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A General Approach for Fitting Pure Exploratory Bifactor Models

Urbano Lorenzo-Seva and Pere J. Ferrando

Universitat Rovira i Virgili

ABSTRACT
This article proposes a procedure for fitting a pure exploratory bifactor solution in which
the general factor is orthogonal to the group factors, but the loadings on the group fac-
tors can satisfy any orthogonal or oblique rotation criterion. The proposal combines
orthogonal Procrustes rotations with analytical rotations and consists of a sequence of four
steps. The basic input is a semispecified target matrix that can be (a) defined by the user,
(b) obtained by using Schmid-Leiman orthogonalization, or (c) automatically built from a
conventional unrestricted solution based on a prescribed number of factors. The relevance
of the proposal and its advantages over existing procedures is discussed and assessed via
simulation. Its feasibility in practice is illustrated with two empirical examples in the per-
sonality domain.

KEYWORDS
Bifactor solutions;
exploratory factor analysis;
orthogonal Procrustes
rotations; orthogonal and
oblique analytical rotations;
semispecified
target matrices

Factor analysis (FA) applications to item and test
scores are generally based on one of these two models:
(a) the unidimensional (Spearman) model or (b) the
correlated-factors model. In the first case, the scores
are assumed to be indicators of a single dimension,
with no local dependencies or correlated uniquenesses
among them. In the second case, the scores are
assumed to measure two or more related dimensions.
Furthermore, the pattern of the relations between the
indicators and the factors is generally expected to
approach a simple structure (Thurstone, 1935).

The bifactor model combines the two specifications
above and allows the hypothesis of a general dimen-
sion to be maintained, while the additional common
variance among the scores is modeled using group
factors that are expected to approach a simple struc-
ture. The idea of this modeling dates back to at least
1937 (Holzinger & Swineford, 1937). However, for
more than 50 years, the correlated factor model was
the model of choice and the bifactor model practically
fell into disuse. However, there was a resurgence in
the 1990s (e.g., Gibbons & Hedeker, 1992, Mulaik &
Quartetti, 1997) and interest has been growing spec-
tacularly ever since (e.g., Morin, Arens, & Marsh,
2016, Reise, 2012).

An “ideal” bifactor pattern with m¼ 6 indicators
and r¼ 2 group factors is shown below, with asterisks
denoting the loading parameters that are free, and
zeros denoting those expected to be zero.

P ¼

� � 0
� � 0
� � 0
� 0 �
� 0 �
� 0 �

0
BBBBBB@

1
CCCCCCA

The first column of P defines the general factor, and
its loading values are all usually defined as free param-
eters; the next columns define the group factors. The
indicators (which are the rows in the loading matrix)
usually have only two free loading parameters: one
related to the general factor, and the other related to a
single group factor. In this regard, the “ideal” structure
for the group factors is a simple structure. The general
factor is assumed to be uncorrelated with the group
factors. Furthermore, in “traditional” bifactor modeling
the group factors are also assumed to be uncorrelated
between them (Holzinger & Swineford, 1937).
However, this assumption can be relaxed, and bifactor
solutions with oblique group factors can also be speci-
fied (Jennrich & Bentler, 2012). In an oblique solution,
the correlations among the group factors would model
the additional common variance among them that can-
not be accounted for by the general factor. The rele-
vance of this type of solution is discussed below.

If enough information is available for specifying an
“ideal” solution of the type so far described, then the
bifactor model can be fitted as a confirmatory FA
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(CFA) model in a rather direct way (see e.g., Reise,
2012). However, in many scenarios, the CFA approach
is unfeasible or problematic. First, in many measures
that were developed as essentially unidimensional,
dependencies in content among items that can be
modeled as additional dimensional structures do exist
(e.g., Furnham, 1990). However, these structures can-
not be generally anticipated “a priori.” Second, and
also in this type of measure, dependencies due to
shared noncontent-related specificities (doublets, trip-
lets or testlets) are also quite common, but they gen-
erally have to be discovered. Finally, there is the most
general problem of the nonnegligible small cross-load-
ings that are forced to be zero, a restriction which is a
potential source of misfit and biased parameter esti-
mates in CFA applications (Ferrando & Lorenzo-Seva,
2000, Reise, 2012). All the situations discussed so far
(among others) call for an exploratory FA (EFA)
application of the bifactor model. Interest in applica-
tions of this type has been growing in recent years
(e.g., Morin et al., 2016), possibly due to growing dis-
satisfaction with the results of strict CFA approaches
as well as a general trend towards more flexible forms
of modeling (e.g., Ferrando & Lorenzo-Seva, 2017a,
2017b, Morin et al., 2016)Q2 .

The developments that have been made in the EFA
bifactor model to date are reviewed below. Unlike
CFA, however, the EFA approaches proposed so far
have acknowledged shortcomings (e.g., Mansolf &
Reise, 2016) and it is safe to say that there is still
room for improvement in this domain. This scenario
is the starting point of the present article, in which we
propose a multistep general procedure that allows a
pure exploratory bifactor solution to be fitted. Our
proposal is general in that it allows (a) an initial target
matrix to be specified using both existing and new
procedures; (b) the group solution to be orthogonally
or obliquely rotated using any standard rotation pro-
cedure, and (c) solutions that are not feasible with
currently available methods to be obtained.

A review of existing bifactor EFA proposalsQ3

In principle, two different strategies have been consid-
ered for fitting an EFA bifactor model. The first is to
use second-order FA solutions that are transformed
into bifactor solutions. The second is to modify con-
ventional rotation methods (designed to arrive at a
simple structure) so that they can arrive at a bifactor
structure instead.

The proposals derived from the first strategy have
mostly been based on the Schmid-Leiman (SL)

orthogonalization (Schmid & Leiman, 1957), which, in
its most basic form, can be summarized in three steps.
First, an oblique solution in r primary factors is
obtained from the sample correlation matrix. Second,
the Spearman model is fitted to the interfactor correl-
ation matrix, so a second-order factor is extracted.
Finally, on the basis of the second-order results, the
rotated solution in r factors is expanded into an SL
orthogonal solution with rþ 1 factors.

The basic problem with the SL approach is that this
expansion from r to rþ 1 factors imposes proportion-
ality constraints on the SL pattern that are not intrinsic
to bifactor models. In particular, the first column of
the SL pattern (corresponding to the general factor) is
a linear combination of the remaining columns. And,
if the data has been generated by a bifactor model in
which this constraint does not apply, then the esti-
mates obtained by applying the SL solution will be
biased with respect to the corresponding parameters in
the “true” solution (see Jennrich & Bentler, 2011).

Reise, Moore, and Haviland (2010), and Reise,
Moore, and Maydeu-Olivares (2011) considered that
the biases described above are of no great concern
when the SL pattern is only used to identify a pattern
of salient and nonsalient loadings in a bifactor solution.
These authors went on to suggest using the SL solution
as a target for performing a semispecified Procrustes
rotation (Browne, 1972), which can be regarded as less
restricted than the SL solution. Simulations carried out
by the proponents suggest that the target proposal
works well in many conditions. However, there still
remains the problem that the SL solution which is
used as a target can be a biased estimate of the
“true” population in many cases (Abad, Garcia-
Garzon, Garrido, & Barrada, 2017; Reise et al., 2011).

In order to minimize this problem of a (possibly)
biased initial target, Abad et al. (2017) proposed to
empirically update the initial SL target by using the
iterated target rotation procedure developed by Moore,
Reise, Depaoli, & Haviland (2015). The extensive
simulation study by Abad at al. (2017) suggests that
their proposal is, to date, the best strategy for orthog-
onal exploratory bifactor analysis (i.e., exploratory
bifactor models in which all group factors are uncorre-
lated). In particular, it appears to perform substantially
better than the fixed-target proposal when there are
both (a) complex structures with many cross-loadings
and (b) pure indicators of the general factor.

At the time, this article was submitted, a paper by
Waller (2017) that we were not aware of was accepted
for publication. Waller’s proposal is based on a direct
SL approach and bears a close resemblance to the
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present proposal. For this reason, we have decided to
present our proposal first, and then compare it with
Waller’s in a specific section.

