proceeds regioselectively as the C-B bond was exclusively formed at the terminal position of the allylic intermediate confirming the S_N2' mechanism. ¹⁰ In the absence of any ligand, the formation of some degraded substrate could be observed (Table 2, entry 1), and the use of alternative bases such as t-OBuK in the allylic borylation of 3 reduced both the overall conversion and stereoselectivity (entry 2). We also carried out a reaction with a preformed CuOt-Bu catalyst (entry 3)11 and found that it worked comparably to the in situ formed catalyst derived from CuCl/t-OBuK in MeOH. Therefore, we continued with the *in situ* prepared catalyst in the presence of B₂pin₂. The amount of base was optimized to 15 mol %, which is significantly less than the amount of base used in similar copper-catalyzed allylic borylations requiring typically 1-3 equiv. The use of an N-heterocyclic carbene ligand slightly modified the reaction outcome in the allylic borylation of 3 since the process was more efficient in terms of total conversion towards the borylated products (entry 4). In the presence of SIPr, the formation of the allylboronate (E)-12 also gave an improved yield of 69%. A CuCl/PPh3 based catalyst gave a mixture of borylated compounds 12 with an E/Z ratio of 57:35 (Table 2, entry 5). The use of bidentate phosphine ligands, however, favors the formation of boracycle (Z)-13. An improved selectivity towards (Z)-13 was achieved when the diphosphine 1,2-bis(diphenylphosphino)ethane (dppe) was used, giving an E/Z ratio of 36:52 (Table 2, entry 6). Interestingly, when the 1,2-bis(di-tert-butylphosphinomethyl)benzene diphosphine

(PP) was added, exclusive formation of boracycle (*Z*)-**13** could be achieved (Table 2, entry 7).

Table 2. Allyl-Boryl Couplings between B₂pin₂ and the Vinyl Cyclic Carbonate 3.^a

^aConditions: carbonate (0.2 mmol), B₂pin₂ (1.2 equiv), Cu salt (9 mol %), ligand (13 mol %), Cs₂CO₃ (15 mol %), MeOH (0.10 mL), rt, 16 h. A high throughput screening of ligands can be found in the SI. ^bCalculated by ¹H NMR (CDCl₃) using mesitylene as internal standard. Values in brackets represent isolated yields. ^c<5% degraded substrate was observed.

99

72 (45)

Cs₂CO₃

CuCl/PP

While copper-mediated decarboxylative allylic borylation reactions of acyclic carbonates have been used to obtain allenylboronates, 12,13 vinylboronates 14 and allylboronates, 15 those methods lose the whole OCO2R functional group during the C-B bond formation. Our method permits additional functionality to be retained in the final product. Taking advantage of this new methodology, we explored the borylation of a series of vinyl cyclic carbonates using CuCl/SIPr as the catalyst system (conditions: Table 2, entry 4) to give the (E)-allylboronates 12 and 14-19 as the main product (Scheme 3). The conversion of different carbonate precursors into their borylated products was almost quantitative in most cases, with some minor amount of the (Z)-isomers being formed (<10%) together with some degraded substrate. In general, rather similar isolated yields were obtained (52–65%) independent from the type of substrate. The borylation of 3 could also be carried out on gram scale in a slightly lower yield (56%, Scheme 3), but the use of vinyl carbonates with alkyl groups (R = Me, Cy) was unproductive.

Scheme 3. (*E*)-Selective Allyl-Boryl Couplings between B₂pin₂ and Vinyl Cyclic Carbonates.

When 1,2-bis(di-*tert*-butylphosphinomethyl)benzene (PP) was used as ligand, the allylic borylation of alkyl/aryl-substituted vinyl cyclic carbonates advanced towards the (*Z*)-stereoisomer following intramolecular cyclization to afford the boracycles **13** and **20–22** (Scheme 4) (conditions: Table 2, entry 7). (*Z*)-Boracycles are important in the context of diversity-oriented organic synthesis, ¹⁶ as well as in organoboron based drug discovery. ¹⁷ Other boracycles have exclusively been obtained through our copper-catalyzed borylation to allylic cyclic carbonates, but the isolated yields were relatively low (see SI for details). The molecular structure of (*Z*)-**13** was also confirmed by X-ray diffraction (Scheme 4, inset).

