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Abstract

Measures initially designed to be single-trait often yield data that are compatible with
both an essentially unidimensional factor-analysis (FA) solution and a correlated-
factors solution. For these cases, this article proposes an approach aimed at provid-
ing information for deciding which of the two solutions is the most appropriate and
useful. The procedures we propose are an FA extension of the ‘‘added-value’’ proce-
dures initially proposed for subscale scores in educational testing. The basic principle
is that the multiple FA solution is defensible when the factor score estimates of the
primary factors are better measures of these factors than score estimates derived
from a unidimensional or second-order solution. Methodologically, new results are
obtained, and relations with factor indeterminacy measures and second-order FA are
discussed. The procedures have been implemented in a noncommercial and widely
known program for exploratory FA. The functioning of the proposal is assessed by
means of a simulation study, and its usefulness is illustrated with a real-data example
in the personality domain.
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Applications of the factor-analysis (FA) model to item analysis and individual scor-

ing conventionally use a random-regressors two-stage approach (e.g., McDonald,
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1982). In the first stage (calibration), the structural (item) parameters are estimated

using a limited-information procedure. In the second stage (scoring), the structural

estimates are taken as fixed and known, and factor score estimates are obtained for

each respondent.

A literature review shows that it is the first stage that receives by far the most

attention (e.g., Fabrigar, Wegener, MacCallum, & Strahan, 1999). However, many

instruments that are developed or calibrated with FA were designed for individual

assessment purposes, and when this is the case, it is the scoring stage that should be

the most important (Cliff, 1977; McDonald, 2011). More specifically, for this type of

instrument, our position is that the ultimate aim of the FA application is to provide

determinate, accurate, and valid factor score estimates for each potential respondent

from the population for which the test is intended.

Of the various FA models that can be used in applications, the unidimensional

(Spearman) model provides the clearest and most univocal interpretation of how this

instrument functions at the calibration stage (McDonald, 1982, 2011). Furthermore,

if the number of items is large enough, this model also allows most of the individuals

in the population to be accurately measured. Most instruments that were designed to

be single-trait, however, fail to meet the strict requirements for unidimensionality

(mainly uncorrelated residuals) of Spearman’s model (Furnham, 1990; Reise,

Bonifay, & Haviland, 2013), and when this occurs, a multiple correlated-factors solu-

tion is usually fitted to the data. Indeed, in goodness-of-fit terms, the more parame-

terized multiple model will always fit better than Spearman’s, and if enough factors

are specified, a well-fitting solution is likely to be obtained. The choice of the most

appropriate model, however, is a complex issue that goes beyond pure model-data

fit.

As well as bad model-data fit, several other problems are expected to arise when

a unidimensional model is fitted to data that are clearly multidimensional (Ferrando

& Lorenzo-Seva, 2010; Reise et al., 2013). An initial problem is differentially biased

item parameter estimates. A second is loss of information that might have implica-

tions in validity studies and in assessment. Finally, a third problem is factor score

estimates that lack univocal interpretation and which reflect the impact of multiple

sources of variance. On the other hand, however, fitting multidimensional models to

data that are essentially unidimensional is likely to lead to an endless spiral of alter-

native solutions, make theory unnecessarily complex, and give rise to weak factors

of little substantive interest (Ferrando & Lorenzo-Seva, 2017; Furnham, 1990; Reise

et al., 2013). These weak factors, in turn, may yield factor score estimates that are

indeterminate and unreliable, and which cannot provide accurate individual measure-

ment (Ferrando & Navarro-González, 2018; Beauducel, Harms, & Hilger, 2016).

There are several procedures and indices for assessing the quality of psychometric

FA solutions (Ferrando & Lorenzo-Seva, 2017; Rodriguez, Reise, & Haviland,

2016a, 2016b), and they should be routinely used to prevent the potential problems

above. As Ferrando and Navarro-González (2018) and Reise et al. (2013) noted,

however, there are many applications in which (a) an FA solution can be considered
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to be essentially unidimensional, (b) the multiple solution is clear and interpretable,

and (c) both the unidimensional and multidimensional solutions attain the standards

of strength, replicability, and accuracy. And, when these conditions arise, it is hard

to determine which solution will be the most appropriate and useful. Further infor-

mation for deciding on this issue can be gained by comparing the factor score esti-

mates provided by both solutions to see which of them most accurately measures the

dimensions which were established at the calibration stage. This is the idea behind

the present proposal.

In the context of educational measurement, and using classical test theory (CTT),

Haberman (2008) considered the counterintuitive situation in which subscale scores

are no better indicators of the subscale construct than total test scores, and argued

that, to be considered useful, subscores must provide more accurate measurements of

their construct than total scores. When this requirement is met, subscores are said to

have ‘‘added value.’’ Statistical procedures based on these principles have been pro-

posed and discussed in Haberman (2008), Haberman and Sinharay (2013), Sinharay

(2010, 2013), Sinharay and Haberman (2008), and Sinharay, Puhan, and Haberman,

(2011) in both CTT and item response theory (IRT) frameworks.

The ‘‘added value’’ principles and procedures mentioned above can be used in the

FA context considered in this article to help choose the most appropriate FA model.

The basic idea is to assess the extent to which factor score estimates in a primary fac-

tor derived from a multiple correlated solution are more accurate predictors of the

corresponding ‘‘true’’ factor scores than factor score estimates derived from a single

general factor. When they are, the correlated model is expected to provide more non-

trivial information than can be obtained from the unidimensional model. However, if

the unidimensional-based score estimates are as good as or better than the primary

estimates at predicting the primary factors, then the choice of the multiple model is

not justified.

Methodologically, the present article proposes procedures for assessing the

‘‘added value’’ principles on factor score estimates. So, our proposal is an adaptation

of an existing principle in a different field. This type of adaptation appears to be new,

and so are some of the results. Furthermore, relations between the FA-based added-

value principles and issues such as factor indeterminacy and second-order FA solu-

tions are established and discussed. This treatment also seems to be new. Overall, we

believe that our proposal is a potentially useful addition to the factor analytic toolbox

and allows the researcher to go beyond relying only on goodness-of-fit statistics. As

far as novelty is concerned, we note that several authors have already recommended

that the quality of the factor score estimates be routinely assessed and reported in

those FA applications in which they are relevant (Ferrando & Lorenzo-Seva, 2017;

Grice, 2001; Rodriguez et al., 2016a, 2016b). However, for the scenario considered

here, this recommendation is only a necessary first step because, if the factor score

estimates do not attain acceptable quality standards, the present proposal is no longer

necessary.
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Basic Results

We shall consider that the FA model is fitted by using the two-stage approach

described above. In the first stage we shall assume that item calibration is based on

the interitem correlation matrix but no other restrictions are imposed. So, calibration

might be based on (a) any type of unrestricted or restricted FA solution and (b) both

the linear model and the nonlinear model for ordered categorical variables (e.g.,

Muthén, 1984), which we shall denote here by CVM-FA (categorical variable metho-

dology-FA). In the first case, calibration is based on the Pearson interitem correlation

matrix. In the second case, it is based on tetrachoric (binary responses) or polychoric

(graded responses) matrices. Tetrachoric-based FA can be viewed as an alternative

parameterization of the IRT multidimensional two-parameter normal-ogive model,

whereas polychoric-based FA can be viewed as an alternative parameterization of

Samejima’s (1969) multidimensional normal-ogive graded response model (see

Ferrando & Lorenzo-Seva, 2013).

We turn now to the scoring stage, in which we shall use the terminology true fac-

tor scores to refer to the latent factor scores in the model (McDonald & Burr, 1967)

and factor score estimates to refer to the corresponding predictors. This terminology

makes it possible to establish clear relations with the CTT principles used in previous

developments. However, its use should be qualified. Strictly speaking, because of the

factor indeterminacy problem described below, there are no ‘‘true’’ parameters to be

approximated by the estimates, but rather an infinity of random variables that are

‘‘criterially’’ latent factors. So, the term estimates is not strictly correct in the usual

statistical sense either (see e.g., Maraun, 1996).

Let ûik be the factor score estimate of individual i in the k factor, and let uik be the

corresponding true factor score. As in Samejima (1977), we can write

ûik = uik + eik , ð1Þ

where eik denotes the measurement error. As is usual in single-group FA, we shall

assume that uk is distributed with zero expectation and unit variance. We shall fur-

ther assume that: (a) ûik is conditionally unbiased (i.e., E(ûik |uik) = uik), and (b) the

conditional distribution of ûk for fixed uk is normal. If (a) is fulfilled, then it follows

that E(êik |uik) = 0, so the measurement errors are uncorrelated with the true trait lev-

els. It then follows that the squared correlation between ûk and uk is

r2
(ûk uk ) =

Var(uk)

Var(ûk)
=

1

1 + Var(ek)
=

1

1 + E(Var(eik juik))
= r(ûk ûk ) ð2Þ

So (2) is both (a) the squared correlation between the true trait levels and their corre-

sponding estimates and (b) the ratio of true variance to observed variance. Both are

the standard definitions of a reliability coefficient (Lord & Novick, 1968), so (2) is

taken here as the reliability of the factor score estimates. This type of reliability was

initially proposed by Green, Bock, Humphreys, Linn, and Reckase (1984), who

denoted it by marginal reliability, a term that we shall also use here. Provided that
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Var(êik |uik) remains relatively uniform across trait levels, the coefficient in (2) is rep-

resentative of the overall precision of the scores as measures of the corresponding

factor (Brown & Croudace, 2015).

Expression (2) can be interpreted not only as an overall index of precision but also

as a factor determinacy index (see, e.g., Ferrando & Lorenzo-Seva, 2017). Because

more than one set of factor score estimates that are compatible with a given structure

obtained at the calibration stage can be constructed, factor score estimates are said to

be indeterminate (e.g., Beauducel, 2011). Furthermore, in practical applications, the

degree of indeterminacy is usually quantified by means of the correlation (or squared

correlation) between the factor score estimates and the true factor scores they predict

(e.g., Beauducel, 2011; Grice, 2001), which is indeed index (2). So, a high marginal

reliability value also means that (a) the factor score estimates are good proxies for

representing the true factor scores and (b) the different factor score estimates that are

compatible with the calibration results are also highly correlated with one another

(Guttman, 1955). This alternative conceptualization is useful for interpreting the

results below.

We shall now denote by uig the true factor scores in the single or general common

factor and by uik the true factor scores of the k primary factor in the multiple oblique

solution. The general factor can be estimated in one of these two ways: (a) as the

common factor obtained by fitting the unidimensional (Spearman) model to the inter-

item correlation matrix or (b) as a second-order factor based on the correlation among

the primary factors of the oblique solution. In this second way, the general factor is

understood as a higher-order attribute shared by the primary factors.

While choice (b) above is theoretically defensible, fitting Spearman’s model to

data which can strictly be considered to be multidimensional is more questionable.

However, the scenario considered here assumes that the data are close enough to uni-

dimensionality that no bias is expected in the loading estimates of the one-factor solu-

tion (Ferrando & Lorenzo-Seva, 2017; Rodriguez et al., 2016a, 2016b). When this is

the case, the one-factor solution is a close approximation to the second-order solution

(e.g., Mulaik & Quartetti, 1997). More specifically, if the second-order model is cor-

rect, Spearman’s model becomes a particular case of it in which both unique and error

variances are taken as residual variances (Rindskopf & Rose, 1988), and the one-

factor loadings are given by

lj =
X

k

ljkakg ð3Þ

where ljk is the loading of the j item on the k primary factor, and akg is the loading of

the k primary factor on the g second-order factor.

The Added Value of Multiple Factor Score Estimates

Assume first that the true factor scores in the k primary factor are to be linearly pre-

dicted from the factor score estimates on the general factor
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u0ik = bgk ûig: ð4Þ

From standard regression theory and the results above, it follows that

bgk =
r(uk , ûg)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + Var(eg)

p : ð5Þ

And the mean squared error of prediction (MSE) is

MSE(u0k � uk) = 1� r2(uk , ûg): ð6Þ

By recalling that the factors are scaled to have zero mean and unit variance, it fol-

lows that the proportional reduction in MSE (PRMSE) when using the general factor

score estimates rather than the mean of uk is simply r2(uk , ûg).

Assume next that the true factor scores on the k factor are now linearly predicted

from the factor score estimates on the k factor itself. The prediction now becomes a

variant of Kelley’s (1947) formula and takes the form

u0ik = r2(uk , ûk)ûik , ð7Þ

which, by using the marginal reliability definition in (2), becomes

u0ik = r(ûk ûk )ûik : ð8Þ

The corresponding MSE is

MSE(Kelley) = 1� r2(uk , ûk) = 1� r(ûk ûk ), ð9Þ

and the PRMSE when the k factor score estimates are used instead of the mean of uk

is simply r(ûk ûk ).

In the present context, Haberman’s (2008) rationale is that, for the k factor score

estimates to have added value, the PRMSE based on these estimates must be greater

than the PRMSE based on the general factor score estimates. Given the results above,

Haberman’s criterion in the present context implies that:

r(ûk ûk ) � r2(uk , ûg) ð10Þ

must be fulfilled for considering that the k factor score estimates have added value.

Criterion (10) is only of theoretical interest because the correlation between the

true factor scores in k and the estimated factor scores in the general factor is not

known. To provide operational criteria, we shall now consider the two ways in which

the general factor can be estimated.

Consider first that ug is obtained by fitting Spearman’s model to the appropriate

interitem correlation matrix. Next, factor score estimates derived from this model can

be obtained in the scoring stage. For each individual, both the factor score estimates
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on the general factor and the factor score estimates derived from the oblique model

are then available, so the product moment correlations r(ûk , ûg) can be empirically

computed. By standard attenuation theory (e.g., Lord & Novick, 1968) and the basic

results above, it follows that Criterion (10) can be operationalized as

r2
(ûk ûk ) � r2(ûk , ûg): ð11Þ

We shall denote (11) as the empirical criterion because it is based on the empirical

product–moment correlation computed from the corresponding set of factor score

estimates in the sample.

We turn now to the second way of obtaining the general factor. The structural

equation for the second-order FA model can be written as

uik = akguig + ji: ð12Þ

In the present scaling, the second-order loading akg is also the product–moment

correlation between the primary factor k and the general factor. If follows then that

criterion (10) can be written as

r(ûk ûk )

r(ûg ûg)

� a2
kg: ð13Þ

We shall denote Criterion (13) as a model-based criterion because the correlation

between the true factor scores in k and g is now estimated as a structural parameter

when the second-order FA model is fitted.

Expression (13) clearly shows that the determinants of the added value in the pres-

ent context are (a) the correlation between the true factor scores in k and g, (b) the

reliability of the general factor score estimates, and (c) the reliability of the primary

factor score estimates. So, when the general factor is strongly related to the primary

factors, and the reliability of its score estimates is larger than the primary reliability

estimates, no added value will be obtained and this leads to choosing the unidimen-

sional or second-order solution. Note that these conditions imply that the primary fac-

tors are highly correlated with each other and that the general factors are stronger

and less indeterminate than the primary factors. On the contrary, if the primary factor

score estimates are highly reliable and determinate, and the relation between them

and the general factor score estimates is only moderate, the expected result will be

added-value, and this will justify choosing the multiple model. This functioning

agrees with the previous mechanisms obtained in the CTT context (Haberman, 2008;

Sinharay et al., 2011).

Further Extensions: Weighted Averages

An additional question in the schema discussed above is whether the combined use of

the factor score estimates in the primary factor and the factor score estimates in the

general factor can substantially increase the precision with which the true primary

Ferrando and Lorenzo-Seva 7



factor scores can be predicted with respect to each of the predictors individually. In

practice, the most interesting scenario is when the primary factor score estimates have

added value, in which case the question to be asked is whether the PRMSE attained

can be even further improved by also considering the general factor score estimates

as predictors. In a more general context, the basic idea described so far was consid-

ered by Wainer et al., (2001) and is known as subscore augmentation: augmenting

data from a given subscale by using information from other parts of the test (or total

test scores in our framework). The weighted averages approach we shall propose in

this section is an FA adaptation of a proposal by Haberman (2008), which, in turn,

can be considered to be a particular case of subscore augmentation (Haberman &

Sinharay, 2010).

Assume that the true factor scores in the k factor are to be linearly predicted from

both (a) the factor score estimates in the k factor and (b) the factor score estimates in

the general factor

u0ik = bkk ûik + bgk ûig: ð14Þ

By using standard results in multiple correlation analysis together with results in

the previous sections, an empirical estimate of the PRMSE when using (14) can be

written as

R2
uk (ûk , ûg) = r(ûk ûk ) + v, ð15Þ

where

v =

r2(uk , ûg) 1
r(ûk ûk )

+ r(ûk ûk ) � 2

� �

1� r2(uk , ûg)
: ð16Þ

And where v� 0. So, the PRMSE when using (14) is always equal to or greater

than the proportional reduction solely based on the k factor score estimates r(ûk ûk ). It

is equal (i.e., v = 0) when r(ûk ûk ) = 1, which makes sense: when the primary factor

score estimates are perfectly reliable and determined, the proportional reduction is 1,

and the accuracy cannot be improved. Inspection of (16) also shows that the propor-

tional reduction increases as r(ûk ûk ) decreases and r2(uk , ûg) increases, which again

makes sense: the less reliable the primary factor score estimates are, and the more

related the primary factor is to the general factor, the more information can be bor-

rowed from the general factor score estimates.

The corresponding model-based result derived from fitting the second-order FA

model (12) is again (15) with

v =

akg
2r(ûk ûk )r(ûg ûg)

1
r(ûk ûk )

+ r(ûk ûk ) � 2

� �

1� akg
2r(ûk ûk )r(ûg ûg)

: ð17Þ
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Previous CTT-based proposals have stated that the PRMSE in (15) based on both

predictors should be substantially larger than each of the PRMSEs individually for

considering that the augmented subscores (14) have practical utility (Haberman &

Sinharay, 2010). However, how much larger it has to be also depends on the pur-

poses for which subscores are used. Haberman and Sinharay (2013) proposed a more

objective criterion that can tentatively be used in the present proposal. To simplify

notation, denote by PRMSE2 the proportional reduction (15) obtained with both pre-

dictors, and PRMSE1 the best reduction obtained with a single predictor. So when

both predictors are used precision is substantially larger than when a single predictor

is used if

PRMSE2 � PRMSE1 . 0:1(1� PRMSE1): ð18Þ

That is to say, when PRMSE2 reduces the distance of PRMSE1 from 1 by at least

10%.

Factor Score Estimates and Reliability Estimates

The procedures described in the sections above assume that the factor score estimates

are unbiased, which implies that (a) the true factor scores and the measurement errors

are uncorrelated, so (b) the variance of the factor score estimates is the sum of the

‘‘true’’ and ‘‘error’’ components (see Equation 2). Estimators in common use such

as maximum likelihood (ML), Bayes modal (MAP), or Bayes expected a posteriori

(EAP) are asymptotically unbiased (asymptotically in this context means that the

number of items increases without bound). For finite item sets, however, this is not

generally the case.

We start by considering applications based on the linear FA model. In this case

the ML estimates obtained under normality assumptions are Bartlett (1937) factor

score estimates, whereas Bayes estimates (both MAP and EAP) are the regression

factor score estimates for the oblique model (Thurstone, 1935), both of which can be

obtained in closed form. Bartlett score estimates are conditionally unbiased even for

finite item sets (e.g., McDonald, 2011). However, regression estimates are inwardly

biased (i.e., regressed toward the mean) and their variance is smaller than the unit

variance of the true factor scores they predict (Krijnen, Wansbeek, & Ten Berge,

1996). Finally, in the linear model the conditional error variance in (2) does not

depend on uk so for both ML and Bayes score estimates the marginal reliability can

be obtained in closed form (see, e.g., Ferrando & Lorenzo-Seva, 2017). This esti-

mated reliability is generally higher for the regression (Bayes) factor score estimates

(Beauducel et al., 2016). Overall, and given the results described so far, the proce-

dures proposed in this article are expected to be correct in the linear case when based

on Bartlett-ML estimated factor scores.

We turn now to the CVM-FA–based applications. In this case, neither the ML esti-

mates nor the Bayes estimates are unbiased in finite item sets (Lord, 1986): ML factor
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scores estimates are outwardly biased, whereas MAP and EAP estimates are inwardly

biased.

The biases described above potentially affect both the correlations between factor

score estimates and (in some cases) the marginal reliability estimates, so they are

expected to have an impact on the comparisons and criteria proposed here. The rele-

vance of this impact, however, depends on several factors. In general, it is expected

to be greater in short tests and in empirical comparisons (11). In model-based com-

parisons, only the marginal reliability estimate is expected to be affected in some

cases.

We start by considering ML estimates. The main problem here is that, in CVM-

FA, finite estimates do not exist for extreme patterns, and implausibly large estimates

might be obtained at both ends of the true u range (Lord, 1986). However, if the esti-

mates are constrained to be within a reasonable range (say 24 to + 4), the outward

bias is not expected to be a great problem in practice. Furthermore, corrections that

make ML scores even less biased in finite item sets, such as Warm’s (1989) WLE,

can also be used.

With ML estimates, the marginal reliability (2) can be estimated either empirically

or on the basis of the information function (e.g., Brown & Croudace, 2015). In the

first case the empirical variance of the estimated factor scores is used in the denomi-

nator of (2). In the second case, the expectation of the information can be obtained

by using quadrature approximations (see Ferrando, Navarro-González, & Lorenzo-

Seva, 2017, for details). Next, the marginal reliability estimate is computed as

r(ûk ûk ) =
1

1 + E( 1
I(uik )

)
, ð19Þ

where I(ui) is the amount of information at the i trait level. While the empirical mar-

ginal estimate can be affected by the outward bias of the ML estimates (i.e., increased

variance of the score estimates) estimate (19) is, in principle, free from bias.

The discussion so far indicates that, overall, ML estimates are more in agreement

with the basic measurement Equation (1) than Bayes estimates. So, the inward bias

and shrunken variance of these estimates (especially EAP) will be more problematic

for the present proposals also in the CVM case. However, CVM-FA–based Bayes

scoring provides finite and plausible estimates for all response patterns (Bock &

Mislevy, 1982), and mainly for this reason, this is the most common type of scoring

implemented in programs that perform CVM-FA. So, the use of MAP and EAP

scores in the procedures proposed here must be addressed.

In principle, the marginal reliability of Bayes estimates can be obtained by using

the squared posterior standard deviation (PSD) values as if they were error variances

in Equation (2)

r̂(ûk ûk ) =
1

1 + E(PSD2(ûik))
: ð20Þ
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As the number of items increases, the posterior distribution approaches normality

(Chang & Stout, 1993) and the PSD becomes equivalent to an asymptotic standard

error (Bock & Mislevy, 1982). So, for sets of more than, say, 10 items, the reliability

estimate (20) is expected to be reasonably correct. For very short item sets, however,

the PSDs are smaller than the standard errors because of the additional information

contributed by the prior. So, a correction in this case can be obtained from the follow-

ing approximate relation, which holds when the distribution of u is standard normal

(Wainer & Mislevy, 2000):

PSD(û) ffi 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I(û) + 1

q : ð21Þ

The correction consists of transforming the PSDs into information amounts using

(21) and then using the information values obtained in (19) to estimate the marginal

reliabilities. When used together with the model-based criterion (13) this reliability

correction is expected to lead to essentially correct results.

In the empirical-criterion case (11), however, the correlation r(ûk , ûg) when based

on Bayes (especially EAP) score estimates is expected to be upwardly biased with

respect to the value that would be expected if the score estimates were conditionally

unbiased. For this case, we propose the following simple correction. Denote by

s(ûkB)and s(ûgB) the observed standard deviations of the Bayes score estimates, and

define the corrected standard deviations as

sc(ûkB) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + E(PSD2(ûik))

q

sc(ûgB) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + E(PSD2(ûig))

q
: ð22Þ

The corrected empirical correlation rc(ûk , ûg) now becomes

rc(ûk , ûg) = r(ûk , ûg)
s(ûkB)s(ûgB)

sc(ûkB)sc(ûgB)
: ð23Þ

Implementation

The proposals made here have been implemented and tested in an experimental ver-

sion of FACTOR (Lorenzo-Seva & Ferrando, 2013 ), a well-known, free exploratory

factor analysis program. They are now available at http://psico.fcep.urv.cat/utilitats/

factor/ in the 10.08.01 release of the program. In order for them to be reported in the

outcomes, users must select the option Assess the added value of multiple factor score

estimates on the menu Configure advanced indices related to the factor model. Users

must also decide whether the Empirical or the Model based approaches are to be

computed. The outcomes are printed under the section Added value of multiple factor

score estimates.
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Simulation Study

An initial simulation study was undertaken to assess the sensitivity of the decision

mechanisms to their main determinants: (a) reliability of the factor score estimates

and (b) magnitude of the interfactor correlations. Furthermore, given the initial nature

of the study, we considered only the simplest and most basic scenario, characterized

by (a) only two primary factors, (b) continuous variables and Bartlett’s ML score esti-

mates, and (c) the empirical approach. This last choice is indeed the only one possible

given that a second-order factor cannot be obtained on the sole basis of two primary

factors.

Independent Variables

The study was based on a full 3 3 3 3 3 3 7 design with a total of 189 conditions

and 200 replicas per condition. The independent variables were (1) sample size N =

200, 400, 800; (2) number of indicators m = 10, 20, 30; (3) loading value sizes: low

(0.3), medium (0.5), and high (0.7); and (4) interfactor correlation: ranging from 0.20

to 0.80 in increments of 0.10. Variable (1) is expected to introduce more or less ran-

dom sampling error in the different conditions, whereas variables (2), (3), and (4) are

the main theoretical determinants of the outcomes of the procedure. Note specifically

that the reliability of the factor score estimates largely depends on the number of the

items that define the factor and the magnitude of their loadings (see, e.g., Ferrando &

Lorenzo-Seva, 2017).

In all cases, the simulated patterns consisted of a bidimensional independent-

clusters solution, with m/2 items defining each factor, and with the same loading

value for all the items. Thus, for example, in the condition m = 10, with a low load-

ing value, the pattern matrix would have the form

P =

:3 0

:3 0

:3 0
:3 0

:3 0
0 :3
0 :3
0 :3
0 :3
0 :3

2
66666666666664

3
77777777777775

Dependent Variables

In each condition, the dependent variables were the PRMSE based on the general fac-

tor score estimates and the PRMSE based on the primary factor score estimates. To

simplify the results the PRMSEs corresponding to the first and second factors were

averaged, thus providing a single value per condition.
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Results

The outcomes of the simulation study clearly showed that the impact of the sample

size was virtually negligible. For this reason, we decided to present only the results

averaged across sample sizes (the full results are available from the authors). They

are shown in Figure 1. The thick solid line is the average PRMSE based on the gen-

eral factor, whereas the dotted line is the average reduction based on the primary

factors.

Overall, results in Figure 1 are meaningful and add interesting information. To

start with, the PRMSE based on the primary factors is simply the reliability of the

primary factor score estimates, which, in this case, does not depend on the interfactor

correlation values (so it is a horizontal line in the graph). It does, however, clearly

depend on the number of indicators and the magnitude of the loadings, as it should

(note how the dotted line rises as a function of these determinants).

In the low-loading conditions, the outcomes of the procedure would lead to the

unidimensional model being chosen in all the conditions considered. This result

makes sense: with low loadings the primary factors are unreliable and poorly defined

and the twice-as-long general factor leads to better predictions even when interfactor

correlations are low.

In the medium-loading conditions the results are more complex, and the outcomes

vary mainly as a function of test length and interfactor correlation. Note that with m

= 20 the bidimensional model would only be chosen when the interfactor correlation

is very low, whereas with m = 30 the unidimensional model would be the model of

choice when the interfactor correlation exceeds the 0.50 threshold.

Finally, in the high-loading conditions, the results still make sense. When, in

addition to the high loading, the number of indicators per factor is also relatively

high, the primary factors are well defined and the derived scores are reliable. In

these cases, the bidimensional model would be the model of choice except when

the interfactor correlation is very high (i.e., when the simulated model is virtually

unidimensional).

As a final comment, it is also worth noticing the compensatory way in which the

number of items and the magnitude of the loadings act in determining the reliability

of the primary factor score estimates, as the first graph in each row of Figure 1 is very

similar to the last graph in the previous row.

An Illustrative Example

The Smoking Habits Questionnaire (SHQ) is a 22-item measure developed to assess

different situations that stimulate the desire to smoke in habitual smokers. It was

designed to measure three primary dimensions: (a) stress or relief from stress (9

items), (b) activity (7 items), and (c) boredom (6 items). However, it was also con-

sidered suitable for use as a general measure that assesses the desire to smoke across

a variety of situations. The SHQ items ask the subjects to imagine themselves in a

given situation and to rate on a 5-point scale their desire to smoke. The standard

Ferrando and Lorenzo-Seva 13



analyses (e.g., Ferrando & Lorenzo-Seva, 2000) yield a clear solution in three sub-

stantially correlated factors that closely agrees with the structure expected a priori.

In this example, we reanalyzed the SHQ data used in Ferrando and Lorenzo-Seva

(2000), which was based on a sample of 255 participants. For illustrative purposes,

both the linear and the CVM FA models were fitted to this data, and in both cases,

calibration was carried out by using robust unweighted least squares estimation as

implemented in FACTOR. First, Spearman’s model was fitted to the appropriate

interitem correlation matrix. Second, an unrestricted oblique solution in three factors

was obtained by using Promin (Lorenzo-Seva, 1999) rotation. Finally, a second-order

solution with a single general factor was obtained based on the primary interfactor

correlation matrix. Because only three primary factors were specified, the second-

order solution is just-identified, so the fit is the same as that of the oblique solution.

Goodness of model-data fit was assessed by using both the conventional approach

and the recent proposal by Yuan, Chan, