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Monoclinic thulium-doped magnesium monotungstate,
Tm3*:MgWOs, is promising for efficient power-scalable
continuous-wave (CW) and passively Q-switched lasers at
>2 um. Under diode-pumping at 802 nm, a compact CW
laser based on Z-cut Tm:MgWO: generated 3.09 W at 2022-
2034 nm with a slope efficiency of 50% which represents
the highest output power ever achieved with this type of
laser host. Stable passive Q-switching of the Tm:MgWO:
laser is demonstrated for the first time using single-walled
carbon nanotubes (SWCNTs), graphene and Cr*:ZnS
saturable absorbers. Using the latter best performance are
achieved with 16.1 pJ / 13.6 ns pulses at 2017.8 nm with to

a maximum average output power of 0.87 W and a peak
power of 1.18 kW.

OCIS codes: (140.3380) Laser materials; (140.3580) Lasers, solid state;
(140.3540) Lasers, Q-switched.
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Tungstate crystals doped with rare-earth (RE) ions, e.g. Nd*,
Yb*, Tm®, or Ho* represent an important class of laser-active
materials [1]. A most prominent example is the family of
monoclinic double tungstates (MDTs) with chemical formula
KRE(WOx) where RE=Gd, Y or Lu. During the last decade, RE-
doped MDTs with ordered structure have been extensively



studied for the development of highly efficient near-IR lasers [2].
MDTs offer a strong anisotropy, broad and intense spectral
bands for the RE* ions and minimal fluorescence quenching.
They are Raman-active and possess suitable thermo-optic
properties. The family of the divalent-metal monotungstate
crystals with wolframite structure and chemical formula M*WO.
where M? is Mg, Mn, Co, Nji, Zn, Cd is known for long time but
has not been actively exploited for hosting laser active ions yet [3-
5]. Monodlinic disordered MWO: crystals were studied as
scintillators [6] and Raman shifters [4]. In contrast to the MDTs,
these monotungstates do not contain passive RE ions and doping
with laser-active REs are obviously be more difficult.

MgWOis (called huanzalaite when found as a mineral) is
monoclinic (point group 2/m, space group P2/c, lattice constants
1=4.686 A, b=5675A,c=4928 A, p=a’c=903°, Z=2) [3,7]. The
wolframite type structure of MgWOsis described as a network of
interconnected zigzag chains of alternate MgOs and WOk
distorted octahedra along the c-axis [3,4]. The Mg* cations are
distributed over two non-equivalent sites with a distorted VI-fold
O> coordination. MgWO: is optically biaxial. The principal
refractive indices are still unknown and the assignment of the
optical indicatrix axes {X, Y, Z} in MgWOs is arbitrary [8]. There
exist only rough data on the average refractive index n of MgWO:
(n ~2.1). It should be noted that the thermal conductivity of
MgWOix (~8.7 W/mK) is almost 3 times larger than that of MDT's
[9].

When MgWOu:is doped with RE*ions, they substitute for the
Mg? ones. The charge compensation is achieved by Mg
vacations or the various-valence impurity cations entering the
interstitial positions [10,11]. The distortion of the crystal field for
the RE* ions is facilitated by a significant difference in ionic radii
of Mg (0.72 A) and the RE* dopant (e.g, for Tm¥, the ionic
radius is 0.88 A). As a consequence, one can expect strongly
anisotropic and broadband absorption and emission properties
from the RE*-doped MgWO: crystals.

Cr** doped MgWO: has been grown and described in the
literature but no laser operation has been reported for this
transition metal dopant yet [12]. Systematic study of optical
spectroscopy and laser operation of RE*-doped MgWO: has
been carried out only for Yb* [8]. Under diode-pumping, a
maximum output power of 2.52 W at 1060 nm was generated in
the continuous wave (CW) regime with a slope efficiency of
~53%. The thulium ion (Tm¥) is attractive due to its broadband
emission around ~2 pm (the 3Fs —®Hs transition) which makes Tm
lasers suitable for remote sensing and medical applications. The
present work is devoted to Tm*-doped MgWO.. Power scaling
of a CW Tm:MgWO: laser and its passive Q-switching with
various saturable absorbers are demonstrated for the first time.
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Fig. 1. Spectroscopy of Tm* in monoclinic MgWOLx: (a) stimulated-
emission cross-sections, ose, for the principal light polarizations E | |
X, Y and Z; (b) gain cross-sections, og = fose — (1-p)oas, for light
polarization E | |'Y (°Fs —*Hs transition of Tm®, inversion ratio § =
NCF4)/Ntm).