Scheme 4. (Z)-Selective Allyl-Boryl Couplings between B₂pin₂ and Vinyl Cyclic Carbonates.

A proposed reaction mechanism for the S_N2 ' allyl-alkyl coupling (Figure 1 and SI for further details) and S_N2 ' allyl-boryl coupling reactions may involve first activation of the diborylmethane reagent or B_2pin_2 to form $Cu\text{-}CH_2Bpin$ or Cu-Bpin, respectively. Figure 1 shows that $Cu\text{-}CH_2Bpin$ intermediate \mathbf{A} coordinates the terminal alkene of substrate to generate \mathbf{B} followed by regioselective addition producing a new alkyl-Cu intermediate \mathbf{C} . Hereafter, elimination of the product from \mathbf{D} in a formal $anti\text{-}S_N2$ ' pathway releases CO_2 and regenerates the copper complex.

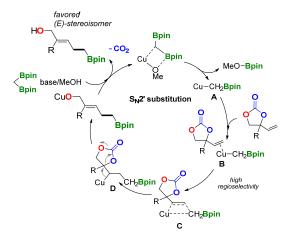


Figure 1. Proposed Mechanism for S_N2' Allyl-Alkyl Coupling

To demonstrate the synthetic use of the homoallylic and allylic borylated products, we conducted an *in situ* copper-catalyzed S_N2' allyl-alkyl and S_N2' allyl-boryl coupling followed by oxidative work up (H₂O₂, NaOH). The corresponding (E)-configured pent-2-ene-1,5-diols and but-2-ene-1,4-diols were isolated as the main products (Figure 2). The corresponding (Z)-isomers of the pent-2-ene-1,5-diols could also be isolated in low yield (see the SI). Interestingly, the (E)-isomers of such but-2-ene-1,4-diols are valuable compounds, being about 190 times more expensive than their corresponding (Z)-isomers. ¹⁸ Therefore, our versatile one-pot approach opens a new straightforward route towards these scaffolds¹⁹ which are useful in organic synthesis. ²⁰

HO R HO R OH R OH R OH R OH R OH (E)-23, R = Ph, (47%) (E)-24, R =
$$p$$
-F-C₆H₄, (41%) (E)-32, R = p -F-C₆H₄, (47%) (E)-25, R = m -BnO-C₆H₄, (59%) (E)-33, R = m -BnO-C₆H₄, (54%) (E)-27, R = benzo[d][1,3]dioxole, (55%) (E)-35, R = b -Bn-C₆H₄, (45%) (E)-28, R = b -Hr-C₆H₄, (47%) (E)-28, R = b -Hr-C₆H₄, (47%) (E)-36, R = b -HeS-C₆H₄, (58%) (E)-29, R = b -Hr-C₆H₄, (47%) (E)-37, R = b -C₆H₆O-naphthyl), (47%) (E)-30, R = vinyl, (32%)

Figure 2. One-Pot Preparation of But-2-ene-1,4-Diols and Pent-2-Ene-1,5-Diols

In conclusion, we present a stereoselective copper-catalyzed selective S_N2 ' allylic substitutions of vinyl cyclic carbonate to form allylboranes and homoallylboranes. The stereoselectivity is catalyst-controlled and *in situ* copper-catalyzed C-CH₂B and C-B bond formation followed by oxidative workup provides direct access to valuable (E)-configured pent-2-ene-1,5-diols and but-2-ene-1,4-diols.

■ ASSOCIATED CONTENT

Supporting Information

The Supporting Information contains experimental procedures and characterization of all allyl-alkyl couplings using vinyl cyclic carbonates and diborylmethane or B₂pin₂. It is available free of charge on the ACS Publications website at DOI: 10.1021/XXX

■ AUTHOR INFORMATION

Corresponding Author

*mariaelena.fernandez@urv.cat, akleij@iciq.es.

Author Contributions

The manuscript was written through contributions of all authors.

■ ACKNOWLEDGMENT

This research was supported by MINECO through projects CTQ2016-80328-P, CTQ-2014-60419-R and the Severo Ochoa Excellence Accreditation 2014–2018 through project SEV-2013–0319.