We turn now to the second strategy above. Bifactor
rotation procedures based on an initial EFA solution
in rþ 1 factors have been proposed by Jennrich and
Benter (JB) for the orthogonal (2011) and the oblique
(2012) cases. Jennrich and Bentler (2011, 2012) con-
sidered only two rotation criteria: bi-quartimin and
bi-geomin, and chose the gradient projection algo-
rithm to minimize the proposed criteria.

Unlike the SL approaches discussed above, the JB
solutions are free from proportionality constraints.
However, as well as the limited number of rotation
criteria available, they have other drawbacks which are
clearly discussed in Mansolf and Reise (2016). First,
when a solution in r factors or an SL solution with
proportionality constraints holds, the JB rotation with
rþ 1 factors breaks down. Second, although the JB
rotation criteria does not depend on the first column
of the pattern (i.e., the general factor), this factor is
also rotated in the process, and this implicit rotation
might shift variance to the general factor and lead to
local minima problems. At the empirical level, the
simulation study by Abad et al. (2017) suggests that
the JB procedures do not work better than SL-based
procedures, and, in particular, that the bi-quartimin
rotation is not a method to be recommended.

A new proposal on pure exploratory
bifactor analysis

In a pure exploratory bifactor analysis (PEBI), a cor-
relation matrix R between m indicators is analyzed,
and the solution in rþ 1 factors is rotated to approach
as much as possible the “ideal” bifactor pattern
described above according to some specified criterion
function. In more detail, R is decomposed as

R ¼ PUP 0 þW (1)

where P is a loading matrix of order m� (rþ 1), U is
the interfactor correlation matrix of order
(rþ 1)� (rþ 1), and W is a diagonal matrix of order
m�m. In the loading matrix P, r columns describe
the relationship between the m items and the group
factors in such a way that a given simplicity criterion
is maximized. The extra column in P contains the
loadings of the m items on the general factor. While
the group factors can be correlated (if the simplicity
criterion that is maximized allows them to be), the
correlation between the general factor and the group
factors is restricted to zero. Our proposal for assessing

this pure bifactor model is based on the following
four-step procedure.

Step 1. Define a partially specified target matrix

The aim in the first step is to build a target matrix H
of the general form P above. So, the target matrix H
can be partitioned as

H ¼ hg jHs
� �

(2)

where hg is a vector of m free parameters (related to
the general factor), and Hs is a target of order m� r
(related to the group factors). Because only some of
the values in Hs are specified (typically those that are
expected to be zero in the population model), H can
be defined as a partially specified target matrix, and
the main issue is to identify the free parameters in Hs

(usually there is just one free parameter per item).
Our procedure can use various approaches to do this:

1. The researcher can propose a target submatrix
Hs based on previous research results.

1. The SL-based target matrix proposed by Reise
et al. (2011) or the final iterated target in the proposal
by Abad et al. (2017) discussed above can be used.
The columns of group factors in the target matrix
obtained with any of these procedures corresponds to
the target submatrix Hs in our proposal.

In addition to these approaches, we propose a third
approach in which an initial factor solution in r fac-
tors is obtained from R, and then, a partially specified
target based on the r retained factors is automatically
built. Procedures for obtaining this type of target
matrix have already been proposed in the literature
on simple structure rotation criteria. Two examples
are Simplimax (Kiers, 1994) and Promin (Lorenzo-
Seva, 1999). The target matrix obtained by either of
these two rotation methods corresponds to the target
submatrix Hs in the present proposal.

Step 2. Identify the loadings on the general factor

In the second step, the correlation matrix R is factor
analyzed again, but now rþ 1 factors are specified. If
A is the initial loading matrix of order m� (rþ 1),
and H is the target matrix obtained in step 1, an
orthogonal semi-specified Procrustes rotation
(Browne, 1972) is performed in order to determine
the transformation matrix G that minimizes the dis-
tance between the product AG and the values speci-
fied in H,

f Gð Þ ¼ Q AG;Hð Þ: (3)
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Note that A (of order m� (rþ 1)) is rotated against
a target H of the same order, which has a first column
of free loadings intended to model the general factor.
Therefore, if we define the rotated loading matrix as
B¼AG, then B can again be partitioned as,

B ¼ bg jBs
� �

(4)

where bg is a vector that contains the loadings of the
m items on the general factor, and Bs is a matrix of
order m� r that contains the loadings of the m items
on the r group factors.

Step 3. Rotate the loadings on the group factors
to maximize factor simplicity

Once Bs is available from step 2, it can be further
rotated to maximize any orthogonal or oblique criter-
ion. For example, applied researchers generally prefer
to rotate loading matrices with the same rotation cri-
terion used in previous studies (e.g., the popular
Varimax). In addition, researchers would like to
inspect whether the group factors are correlated with
each other or not.

In order to rotate the group factors and maximize,
for example the Varimax criterion, the transformation
matrix S must be obtained as

f Sð Þ ¼ vmax BsSð Þ: (5)

In the same way, S can be an oblique transform-
ation matrix that maximizes an oblique rotation cri-
terion. For example, S could be obtained using
Promin rotation

f Sð Þ ¼ promin BsSð Þ: (6)

Step 4. Obtain the final exploratory
bifactor solution

The final transformation matrix is obtained as the
product

T ¼ G
1 0 0

0 S

� �
: (7)

where 0 is a column vector of r zero values. The final
rotated loading matrix is obtained as

P ¼ AT; (8)

and the interfactor correlation matrix is obtained as

U ¼ T�1T�10: (9)

It is noted that, in this fourth step, only the group
factors are rotated while the general factor loadings
are obtained in the same way as in the second step. It

follows from this proposal that potential biases and
misspecifications at step 2 (due e.g., to an inappropri-
ate target) are also expected to propagate to step 3.
How important this problem is in practice is assessed
in the simulation studies below.

The single group factor (r5 1) case

The situation in which a set of items is essentially uni-
dimensional, but in which a (generally small) sub-
group of items share specific variance is relatively
common in practice. Among other cases, this consist-
ent clustering might arise because of “method” effects
(e.g., similar item wording) or content specificity, as
illustrated in one of the examples below. Addressing
this situation involves fitting the bifactor model with
r¼ 1. So, the target matrix H in (2) can now be parti-
tioned as

H ¼ hg jhs
� �

(10)

where hg is a vector of m free parameters (related to
the general factor), and hs is a vector related to the
single group factor.

The PEBI approach can be easily applied to the sin-
gle group case if a target vector hs can be specified a
priori in step 1 above. Once the full H matrix in (10)
has been obtained, then only Step 2 above has to be
computed, and the rotated loading matrix B in (4) is
the final loading matrix.

If the information available is not sufficient to specify
hs, then we propose the full exploratory procedure that
follows. Assume that the loading matrix A above (of
order m� 2 in this case) is in the usual canonical form
(e.g., Harman, 1962). If it is, the second column of A is
bipolar, with one half of the loadings positive and the
other half negative, thus separating the items into two
clusters. Next, the cluster that explains of the least vari-
ance (i.e., the set that has the lowest sum of squared load-
ings) is selected as the set of items that form the group
factor. So, the corresponding values in hs are set as free
values, while the remaining values are defined as zero.

A comparison with Waller’s direct SL
approach (BiFAD)

From the point of view of our proposal, Waller’s
(2017) approach can be considered to have the same
general structure as PEBI but with alternative solu-
tions in steps 1 and 2. It should be noted that
Waller’s paper has a wider scope, but we shall only
focus on the exploratory part of his proposal which
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we shall call BiFAD, the name of the function used
(Waller, 2017).

The general structure common to PEBI and BiFAD
consists of setting a target for form (2) above, and
performing a rotation of an rþ 1 factor pattern
against this target. Now, with regards to target-setting
step one, Waller proposes to obtain the submatrix Hs

by (a) fitting an oblique solution in r factors, (b) set-
ting an arbitrary threshold value, and (c) dichotomiz-
ing each loading at this threshold to produce a signed
target of zeroes and ones. As for the rþ 1 pattern to
be rotated (step 2), Waller uses the initial factor solu-
tion in r factors with a vector of zeroes appended.
Finally, with regards to the remaining PEBI proposals,
BiFAD is only concerned with orthogonal rotations
and PEBI steps 3 and 4 above are not considered. The
single-factor case is not dealt with either.