The spectroscopy of Tm:MgWO: has been studied very
recently [13]. Tm:MgWOs possesses a broad absorption band
related to the 3Hes —Hu transition which is suitable for pumping
with AlGaAs diodes. The maximum absorption cross-section oabs
is 2.04x102 cm? at 802.6 nm for E | | X. For the 3Fs —Hs transition
corresponding to the 2 pm laser operation, a strong anisotropy of
the stimulated-emission cross-sections (ose), is observed, as
shown in Fig. 1(a). This strong anisotropiy implies a natural
selection of a linear polarization of the laser emission. The largest
ose of 243102 cm?is at 1877 nm and correspondsto E || Y. Thus,
the X-cut and Z-cut crystals are interesting for laser operation.
The gain cross-section spectra (05 = pose — (1-B)oas) for E 11,
exhibit a local maximum at ~2.02 um even at low inversion ratios
B, see Fig. 1(b), which makes Tm:MgWO: promising for laser
operation at wavelengths longer than 2 pm. In contrast, the gain
maximum of Tm*-doped MDTs is typically around 1.9 pm [2].

The Tm:MgWO: crystal was grown by the Top-Seeded
Solution Growth (TSSG) method using Na:2WOx as a flux. The
actual Tm concentration in the crystal was 1.41x10® cm?
corresponding to 0.89 at.%. From the as-grown crystal, a
rectangular sample was cut in the optical indicatrix frame with
dimensions 1.86(X)*3.96(Y)x3.05(Z) mm?. It was polished from
all sides to laser quality and remained uncoated. Two crystal
orientations (X-cut and Z-cut) were tested.

At first, we studied the CW performance of the Tm:MgWOx
laser. The experiments were performed in a microchip-type
cavity, see details in [14]. The laser crystal was mounted in a
water cooled (14°C) Cu-holder. Indium foil was used to provide
a better thermal contact between laser and Cu-holder. A plano-
plano cavity was composed of a flat pump mirror (PM)
antireflection (AR) coated for 0.77-1.05 um and high reflection
(HR) coated for 1.80-2.08 pm, and a flat output coupler (OC) with
transmission of Toc = 0.1%, 1.5%, 3%, 5% or 9% at 1.84-2.1 um.
Both the PM and OC were placed as close as possible to the



crystal. The laser crystal was pumped through the PM by a fiber-
coupled AlGaAs laser diode (fiber core diameter: 200 um, N.A.:
0.22) emitting unpolarized radiation at ~802 nm. To collimate and
focus the pump light we used an AR-coated lens assembly (focal
length: 30 mm, 1:1 imaging ratio). The radius of the pump beam
in the crystal was 100 um (beam quality factor M2 = 86, confocal
parameter of the pump beam 2zr=1.9 mm). The OCs provided a
partial reflection (R ~40%) at the pump wavelength. The total
pump absorption under lasing conditions was 14% and 30% for
the X-cut and Z-cut, respectively, as determined based on the
pump-transmission measurement under non-lasing conditions
and the rate equations.
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Fig. 2. Input-output characteristics of CW Tm:MgWOk: lasers based
on Z-cut (a) and X-cut (b) crystals, 1 - slope efficiency.

The power scaling characteristics of the CW Tm:MgWOx
lasers are shown in Fig. 2. For both crystal cuts, the laser output
was linearly polarized, E | |'Y, in agreement with Fig. 1(a). For the
Z-cut crystal, the maximum output power was 3.09 W at 2022-
2034 nm (multi-peak spectra due to etalon effects) corresponding
to a slope efficiency of 1 = 50% (with respect to the absorbed
pump powet, Pas) for Toc = 3%. The laser threshold was at Paxs =
0.18 W and the optical-to-optical efficiency with respect to the
incident power was 14%. At Pas >6 W, a roll-over of the output
dependences was observed. It can be attributed to thermal effects
or the decrease of the mode-matching efficiency for the pump
and laser beams under the condition of a strong thermal lens [14].
However, no thermal fracture of the crystal was observed. For
the X-cut crystal, similar values of r) were achieved but the power
scaling was limited by its low absorption.

By changing the OC, a spectral tunability in the 2020-2057 nm
range was observed, Fig.3. For high Toc, laser oscillation
occurred at ~2.02 um in agreement with the gain cross-section
spectra, see Fig. 1(b). The red-shift of the laser wavelength with
decreasing Toc is due to the quasi-three-level nature of the Tm?
laser.
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Fig. 3. Typical laser spectra from the Tm:MgWO: laser for various
transmissions of the output coupler (Toc), Pas=6 W.

Passively Q-switched (PQS) Tm:MgWOux lasers were realized
using a Z-cut oriented crystal because of the best performance in
CW operation. A set of saturable absorbers (SA) was studied: (i)
221 mm-thick AR-coated polycrystalline Cr*:ZnS SA (IPG
Photonics) with a small-signal transmission Tsa = 88.9%, (ii) a
commercial graphene-SA (Graphenea) containing 3 carbon
layers with Tsa =94.4%, produced by the CVD method, and (iii)
a custom-made SA based on single-walled carbon nanotubes
(SWCNTs) with Tsa = 97.9%, fabricated by the arc-discharged
method and randomly oriented in a 300 nm-thick PMMA film
[15]. The Tsa values are specified at the laser wavelength. The
graphene and SWCNT-SAs were deposited on uncoated 1.05
mm-thick quartz substrates. Carbon nanostructures have
attracted a lot of attention during the recent years due to their
broadband and ultrafast saturable absorption [15,16]. Cr*:ZnS is
a well-recognized SA for PQS of Tm lasers featuring high pulse
energies [17,18]. The SA was inserted between the crystal and OC
with minimum air gaps.

A fast InGaAs photodiode with 200 ps rise time (Alphalas,
model UPD-5N-IR2-P), and a 2 GHz digital oscilloscope
(Tektronix DPO5204B) were used for monitoring the Q-switched
pulses.

Stable passive Q-switching was achieved with all three SAs.
The laser output was linearly polarized, E | | Y. The input-output
dependences of the PQS Tm:MgWO: lasers are shown in
Fig. 4(a,b). For the Cr*:ZnS SA, the maximum average output
power reached 872 mW at 2017.8 nm corresponding to 1 =23%
and a conversion efficiency with respect to the CW mode fjconv =
47%. The laser operated with Toc=9% and emitted a single-peak
spectrum, see Fig. 4(c). Further power scaling was limited by
optical damage of the SA. For the SAs based on carbon
nanostructures, the power scaling was limited by the Q-
switching instabilities induced by heating of the SA by the
residual pump [19]. Toc = 5% was selected for the PQS lasers
based on carbon nanostructures. For SWCNT-SA, the laser
generated 317 mW at 2006-2021 nm with a multi-peak spectrum,
Fig. 4(d), n=22% and nconv =39%. When using graphene-SA, only
274 mW were extracted at shorter wavelengths, 2012-2015 nm
with lower 1 = 18% and 7o = 30%. This lower efficiency is
connected with a shift of the spectral emission to shorter



wavelengths, 2012-2015 nm, an indication of higher insertion loss
of the graphene-SA.
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Fig. 4. Input-output characteristics (a,b) and laser spectra (c,d) for the
Tm:MgWOu lasers PQS with Cr?:ZnS SA (a,c) and graphene-SA and
SWCNT-5A (b,d): 17 - slope efficiency. The spectra are recorded at Pas
=4 W (c) and at Pas=1.7 W (d). The crystal is Z-cut, E | | Y.