■ REFERENCES

- (1) (a) Xu, L.; Zhang, S.; Li, P. *Chem. Soc. Rev.* **2015**, *44*, 8848. (b) Neeve, E.; Geier, S. J.; Mkhalid, I. A. I.; Westcott, S. A.; Marder, T. B. *Chem. Rev.* **2016**, *116*, 9091. (c) Cuenca, A. B.; Shishido, R. I.; Ito, H.; Fernandez, E. *Chem. Soc. Rev.* **2017**, *46*, 415.
- (2) Latest contributions: (a) Kim, J.; Park, S.; Park, J.; Cho, S. H. Angew. Chem., Int. Ed. 2016, 55, 1498. (b) Shi, Y.; Hoveyda, A. H. Angew. Chem., Int. Ed. 2016, 55, 3455. (c) Zhang, Z.-Q.; Zhang, B.; Lu, X.; Liu, J.-H.; Lu, X.-Y.; Xiao, B.; Fu, Y. Org. Lett. 2016, 18, 952. (d) Zhan, M. Li, R.-Z.; Mou, Z.-D.; Cao, C.-G.; Liu, J.; Chen, Y.-W.; Niu, D. ACS Catal. 2016, 6, 3381. (e) Ahmed, E.-A.; Zhang, Z.-Q.; Gong, T.-J.; Su, W.; Lu, X.-Y.; Xiao B.; Fu, Y.; Chem. Commun. 2016, 52, 4891. (f) Lu, X.; Xiao, B.; Zhang, Z.-Q.; Gong, T.-J.; Su, W.; Fu Y.; Liu, L. Nat. Commun. 2016, 7, 11129. (g) Li, F.; Zhang, Z.-Q.; Lu, X.; Xiao, B.; Fu, Y. Chem. Commun. 2017, 53, 3551.
- (3) (a) Endo, K.; Ohkubo, T.; Hirokami, M.; Shibata, T. *J. Am. Chem.* Soc. **2010**, *132*, 11033. (b) Endo, K.; Ohkubo, T.; Shibata, T. *Org. Lett.* **2011**, *13*, 3368. (c) Sun, C.; Potter, B.; Morken, J. P. *J. Am. Chem. Soc.* **2014**, *136*, 6534. (d) Potter, B.; Szymaniak, A. A.; Edelstein, E. K.; Morken, J. P. *J. Am. Chem. Soc.* **2014**, *136*, 17918. (e) Potter, B.; Edelstein, E. K. Morken, J. P. *Org. Lett.* **2016**, *18*, 3286.
- (4) (a) Endo, K.; Hirokami, M.; Shibata, T. *J. Org. Chem.* **2010**, *75*, 3469. (b) Coombs, J. R.; Zhang, L.; Morken, J. P. *Org. Lett.* **2015**, *17*, 1708. (c) Joannou, M. V.; Moyer, B. S.; Goldfogel, M. J.; Meek, S. J. *Angew. Chem., Int. Ed.* **2015**, *54*, 14141. (d) Joannou, M. V.; Moyer, B. S.; Meek, S. J. *J. Am. Chem. Soc.* **2015**, *137*, 6176. (e) Murray, S. A.; Green, J. C.; Tailor, S. B.; Meek, S. J. *Angew. Chem. Int. Ed.* **2016**, *55*, 9065.
- (5) (a) Endo, K.; Ohkubo, T.; Ishioka, T.; Shibata, T. *J. Org. Chem.* **2012**, *77*, 4826. (b) Hong, K.; Liu, X.; Morken, J. P. *J. Am. Chem. Soc.* **2014**, *136*, 10581. (c) Zhang, Z.-Q.; Yang, C.-T.; Liang, L.-J.; Xiao, B.; Lu, X.; Liu, J.-H.; Sun, Y.-Y.; Marder, T. B. Fu, Y. *Org. Lett.* **2014**, *16*, 6342.
- (6) (a) Kim, J.; Park, S.; Park, J.; Cho, S. H. *Angew. Chem., Int. Ed.* **2016**, *55*, 1498. (b) Mao, Y, Zhai, X.; Khan, A.; Cheng, J.; Wu, X.; Zhang, Y. J. *Tetrahedron Lett.* **2016**, *57*, 3268.
- (7) (a) Diner, C.; Szabó, K. J. J. Am. Chem. Soc. 2017, 139, 2. (b) Ramachandran, P. V.; Gagare, P. D.; Nicponski, D. R. Allylborons, Comprehensive Organic Synthesis (2nd Edition), Knochel, P.; Molander G. A. 2014, pp 1-71.
- (8) (a) Makoto, Y. *Bull. Chem. Soc. Japan*, **2011**, 84, 984. (b) Cid, J. Gulyás, H.; Carbó, J. J.; Fernández, E. *Chem. Soc. Rev.* **2012**, 41, 3558. (c) Dewhurst, R. D.; Neeve, E. C.; Braunschweig, H.; Marder, T. B. *Chem. Commun.* **2015**, 51, 9594.
- (9) For alkoxide-catalyzed borylation of allylic and propargylic alcohols: (a) Miralles, N.; Alam, R.; Szabó, K. J.; Fernández, E. *Angew. Chem. Int. Ed.* **2016**, *55*, 4303. (b) Harada, K.; Nogami, M.; Hirano, K.; Kurauchi, D.; Kato, H.; Miyamoto, K.; Saito, T.; Uchiyama, M. *Org. Chem. Front.* **2016**, *3*, 565.
- (10) For opposite regioselectivity in decaboxylative borylation, see: Ito, H.; Kosaka, Y.; Nonoyama, N.; Sasaki, Y.; Sawamura, M. *Angew. Chem. Int. Ed.* **2008**, *47*, 7424.
- (11) Bonet, A.; Lillo, V.; Ramírez, J.; Díaz-Requejo, M. M.; Fernández, E. Org. Biomol. Chem. 2009, 7, 1533.
- (12) Ito, H.; Sasaki, Y.; Sawamura, M. J. Am. Chem. Soc. 2008, 130, 15774.