The present proposal views the target specification
in BiFAD as a fourth possible alternative within
PEBI’s first step. More specifically, in comparison
with the Promin specification, Waller’s procedure is
simpler but has an unavoidable component of arbi-
trariness in the choice of the threshold. In contrast,
Promin automatically sets the threshold values as a
function of the distribution of the loadings in each
column (see Lorenzo-Seva, 1999).

With regards to the A initial matrix to be rotated,
Waller’s proposal is clearly simpler, as only the initial
matrix in r factors is required and there is no need to
then fit the rþ 1 solution in step 2. Now, if the hier-
archical bifactor model is correct, our rþ 1 column in
A (which is in canonical form) should be a column of
zeros, so the second extraction will be totally unneces-
sary. For this reason, Waller’s approach can be con-
sidered to be more confirmatory than PEBI: Our
approach assumes that the bifactor solution in r fac-
tors is only an approximation and that a certain
amount of common variance might not be accounted
for by this model. It should be noted, however, that
Waller (2017, Section 4.3) also considered the full
rþ 1 solution in conditions in which the hierarchical
bifactor model was not expected to be correct.

The more exploratory orientation of PEBI with
respect to BIFAD can also be seen in the choice of
the target rotation. BiFAD uses a Procrustes rotation
which assigns the same weights (i.e., 1) to the nonzero
loadings. This means that the method expects all the
items to contribute equally to the general and corre-
sponding specific factor. In contrast, in PEBI the rota-
tion is semi-specified, and the nonzero loadings are
freely estimated, which means that no hypothesis is
advanced about the amount of common variance of

each item related to the general and corresponding
specific factor.

The additional third and fourth steps proposed in
PEBI are expected to improve factor simplicity and
they are needed if an oblique solution is to be obtained
(the importance of oblique solutions is discussed
below). The extent to which they lead to important
improvements in practice, however, is a matter that
must be empirically assessed, and the simulation study
below provides some initial evidence on this issue.

Simulation studies

An extensive set of simulation studies was undertaken
to assess the functioning of PEBI under four general
scenarios: (a) the single-group-factor case, (b) the
uncorrelated (orthogonal) group-factor case, (c) the
orthogonal case when there is no general factor (i.e.,
the multiple orthogonal FA model), and (d) the corre-
lated (oblique) group-factor case. In scenarios (b), (c),
and (d) the performance of PEBI was compared to
that of previously proposed approaches.

The single group factor (r5 1) case

Independent variables

The study was based on a 3� 2� 2� 2 design with a
total of 24 conditions and 100 replicas per condition.
The independent variables were: (1) sample size
N¼ 200, 500, 2,000; (2) number of observed variables
m¼ 6, 12; (3) loading value sizes: low (largest com-
munality .65) and high (largest communality .85); and
(4) size of the general factor: the general factor
defined with loadings equal to the group factor load-
ings (GF¼ SF), the general factor defined with load-
ings larger than the group factor loadings (GF> SF).

Population loading matrices were built as follows.
Loading values in the general factor were randomly
chosen in the range [.50, .65] for condition GF¼ SF,
and in the range [.80, .95] for condition GF> SF. The
group factor was defined by two observed variables
(when m¼ 6), or by four observed variables (when
m¼ 12). Salient loading values in the group factor
were randomly chosen in the range [.50, .65]. The
nonsalient loadings in the group factor were all set to
zero. Once the initial loading had been generated, the
whole loading matrix was row scaled so that the max-
imum communality of any item was .65 or .85,
depending on the “loading value size” condition at
hand (low or large). Interfactor correlation matrix U
was set as a 2� 2 identity matrix.
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Data generation and model-data fitting

A total of 100 sample data matrices were simulated for
each condition according to the common factor model.
First, the reproduced population correlation matrix
(with communalities in the diagonal) was computed as

R� ¼ PUP 0 (11)

(see Equation (1)). The population correlation matrix
R was then obtained by inserting unities in the diagonal
of R�. Then, we computed the Cholesky decomposition
of R¼L0L, where L is an upper triangular matrix. The
sample data matrix of continuous variables X was finally
obtained as X¼ZL, where Z is a matrix of random
standard normal scores with rows equal to the corre-
sponding sample size, and number of columns equal to
the corresponding number of variables.

In all cases, the sample data matrices were fitted by
using procedures implemented in Matlab. Variables
were always treated as continuous and fitted using the
unweighted least squares (ULS) criterion. In order to
assess the bi-factor model in the simulated data, PEBI
was computed for the case of r¼ 1 (i.e., single group
factor case).

Dependent variables

Congruence and discrepancy indices were used to
assess the degree to which the true generated struc-
tures were recovered. The congruence index was the
Burt-Tucker coefficient of congruence, a measure of
profile similarity (see Lorenzo-Seva & ten Berge,
2006) that is defined as

/ x; yð Þ ¼
P

xiytffiffiffiffiffiffiffiffiffiffiffiP
x21

p P
y21
: 12ð Þ

Expression 12 was used to assess the congruence
between the columns of the population loading matrix
and the columns of the fitted loading matrices. The over-
all congruence between two loading matrices is usually
reported by calculating the average of the column con-
gruence. Lorenzo-Seva and ten Berge (2006) pointed out
that a value in the range [.85–.94] corresponds to a fair
similarity, while a value higher than .95 implies that the
factor solutions compared can be considered equal. The
discrepancy index was the root mean squared residual
(RMSR) between the population model and the data fit-
ted model, a measure of profile distance that is defined as

RMSR X;Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=mrð Þ

Xm
i

Xr

j

xij�yijð Þ2
vuut l: (13)

Results

Table 1 shows the congruence and RMSRs related to
the general factor and the group factor. The recovery
of the general factor was very good in all conditions:
congruencies above .95 (the cut-off reference sug-
gested by Lorenzo-Seva & ten Berge, 2006) and
RMSRs of about .053 or less. On the other hand, the
recovery of the group factor was generally worse. The
two most difficult conditions were: small sample size
(N¼ 200), and few observed variables (m¼ 6).

To assess effect sizes, analyses of variance were car-
ried out with the IBM SPSS Statistics v. 20 program.
Cohen (1988, pp. 413–414) suggested that threshold
values for eta squared (g2) effect sizes of .02 represent
small effects, .13 medium effects, and .26 or more
large effects. Sample size to some extent affected the
congruence of the general factor recovery (g2 ¼ .108).
Sample size (g2 ¼ .451 for congruence index) and
number of variables (g2¼ .261 for discrepancy index)
substantially affected the congruence and the discrep-
ancy of the group factor recovery. Finally, the effect
sizes of the interactions among independent variables
were generally small (lower than .035).

The uncorrelated group factors case

The main aim of this study was to use various orthog-
onal and oblique rotation criteria to assess the func-
tioning of PEBI when the bifactor solution in the
population was actually orthogonal. We also aimed to
compare it to existing procedures that allow for both
orthogonal and oblique rotations of the group factors
(i.e., the GPA Q4-based approaches). Finally, although
Waller’s (2017) BiFAD approach is only intended for
orthogonal solutions, we also included it in this study
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Table 1. Averages and standard deviations (given in
parenthesis) of congruence and discrepancy indices for
condition r¼ 1.

General factor Group factor

Condition Congruence Discrepancy Congruence Discrepancy

OVERALL .998 (.005) .034 (.075) .965 (.085) .071 (.059)
N¼ 200 .996 (.007) .053 (.024) .941 (.134) .095 (.063)
N¼ 500 .999 (.002) .033 (.014) .972 (.043) .069 (.050)
N¼ 2000 .999 (.001) .016 (.006) .981 (.035) .049 (.055)
m¼ 6 .997 (.006) .038 (.027) .942 (.112) .101 (.068)
m¼ 12 .999 (.001) .030 (.016) .988 (.029) .041 (.023)
Low loadings .997 (.006) .040 (.026) .951 (.112) .081 (.066)
High loadings .999 (.001) .028 (.016) .978 (.039) .061 (.050)
GF¼ SF .997 (.006) .039 (.025) .973 (.059) .070 (.056)
GF> SF .999 (.002) .030 (.019) .956 (.104) .072 (.062)

Note: GF¼ SF: General factor has been defined with loadings equal to the
loadings of group factor; GF> SF: General factor has been defined with
larger loadings than the group factor loadings. Congruence values larger
than .95 and discrepancies larger than .10 are printed in bold face.
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given its similarity to the PEBI approach dis-
cussed above.

The PEBI analyses considered in the simulation
study were based on nine rotation criteria aimed at
maximizing the simplicity of the group factors:
Varimax, Quartimax, Equamax, Orthogonal Promin,
Orthogonal Quartimin, Orthogonal Geomin, Oblique
Promin, Oblique Quartimin, and Oblique Geomin.
After running the analyses, however, we found that
the correlations among the outcomes ranged between
.918 and .951. The GPA-based analyses were based on
four rotation criteria: Orthogonal Quartimin,
Orthogonal Geomin, Oblique Quartimin, and Oblique
Geomin. In this case, the outcomes correlated with
one another in the range between .360 and .676.
Overall, to simplify the reported results, we decided to
report only the PEBI- and GPA-based outcomes
obtained by using Orthogonal Quartimin, the criterion
that led to the best performance of the GPA-based
analyses in the simulation study. Finally, to compute
BiFAD, a previous oblique rotation must be chosen.
We opted for oblique quartimin because it seemed to
be the most accurate in the illustrative example pro-
vided by Waller (2017). With these settings, all the
reported outcomes are based on the same rotation cri-
terion (quartimin), so any differences can be attrib-
uted to the different bifactor approaches.

In general terms, the design in this section
attempted to mimic the conditions expected to be
found in empirical applications and was partly based
on the study by Abad et al. (2017). The main differen-
ces were (a) the number of group factors in our study
ranged from 2 to 5; and (b) we manipulated the size of
the general factor. Abad et al. (2017) considered only
high-dimensionality solutions, starting from 4 group
factors, and in his study, the size of the general factor
was not manipulated. In addition, Abad et al. (2017)
included items that were pure indicators of the general
factor. We did not include this variable because, in a
previous simulation study, we observed that pure indi-
cators did not add much information to the outcomes.
As the study by Abad et al. (2017) was not carried out
in the same conditions as our own simulation study,
our outcomes cannot be directly compared with theirs.

Independent variables

A 3� 4� 2� 2� 3� 2 design with a total of 288 condi-
tions and 100 replicas per condition was used. The inde-
pendent variables were: (1) sample size N¼ 200, 500,
2,000; (2) number of group factors r¼ 2, 3, 4, 5; (3)
number of variables per group factor m¼ 6, 12; (4)

loading value sizes: low (largest communality .65) and
high (largest communality .85); (5) size of the general
factor: the general factor defined with loadings lower
than the group factor loadings (GF< SF), the general
factor defined with loadings equal to the group factor
loadings (GF¼ SF), the general factor defined with load-
ings larger than the group factor loadings (GF> SF);
and (6) cross-loadings: No (no cross-loadings in group
factors) and Yes (one item from each group factor
has a cross-loading in another group factor).

Population loading matrices were built as follows.
Loading values in the general factor were randomly
chosen in the range [.20, .35] for condition GF< SF,
in the range [.50, .65] for condition GF¼ SF, and in
the range [.80, .95] for condition GF> SF. To define
the group factors, a second value randomly chosen in
the range [.50, .65] was assigned as the loading related
to the corresponding group factor for each observed
variable. The nonsalient loadings were all set to zero.
Finally, in the conditions in which cross loadings were
present, a third loading value on r items (one item
per group factor) was randomly chosen in the range
[.50, .65] from a uniform distribution. Once the initial
loading matrix was available, the whole loading matrix
was row scaled so that the maximum communality of
any item was .65 or .85, depending on the “loading
value size” condition at hand (low or large).

Data generation and model-data fitting

Data was generated as in the first simulation study
with the difference that U was now a unit matrix of
order (rþ 1)�(rþ 1).

As in the previous study, variables were always
treated as continuous and fitted using the ULS criter-
ion. As mentioned above, the performance of PEBI
was compared to that of GPA-based, and
BiFAD approaches.

Dependent variables

As in the previous study, congruence and discrepancy
indices were used to assess the degree to which the
true generated structures were recovered, and the size
of the effect sizes were inspected using eta
squared (g2).

Results

Table 2 shows the congruence and RMSRs related to
the overall bifactor solution, the general factor, and the
group factors. Overall, the GPA-based approach had
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more difficulties in recovering the population model,
while PIBE and BiFAD performed quite well with con-
gruences above .95 and RMSRs lower than .10. BiFAD
was the approach that achieved the best results.

A better understanding of the performance of the
two best approaches can be obtained by inspecting
Table 3. The most “difficult” situation for PEBI was
when there were 2 group factors. Other difficult situa-
tions were: a small sample, a small number of
observed variables, the presence of cross-loadings, and
when the general factor has lower loadings than the
group factors. The general factor was best recovered
when it was better defined than the group factors, and
the group factors were best recovered when they had
larger loadings than the general factor.

While BiFAD was very successful here, its profile
performance was similar to that of PEBI except for
the number of group factors: the larger the number of
factors, the worse the performance of BiFAD in terms
of recovering the group factors. In contrast, PEBI
seemed to improve as the number of group fac-
tors increased.

In terms of discrepancy-based results (Table 4).
PEBI performed less well when there were 2 group
factors, a small sample, and the general factor was
lower than the group factor. It should be pointed out
that, in terms of discrepancy, BiFAD performed like
PEBI: the largest was the number of group factors, the
lowest was the distance between the population model
and the sample estimates.

The largest effect size for PEBI was the number of
group factors (g2 ¼ .239 and g2 ¼ .516 for correspond-
ence and discrepancy indices, respectively). As for
BiFAD, effect sizes are difficult to assess because the
ceiling effect means that variances are very low since
the values are so close to their upper limit. The effect
size is largest for the size of the general factor
(g2 ¼ .240 and g2 ¼ .560 for correspondence and dis-
crepancy indices, respectively): the outcomes were
optimal when the general factor and the group factors
were equal. Finally, interaction-related effect sizes
were generally small (lower than .066).

The case of uncorrelated group factors when a
general factor is not present in the population

The study above assessed the performance of PEBI
and competing procedures when the bifactor was the
correct population model. In contrast, this third study
aims to determine how they perform when there is no
general factor. In other words, when the “correct”
model in the population is the multiple orthogonal
model. For a well-functioning approach, the expected
outcome in this case would be as follows: (a) the gen-
eral factor would be residual, and (b) the group fac-
tors should approach the “true” orthogonal solution.
At the opposite extreme, an outcome consisting of a
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Table 2. Averages and standard deviations (given in paren-
thesis) of congruence and discrepancy indices related to
orthogonal Quartimin-based rotations.

Fit index
Pure exploratory

bifactor
Gradient projection

algorithm
Direct

Schmid–Leiman

Congruence
Overall .956 (.057) .913 (.100) .983 (.010)
General factor .952 (.126) .961 (.109) .994 (.009)
Group factors .957 (.065) .897 (.137) .980 (.012)

Discrepancy
Overall .082 (.055) .105 (.068) .067 (.028)
General factor .090 (.065) .097 (.064) .073 (.041)
Group factors .077 (.055) .104 (.076) .064 (.024)

Note: Congruence values larger than .95 and discrepancies larger than .10
are printed in bold face.

Table 3. Averages and standard deviations (given in parenthesis) of congruence indices for orthogonal population models.

Condition
Pure exploratory bifactor Direct Schmid–Leiman

Overall General factor Group factors Overall General factor Group factors

N¼ 200 .940 (.060) .938 (.138) .941 (.073) .977 (.013) .992 (.010) .972 (.015)
N¼ 500 .957 (.057) .950 (.133) .959 (.064) .984 (.008) .994 (.009) .981 (.009)
N¼ 2000 .972 (.048) .967 (.103) .973 (.054) .988 (.006) .995 (.008) .985 (.008)
r¼ 2 .909 (.803) .919 (.171) .904 (.106) .987 (.007) .992 (.011) .984 (.009)
r¼ 3 .964 (.047) .934 (.163) .973 (.033) .984 (.009) .994 (.008) .980 (.011)
r¼ 4 .976 (.022) .974 (.058) .977 (.022) .981 (.010) .993 (.009) .978 (.012)
r¼ 5 .976 (.020) .980 (.040) .976 (.022) .979 (.013) .995 (.007) .976 (.015)
m/r¼ 6 .949 (.061) .949 (.132) .948 (.075) .982 (.011) .993 (.010) .979 (.013)
m/r¼ 12 .963 (.051) .956 (.120) .967 (.053) .984 (.010) .994 (.007) .981 (.011)
Low Loadings .951 (.058) .950 (.123) .950 (.069) .981 (.012) .993 (.009) .977 (.014)
High Loadings .962 (.056) .953 (.129) .964 (.061) .985 (.008) .994 (.009) .982 (.010)
Cross-loadings¼No .971 (.047) .973 (.072) .971 (.062) .987 (.008) .997 (.003) .984 (.010)
Cross-loadings¼ Yes .941 (.062) .931 (.160) .944 (.067) .978 (.010) .990 (.011) .975 (.013)
GF< SF .949 (067) .873 (.194) .976 (.043) .980 (.007) .985 (.011) .978 (.008)
GF¼ SF .963 (.050) .987 (.022) .954 (.069) .990 (.009) .997 (.003) .988 (.010)
GF> SF .957 (.051) .996 (.004) .942 (.075) .979 (.011) .999 (.001) .973 (.013)

Note: GF< SF: General factor has been defined with lower loadings than the group factors loadings; GF¼ SF: General factor has been defined with load-
ings equal to the loadings of group factors; GF> SF: General factor has been defined with larger loadings than the group factors loadings. Congruence
values larger than .95 are printed in bold face.
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strong general factor together with group factors that
depart from the “true” pattern, should be considered
as unsuccessful recovery.

The present study used the same design as that
above with two differences: (a) only group factors
were present in the population, and (b) only 4 and 5
group factors were considered. Limitation (b) was
applied because in the previous simulation all the
methods performed well at these levels. Overall, the
study used a 3� 2� 2� 2� 2 design with a total of
48 conditions and 100 replicas per condition. The
data were generated as in the previous example, and
congruence was computed to assess the degree to
which the population group factors were recovered.
We also computed the amount of variance explained
by the fitted general factor, and the average variance
explained by the fitted group factors.

Results

Overall congruences between sample fitted group fac-
tors and the population group factors are displayed in

Table 5. The GPA-based approach performed worst,
BiFAD was just over the threshold of .95, and PEBI
gave the largest congruence value. In terms of amount
of variance, both PEBI and GPA introduced more
variance into the fitted bifactor loading matrix, which
is an expected result because both methods extract
rþ 1 factors. The amount of extra variance, however,
was very low when compared to that produced by
BiFAD (which extracts just r factors). In terms of rele-
vance of the general factor, the best solutions were
obtained by PEBI because this factor was clearly
residual. At the opposite extreme, BiFAD arrived at
solutions in which the general factor explained even
more variance than the group factors. Finally, the
GPA-based approach arrived at solutions in which the
fitted general factor explained a substantial amount of
variance, but this variance was less than that explained
by the group factors. The best performance of PEBI
here suggests that it is the most suitable approach for
a truly exploratory study in which the presence of a
general factor in the population is not warranted.

The case of correlated group factors

In this final study, we assessed the outcomes of PEBI-
and GPA-based methods when the bifactor model
with correlated group factors held in the population.
The design and conditions considered were the same
as those in the second study with two exceptions.
First, two of the factors were correlated in the range
[.40; .70] and the actual value in this range was ran-
domly drawn from a uniform distribution. Second,
the RMSR between the population and the fitted
interfactor correlation matrices was included as a
dependent variable.
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Table 4. Averages and standard deviations (given in parenthesis) of discrepancy indices for orthogonal population models.

Condition
Pure exploratory bifactor Direct Schmid–Leiman

Overall General factor Group factors Overall General factor Group factors

N¼ 200 .100 (.049) .110 (.061) .094 (.050) .076 (.025) .079 (.039) .074 (.021)
N¼ 500 .082 (.053) .090 (.063) .076 (.053) .066 (.027) .072 (.041) .062 (.023)
N¼ 2000 .064 (.057) .070 (.065) .059 (.056) .060 (.030) .068 (.042) .056 (.025)
r¼ 2 .146 (.060) .148 (.074) .144 (.065) .086 (.035) .094 (.051) .081 (.029)
r¼ 3 .072 (.036) .086 (.063) .063 (.028) .069 (.024) .074 (.038) .066 (.021)
r¼ 4 .056 (.023) .066 (.039) .052 (.021) .060 (.020) .066 (.034) .058 (.018)
r¼ 5 .050 (.020) .059 (.033) .048 (.018) .054 (.015) .058 (.029) .052 (.016)
m/r¼ 6 .090 (.061) .098 (.071) .084 (.062) .069 (.028) .076 (.041) .066 (.024)
m/r¼ 12 .074 (.047) .082 (.057) .069 (.046) .065 (.028) .070 (.040) .062 (.024)
Low loadings .082 (.052) .089 (.059) .078 (.051) .066 (.025) .070 (.037) .063 (.022)
High loadings .081 (.059) .090 (.071) .075 (.058) .069 (.030) .075 (.044) .065 (.026)
Cross-loadings¼No .070 (.048) .078 (.056) .065 (.049) .062 (.031) .066 (.044) .060 (.027)
Cross-loadings¼ Yes .093 (.059) .102 (.072) .088 (.058) .072 (.023) .080 (.037) .068 (.020)
GF< SF .092 (.061) .135 (.078) .071 (.052) .092 (.022) .120 (.028) .080 (.018)
GF¼ SF .081 (.056) .081 (.049) .082 (.060) .041 (.016) .039 (.017) .041 (.016)
GF> SF .071 (.044) .054 (.030) .077 (.051) .069 (.017) .059 (.019) .072 (.018)

Note: GF< SF: General factor has been defined with lower loadings than the group factors loadings; GF¼ SF: General factor has been defined with load-
ings equal to the loadings of group factors; GF> SF: General factor has been defined with larger loadings than the group factors loadings. Discrepancies
larger than .10 are printed in bold face.

Table 5. Averages and standard deviations (given in paren-
thesis) of congruence and common variance related to
orthogonal Quartimin-based rotations when a general factor is
fitted at the sample data, but is not modeled at the popula-
tion model.

Fit index
Pure exploratory

bifactor
Gradient projection

algorithm
Direct

Schmid–Leiman

Congruence of
group factors

.989 (.020) .888 (.112) .959 (.007)

Common variance
Total 20.361 (8.602) 20.361 (8.602) 19.991 (8.598)
General factor 0.879 (0.706) 2.513 (1.723) 3.789 (1.470)
Average of

group factors
4.326 (1.784) 3.960 (1.895) 3.591 (1.518)

Note: Congruence values larger than .95 are printed in bold face.
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PEBI analyses here were based on three maximiz-
ing-simplicity criteria: Oblique Promin, Oblique
Quartimin, and Oblique Geomin. However, once the
outcomes were available, we observed that they corre-
lated with one another between .914 and .966. In add-
ition, the GPA-based analyses were based on two
rotation criteria: Oblique Quartimin, and Oblique
Geomin. Once again, we observed a correlation of
.713 in this case. Overall, to simplify the reported
results, we decided to report both the PEBI- and
GPA-based outcomes based on Oblique Quartimin,
which was the criterion that produced the best per-
formance of the GPA-based procedures in the simula-
tion. Because all the reported outcomes are based on
the same rotation criterion, the differences obtained
can be attributed to the different bifactor approaches.

Results

The results are summarized in Table 6. In terms of
the overall congruence, PEBI was the best approach.

However, the GPA-based approach best replicated the
general factor, while PEBI best replicated the group
factors. In fact, the GPA-based procedure produced a
congruence value for the group factors that was under
the minimum threshold of .85 proposed by Lorenzo-
Seva and ten Berge (2006). The pattern is also the
same for discrepancy. Finally, PEBI was the approach
that best replicated the interfactor correlation matrix.
Overall, the outcomes in Table 8 suggest that PEBI
outperformed the GPA-based approach except for the
recovery of the general factor.

For a better understanding of the performance of
the two approaches, Table 7 shows the congruence
indices among the different levels of the independent
variables. As can be seen, the most complex situation
handled by PEBI was when there were two group fac-
tors. In this situation the general factor was recovered
very well (congruence of .984), but the group factors
were recovered very deficiently (congruence of .790,
which is under the critical threshold of .85). Except
for this condition, PEBI outcomes suggest a balance
between the recovery of the general factor and the
recovery of the group factors, which is slightly biased
in favor of the recovery of the general factor. In con-
trast, the GPA-based procedure clearly focuses on the
recovery of the general factor whereas the recovery of
the group factors is frequently under the critical
threshold of .85.

Table 8 shows the discrepancy results across the
different conditions. Overall, PEBI seems to perform
also systematically better in terms of discrepancy
except in the conditions in which there are no cross-
loadings. In fact, under this condition, the GPA-based
approach also gave the best results in terms of the
general and the content factors. Furthermore, the
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Table 6. Averages and standard deviations (given in paren-
thesis) of congruence and discrepancy indices related to
oblique Quartimin-based rotations.

Fit index
Pure exploratory

bifactor
Gradient projection

algorithm

Congruence
Overall .920 (.078) .864 (.117)
General factor .956 (.071) .968 (.062)
Group factors .902 (.113) .823 (.171)

Discrepancy
Overall .126 (.065) .141 (.076)
General factor .143 (.080) .139 (.078)
Group factors .119 (.066) .139 (.085)
Inter-factor correlations .178 (.094) .233 (.166)

Note: Congruence values larger than .95 are printed in bold face.
Congruence values lower than .85 are printed in italics.

Table 7. Averages and standard deviations (given in parenthesis) of congruence indices for oblique population models.

Condition
Pure exploratory bifactor Gradient projection algorithm

Overall General factor Group factors Overall General factor Group factors

N¼ 200 .892 (.085) .950 (.084) .867 (.125) .823 (.119) .967 (.060) .769 (.173)
N¼ 500 .921 (.075) .957 (.070) .903 (.111) .867 (.113) .969 (.061) .826 (.167)
N¼ 2000 .946 (.062) .961 (.056) .936 (.091) .903 (.106) .969 (.065) .875 (.156)
r¼ 2 .854 (.099) .984 (.015) .790 (.147) .763 (.123) .982 (.056) .654 (.187)
r¼ 3 .922 (.066) .952 (.063) .911 (.085) .868 (.108) .968 (.062) .835 (.145)
r¼ 4 .950 (.043) .944 (.083) .950 (.051) .906 (.086) .965 (.059) .891 (.107)
r¼ 5 .955 (.043) .945 (.089) .957 (.046) .920 (.078) .959 (.068) .913 (.092)
m/r¼ 6 .907 (.085) .953 (.081) .886 (.123) .847 (.122) .965 (.073) .802 (.178)
m/r¼ 12 .932 (.068) .959 (.059) .918 (.101) .882 (.110) .972 (.049) .845 (.161)
Low loadings .907 (.083) .954 (.077) .885 (.121) .849 (.119) .967 (.068) .802 (.174)
High loadings .933 (.070) .958 (.065) .919 (.103) .880 (.114) .970 (.056) .844 (.166)
Cross-loadings¼No .946 (.065) .964 (.050) .935 (.098) .928 (.089) .967 (.073) .908 (.133)
Cross-loadings¼ Yes .893 (.080) .948 (.086) .869 (.118) .801 (.108) .970 (.049) .738 (.163)
GF< SF .915 (.077) .892 (.094) .914 (.111) .872 (.116) .923 (.089) .847 (.169)
GF¼ SF .927 (.074) .981 (.012) .905 (.107) .868 (.116) .986 (.021) .823 (.168)
GF> SF .917 (.082) .995 (.004) .887 (.120) .854 (.119) .996 (.007) .800 (.174)

Note: GF< SF: General factor has been defined with lower loadings than the group factors loadings; GF¼ SF: General factor has been defined with load-
ings equal to the loadings of group factors; GF> SF: General factor has been defined with larger loadings than the group factors loadings. Congruence
values equal or larger than .95 are printed in bold face. Congruence values lower than .85 are printed in italics.
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GPA-based approach was frequently the method that
performed best in terms of the general factor.

For PEBI, the largest effect size was the number of
group factors (g2 ¼ .262 and g2 ¼ .624 for correspond-
ence and discrepancy indices, respectively), as it
happened for GPA-based approach (g2 ¼ .274 and
g2 ¼ .578 for correspondence and discrepancy indices,
respectively). In addition, the GPA-based approach
showed a considerable effect size for the cross-loadings
main effect (g2 ¼ .289 and g2 ¼ .063 for correspondence
and discrepancy indices, respectively). The effect sizes
of the interactions among independent variables were
generally small (none of them larger than .02).

Illustrative examples with real data

Example 1: The statistical anxiety scale

A 16-item version of the Statistical Anxiety Scale
(SAS; Vigil-Colet, Lorenzo-Seva, and Condon, 2008),
a measure of anxiety towards statistics, was adminis-
tered to a sample of 384 undergraduate students. The
reduced version used here is designed to assess (a)
two related dimensions of anxiety: Examination
Anxiety (EX; 8 items), and interpretation anxiety (IN;
8 items), as well as (b) a general dimension of statis-
tical-related anxiety (Vigil-Colet et al., 2008). All 16
items are positively worded and use a five-point
Likert response format, ranging from “no anxiety” (1)
to “considerable anxiety” (5).

Examination of the item scores showed that the
distributions were generally skewed. So, the item
scores were treated as ordered-categorical variables,
and the FA based on the polychoric interitem correla-
tions was the model chosen to fit the data. This model

is an alternative parameterization of the multidimen-
sional IRT-graded response model (see Ferrando &
Lorenzo-Seva, 2013).

The interitem polychoric correlation matrix had
good sample adequacy, Kaiser-Meyer-Olkin (KMO)
Test for Sampling Adequacy¼ .908 (Kaiser & Rice,
1974), and Schwarz’s Bayesian information criterion
suggested that a two-factor model was the most
appropriate. Next, a bidimensional EFA solution was
fitted by using Robust FA based on the Diagonally
Weighted Least Squares (DWLS) criterion as imple-
mented in the program FACTOR (Ferrando &
Lorenzo-Seva, 2017a), and reached acceptable good-
ness-of-fit levels: RMSEA¼ .072 (95% confidence
interval .057 and .075), CFI¼ .982 (95% confidence
interval .971 and .988), and Weighted Root Mean
Square Residual (WRMR)¼ 0.056 (95% confidence
interval .049 and .057). The columns on the left of
Table 9 show the Promin-rotated solution.

The rotated pattern in Table 9 agrees with the the-
oretically expected structure and has acceptable fit. So,
the conclusion reached by conventional EFA is that
the oblique two-factor model is quite appropriate for
this data. However, the estimated interfactor correl-
ation was .562, which suggests that a bifactor solution
(a general statistical anxiety factor and two group fac-
tors) would also be appropriate, and more so given
the purposes for which the SAS was designed.
Therefore, a pure bifactor exploratory solution as pro-
posed in this paper was then fitted. The target matrix
Hs in (2) was obtained by using the target matrix
obtained during the previous EFA rotation process
based on Promin. The bifactor solution was again
based on DWLS, and the rotation criterion to obtain
the S matrix was Promin (see Equation (6)). So, the
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Table 8. Averages and standard deviations (given in parenthesis) of discrepancy indices for oblique population models.

Condition
Pure exploratory bifactor Gradient projection algorithm

Overall General factor Group factors Overall General factor Group factors

N¼ 200 .139 (.061) .150 (.077) .134 (.063) .162 (.074) .149 (.080) .164 (.082)
N¼ 500 .126 (.065) .142 (.080) .119 (.066) .141 (.077) .138 (.078) .139 (.085)
N¼ 2000 .115 (.067) .136 (.083) .106 (.066) .120 (.073) .131 (.073) .114 (.082)
r¼ 2 .209 (.055) .196 (.087) .211 (.050) .236 (.068) .200 (.090) .247 (.074)
r¼ 3 .130 (.037) .152 (.066) .119 (.032) .139 (.053) .137 (.068) .135 (.059)
r¼ 4 .094 (.033) .124 (.068) .083 (.025) .104 (.038) .116 (.055) .097 (.043)
r¼ 5 .073 (.029) .099 (.063) .064 (.023) .085 (.032) .104 (.053) .078 (.034)
m/r¼ 6 .133 (.069) .148 (.084) .126 (.069) .150 (.078) .147 (.081) .148 (.086)
m/r¼ 12 .120 (.061) .137 (.076) .112 (.061) .132 (.074) .131 (.073) .130 (.083)
Low loadings .124 (.061) .136 (.074) .118 (.062) .141 (.073) .135 (.075) .141 (.081)
High loadings .129 (.069) .149 (.085) .120 (.069) .141 (.080) .144 (.080) .138 (.089)
Cross-loadings¼No .127 (.069) .147 (.086) .118 (.070) .122 (.081) .132 (.080) .114 (.092)
Cross-loadings¼ Yes .126 (.061) .139 (.073) .121 (.061) .160 (.066) .147 (.074) .164 (.070)
GF< SF .163 (.071) .230 (.062) .135 (.073) .165 (.090) .213 (.077) .143 (.099)
GF¼ SF .120 (.056) .124 (.043) .119 (.063) .140 (.071) .127 (.045) .144 (.083)
GF> SF .096 (.049) .075 (.030) .104 (.057) .118 (.059) .079 (.030) .129 (.071)

Note: GF< SF: General factor has been defined with lower loadings than the group factors loadings; GF¼ SF: General factor has been defined with load-
ings equal to the loadings of group factors; GF> SF: General factor has been defined with larger loadings than the group factors loadings. The lowest dis-
crepancy value for each condition and type of column (overall, general factor, and group factors) is printed in bold face.
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group factors were allowed to correlate. Goodness-of-
fit results were now better than in the previous model:
RMSEA¼ .064 (95% confidence interval .052 and
.068), CFI¼ .988 (95% confidence interval .977 and
.990), and WRMR¼ 0.045 (95% confidence interval
.040 and .046). This result is only to be expected given
that the bifactor model is more parameterized.

The right-hand columns in Table 9 show the
rotated bifactor pattern, which is quite a plausible
solution given the SAS design. Furthermore, as
intended, the solution for the group factors
approaches a simple structure. In order to assess
which items contribute most to the general factor, the
item explained common variance (I-ECV) was com-
puted (see Ferrando & Lorenzo-Seva, 2017b). Three
items on the IN subscale (items 6, 7 and 8), and four
items on the EX subscale (items 10, 11, 14, and 16)
had I-ECV values higher than .85.

Finally, the interfactor correlation between the
group factors in the solution above was .03, which did
not significantly differ from zero. This result suggests
that the two group factors become independent after
the general anxiety factor is modeled.

Example 2: Rotter’s locus of control scale

The second example illustrates the purely exploratory
procedure we have proposed for the single-group-fac-
tor case. For many years, the popular locus of control
scale (LOC) scale (Rotter, 1966) was the reference
instrument for measuring the bipolar personality
dimension of Locus of Control (internal vs. external
pole). So, the LOC was initially intended to be a

unidimensional measure. Few measures, however,
have been so questioned and factor analyzed as the
LOC. After more than 50 years and countless FA stud-
ies, dimensionality proposals range from essential uni-
dimensionality (Ferrando, Demestre, Anguiano-
Carrasco, & Chico, 2011, Lefcourt, 1991) to solutions
between 2 and 9 factors (Parkes, 1985). This scenario
is only to be expected because the LOC is a broad
bandwidth general-purpose scale, and its items pur-
posely refer to a series of well-differentiated domains
that can easily be identified as separate dimensions by
using FA methods (Rotter, 1990).

A parsimonious solution of the type above that is
found with some regularity is a bidimensional oblique
solution with a general factor that reflects Rotter’s
construct as initially defined, and a “political” factor
that reflects the respondent’s ability to control political
or large social institutions (Lefcourt, 1991, Mirels,
1970, Parkes, 1985). This solution has also been found
in our studies with the scale, and, given the interpret-
ation of the factors above, it appears to be more
appropriately modeled as a bifactor solution (a general
factor and a single group factor) than by a bidimen-
sional oblique solution.

The Spanish version of the LOC scale (Ferrando
et al. 2011) was administered to a sample of 1299
undergraduate students. This version is a translation
of the original scale in which neither the item content
nor the presentation are modified. So, it consists of 23
dichotomously scored items. As in the previous
example, item scores were treated as ordered-categor-
ical and the FA based on the tetrachoric interitem
correlations, an alternative parameterization of the
multidimensional two-parameter normal-ogive model,
was fitted to the data. Sampling adequacy was accept-
able, KMO Test for Sampling Adequacy¼ .80.

First, the unidimensional model was fitted by using
the same procedures as in the previous example. The
fit was only marginally acceptable: RMSEA¼ .070
(95% confidence interval .066 and .070), CFI¼ .893
(95% confidence interval .884 and .919), and
WRMR¼ .056 (95% confidence interval .056 and
.089). The solution had positive manifold, with most
of the loadings in the range .30 - .40, and the
explained common variance (see e.g., Ferrando &
Lorenzo-Seva, 2017b) was 0.71. To sum up, the results
support the hypothesis that there is a general factor
running through the 23 LOC items. However, the uni-
dimensional model is still unable to satisfactorily
explain all the interitem covariation.

The single-group bifactor solution was then fitted
using the exploratory procedure proposed in this
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Table 9. Outcomes of exploratory factor analysis (EFA) and
exploratory bifactor analysis (EBIFA) related to SAS. Loading
values larger than .20 are printed in bold face.

Item
EFA EBIFA

ECV

95%
confidence
interval

IN EX GF IN EX Point estimate inf sup

1 IN .98 -.09 .51 .78 -.11 .30 .23 .40
2 IN .90 -.16 .38 .72 -.12 .22 .13 .37
3 IN .85 -.11 .38 .70 -.06 .23 .11 .43
4 IN .76 -.14 .36 .57 -.16 .27 .13 .41
5 IN .61 .01 .46 .41 -.16 .52 .28 .78
6 IN .42 .30 .66 .21 -.12 .88 .71 .98
7 IN .37 .34 .60 .24 .01 .86 .69 .98
8 IN .28 .31 .56 .13 -.05 .94 .79 1.00
9 EX -.05 .91 .61 .18 .68 .43 .31 .58
10 EX -.04 .90 .85 -.05 .30 .89 .53 .96
11 EX -.12 .89 .79 -.11 .31 .85 .65 .94
12 EX -.02 .82 .60 .14 .55 .52 .37 .66
13 EX .02 .79 .56 .21 .60 .44 .26 .69
14 EX .04 .76 .75 .03 .27 .88 .67 .97
15 EX .10 .74 .64 .20 .45 .63 .47 .78
16 EX .09 .71 .76 .04 .20 .93 .73 1.00

Note: ECV: Explained common variance.
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article. The weakest negative pole of the second
canonical factor identified six items that were speci-
fied as free parameters in the group-factor column.
Inspection of the item content clearly revealed that
these items are those systematically identified as defin-
ing the Political factor in previous studies. The fit was
now quite acceptable: RMSEA¼ .046 (95% confidence
interval .046 and .050), CFI¼ .957 (95% confidence
interval .956 and .961), and WRMR¼ .041 (95% con-
fidence interval .040 and .041). The final bifactor solu-
tion is in Table 9.

The solution in Table 10 reveals some well-known
weaknesses of the LOT. Most of the item loadings on
the general factor (i.e., discriminating power) are
moderate to weak, and item 17 is a “noise” item with
no significant loadings on any of the factors.
Furthermore, item 2 makes practically no contribution
to the general factor. Apart from these limitations,
however, the solution is quite clear. The general factor
is well defined by most of the items and, more specif-
ically, 11 items have Explained Common Variance
values above .85. As for the group factor, it is defined
by the six “Political” items, as expected.

Discussion

In this article, we have proposed a purely exploratory
bifactor approach that incorporates known procedures
but which attempts to overcome certain limitations
noted in the approaches proposed so far.

Methodologically, our proposal combines semispeci-
fied Procrustes rotations, pure analytical rotations and
target rotations in which the target is built from the
initial solution. While these procedures are known,
combining and structuring them, as we propose here,
seems to be a new contribution. Its main potential
advantages are simplicity, flexibility and versatility.
With regards to simplicity, for example, once the gen-
eral-factor vector has been obtained, it is not involved
in any of the successive rotations. As for versatility
and flexibility, the initial target can be obtained from
three different approaches, and the group factors can
be rotated to satisfy any orthogonal or oblique criter-
ion to maximize factor simplicity. Our proposal can
also be used in the single group-factor case, a scenario
that does not appear to have been considered in
previous bifactor proposals.

The PEBI approach is closely related to Waller’s
(2017) BiFAD proposal, an approach that we were
unaware of when the first version of this article was
submitted. The comparison above and the results of
the simulation study suggest it is better to consider
the two approaches as complementary rather than as
competing alternatives. This point is discussed below
in more detail.

Because, so far, most of the proposed bifactor
approaches have assumed orthogonal group factors,
the relevance and advantages of fitting an oblique
solution deserve further discussion. To start with, the
main motivation in Jennrich & Bentler’s (2012) paper
was that an oblique rotation was expected to produce
pattern matrices that better approximate a simple
bifactor structure. Furthermore, in this pragmatic line
of reasoning, we note that an oblique solution can
always be first specified as default and, if the correl-
ation among group factors turns out to be negligible
(as in the first illustrative example), then the more
restricted orthogonal scenario can be modeled next.
The simulation results suggests that this strategy,
which was recommended by Browne (2001), works
well with PEBI and appears also to work well in appli-
cations. For example, Bellier-Teichmann, Golay,
Bonsack, and Pomini (2016) computed oblique bifac-
tor analysis in a model with three group factors and
reported that the correlations among group factors
ranged between .020 and .089, whereas Olino,
McMakin, and Forbes (2016) in another oblique bifac-
tor analysis reported that the correlation among group
factors ranged between .20 and .44. The negative side
to this proposal, however, is that an oblique solution
is potentially less stable than an orthogonal solution.
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Table 10. Outcomes of exploratory
bifactor analysis (EBIFA) related to LOC
loading values larger than .20 are
printed in bold face.
Item General factor Group factor

1 .41 �.06
2 .18 .50
3 .38 .09
4 .45 �.03
5 .31 �.03
6 .27 .07
7 .29 .09
8 .46 �.05
9 .52 .08
10 .31 .74
11 .50 .16
12 .59 �.20
13 .62 �.11
14 .34 .64
15 .55 .00
16 .22 .03
17 .12 �.01
18 .30 .71
19 .51 .04
20 .61 .00
21 .28 .23
22 .52 .04
23 .25 .29
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So, replication studies are highly recommended if an
oblique solution is to be adopted.

From a substantive point of view, an oblique solu-
tion might be hard to justify if the group factors are
viewed as mere disturbances, but could be meaningful
in some cases in which they are viewed as substantive
dimensions. In fact, Mulaik and Quartetti (1997) con-
sidered that in ability and personality domains the
orthogonality of the group factors might well be an
artifact. As an example in the first domain, in the ana-
lysis of cognitive abilities, and when rotations were
performed by using semianalytical approaches, it was
usual to leave the general “g” factor unrotated, keep it
orthogonal to the group factors, and rotate obliquely
these group factors viewed as additional components
of intelligence (e.g., Bernstein, 2012). As a second
example in the personality domain, consider the ana-
lysis of theoretically related dimensions, and a general
factor of response bias such as extreme responding or
acquiescence which generalizes across the items that
measure the different dimensions (e.g., Ferrando,
Lorenzo-Seva, & Chico, 2009). It seems reasonable
here to assume that the group factors are still related
by something other than the common influence of the
general factor.

The results of the simulation study suggest that our
proposal functions quite well, although it is not better
than the alternatives that were considered in all cases.
Thus, in the oblique case, the GPA-based procedure
tends to recover the general factor better than the
group factors, and, when an orthogonal bifactor
model holds in the population, Waller’s (2017) BiFAD
tends to perform better. Overall, however, in purely
exploratory scenarios in which there is little informa-
tion regarding the correctness of the model in rþ 1
factors, the strength of the general factor, or the rela-
tions among the group factors (i.e., orthogonal or
oblique) we believe that PEBI is the best option avail-
able at present. In more confirmatory scenarios and
in the orthogonal case, BiFAD would probably be the
method of choice. Indeed, the results are only general-
izable for the scenarios considered, and both the
simulation and the empirical studies have their share
of limitations. Thus, in the simulation study, only
continuous variables fitted by ULS were considered,
so we do not know if we would have obtained differ-
ent results if we had used other estimation procedures
or types of variable. However, we also note that in the
illustrative examples, the variables were treated as
ordered-categorical and were fitted with a different
estimation procedure (DWLS) and PEBI also appeared
to work well in these conditions.

In the context of exploratory bifactor models, fur-
ther research should be done in order to assess the
biasing effects of cross-loadings and correlated errors.
Even though the methodology for fitting exploratory
bifactor models has been available in the literature for
some time, these topics have not received a deep
treatment. Given that these misspecifications adversely
affect statistical fit in the context of exploratory factor
analysis, their effect in the context of bifactor models
should be properly studied.

Finally, we should mention the convenience of fit-
ting a bifactor model for a particular data set. It must
be noted that for any multidimensional data set in
which the dimensions are correlated with each other,
a bifactor model can always be computed using the
pure exploratory approach that we have proposed
here. However, the question is whether such a model
is well suited to the particular data set at hand. The
alternative to the bifactor model would be Thurstone’s
correlated-factors model. To decide which model is
most suitable for a particular data set, a number of
considerations must be taken into account. First, the
bifactor model must be coherent with the substantive
model that underlies the data set: if the theoretical
background is completely against the proposal of a
main general factor, then the bifactor model should
not be an option. Second, if both models are fitted,
the goodness-of-fit indices will systematically indicate
that the bi-factor model gives the best fit (rþ 1 factors
vs. r factors). However, the researcher must inspect
the factor solution to assess if the fitted model can be
considered a true bifactor model. Examples of defect-
ive bifactor models would be: (a) when the general
factor mainly shows lower loading values than the
salient group factor loadings (i.e., the general factor
explains a low amount of variance); (b) when the gen-
eral factor is defined by items related to a limited
number of group factors (i.e., none of the items
related to a particular group factor shows a salient
loading on the general factor); or (c) when the general
factor mainly shows much larger values than the sali-
ent group factor loadings (i.e., the group factors can
be viewed as residual factors). If the visual inspection
of the loading values reveals some of these situations,
then the bifactor model should not be an option. It
must be said that applied researchers are already using
these kinds of strategy when assessing the suitability
of a bifactor model. For example, Cho et al. (2015)
reported that they discarded the bifactor model due to
the lack of large values in the loadings related to the
group factors.
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The authors’ experience suggests that proposals
such as the present one are only used in practical
applications if they are implemented in user-friendly
and easily available software. In this respect, the pro-
cedure proposed here has been implemented in the
10.6 version of the program FACTOR (Ferrando &
Lorenzo-Seva, 2017a). Furthermore, given the results
discussed above, we also expect to implement Waller’s
(2017) procedures in the near future. Thus, to start
with, Waller’s proposal for defining the target matrix
can be included as an additional option in PEBI’s
first step.
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