Using the Cr*:ZnS-SA, the pulse characteristics of the PQS
Tm: MgWO: laser (energy Eox and duration At, the latter
calculated as a full width at half maximum, FWHM) were
weakly dependent on P, see Fig. 5(a,c). This behaviour is typical
for “slow” SAs [20]. At Pas =421 W, the laser generated 16.1 pJ /
13.6 ns pulses at a pulse repetition frequency (PRF) of 54.2 kHz.
As aresult, the peak power Ppeak = Eou/AT reached 1.18 kW.
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Fig. 5. Tm:MgWO: lasers PQS with Cr2:ZnS SA (a,c), graphene-SA
and SWCNT-SA (b,d,): pulse energy (ab), and pulse duration,
FWHM (cd). Pas - absorbed pump power. The laser crystal is Z-cut,
EIlY.

SWCNT-5A and the graphene-SA based PQS laser, respectively.
The output characteristics of the PQS Tm:MgWOx lasers are
summarized in Table 1.

The oscilloscope records of the shortest Q-switched pulses
and typical pulse trains generated by the PQS Tm:MgWOu: lasers
are shown in Fig. 6. The intensity fluctuations in the pulse train
were <5% and <10% and the rms pulse-to-pulse timing jitter was
<7% and <15% for the Cr*:ZnS and SWCNT-5A, respectively.

Table 1 Output Characteristics of the PQS Tm:MgWO: Lasers
SA Pow, 1, fow, Eow, At, PRF,  Ppek
mW % % U] ns kHz W
CZnS 872 23 47 161 136 542 114
SWCNT 317 22 39 15 117 215 126
Graphene 274 18 30 12 200 229 6.0
Pout — average output power, 1 — slope efficiency, rjcon — Q-switching
conversion efficiency, Eot — pulse energy, At — pulse duration
(FWHM), PRF — pulse repetition frequency, Ppeak — peak power.
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Fig. 6. Oscilloscope traces of the Tm:MgWOix laser PQS by Cr?:ZnS
(), graphene-SA and SWCNT-5SA (b). (a) left — single pulse measured
at Pas=4.21 W, right- pulse train at Pas = 1.8 W, the total time span is
5 ms, PRF =24 kHz; (b) left — single pulses measured at Pas=1.83 W
(SWCNT-5A) and at 2.07 W (graphene-SA), right — pulse train for
SWCNT-SA at Pas = 1.6 W, the total time span is 500 ps, PRF = 197
kHz.

For the “fast” SAs based on carbon nanostructures (graphene
and SWCNTs), the pulse characteristics of the Tm:MgWO: laser
were dependent on the pump level, Fig.5(b,d). Using the
SWCNT-SA, 1.5 yJ / 117 ns pulses were achieved at PRF = 215
kHz. These parameters outperform those achieved with the
graphene-SA (1.2 pJ /201 ns pulses at PRF =229 kHz) due to the
lower fraction of the nonsaturable losses and, hence, higher
modulation depth for the SWCNT-SA [21]. The corresponding
maximum peak power reached 12.6 W and 6.0 W for the

In conclusion, we report on power scaling of a diode-
pumped Tm:MgWO: laser reaching ~3 W of output power at
~2.03 um with a slope efficiency of 50% which is comparable to
the best results achieved with Tm*-doped MDTs in similar
setups, see e.g. Ref. [14]. Microchip laser operation with X-cut and
Z-cut crystals is demonstrated indicating a positive thermal lens
in this crystal [14]. Stable passive Q-switching of the Tm:MgWOx
laser with Cr>:ZnS, graphene- and SWCNT-5SAs is realized for
the first time. Doping MgWO: with higher Tm?> concentration
(few at.%) is potentially interesting for highly-efficient multi-watt
CW and PQS lasers operating at wavelengths slightly above 2
pm. Tm:MgWO: s a candidate for ultrashort pulse mode-locked
lasers due to its broad and smooth gain profile both for the E | |
Y and E || X polarizations.
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