- (13) (a) Zhao, T. S. N.; Yang, Y.; Lessing, T.; Szabó, K. J. *J. Am. Chem. Soc.* **2014**, *136*, 7563. (b) Yang, Y.; Szabó, K. J. *J. Org Chem.* **2016**, *81*, 250.
- (14) For carboxylic acids: (a) Feng, Q.; Yanga, K.; Song, Q. *Chem. Commun.* **2015**, *51*, 15394. (b) Zhao, Y.-W.; Feng, Q.; Song, Q.-L. *Chin. Chem. Lett.* **2016**, *27*, 571.
- (15) (a) Ito, H.; Kawakami, C.; Sawamura, M. *J. Am. Chem. Soc.* **2005**, *127*, 16034. (b) Ito, H.; Ito, S., Sasaki, Y.; Matsuura, K.; Sawamura, M. *J. Am. Chem. Soc.* **2007**, *129*, 14856. (c) Guzman-Martínez, A.; Hoveyda, A. H. *J. Am. Chem. Soc.*, **2010**, *132*, 10634.
- (16) Micalizio, G. C.; Schreiber, S. Angew. Chem. Int. Ed. 2002, 41, 152.
- (17) (a) Ramachandran, P. V. *Future Med. Chem.* **2013**, *5*, 611. (b) Baker, S. J.; Ding, C. Z.; Akama, T.; Zhang, Y.-K.; Hernandez, V.; Xia, Y. *Future Med. Chem.* **2013**, *1*, 1275.
- (18) (a) Ezawa, T.; Kawashima, Y.; Noguchi, T.; Jung, S.; Imai, N. *Tetrahedron Asymm.* **2017**, 28, 266. (b) Guo, W.; Martínez-Rodriguez, L.; Martin, E.; Escudero-Adán, E. C.; Kleij, A. W. *Angew. Chem. Int. Ed.* **2016**, 55, 11037.
- (19) (a) Ishino, I.; Wakamoto, K.; Hirashima, T. *Chem. Lett.* **1984**, 765. (b) Klimovica, K.; Grigorjeva, L.; Maleckis, A.; Popelis, J.; Jirgensons, A. *Synlett.* **2011**, 2849. (c) De Silva, A. N.; Francis, C. L.; Ward, A. D. *Aust. J. Chem.* **1993**, *46*, 1657.
- (20) (a) Emayavaramban, B.; Sen, M.; Sundararaju, B. *Org. Lett.* **2017**, *19*, 6. (b) Tortosa, M. *Angew. Chem. Int. Ed.* **2011**, *50*, 3950.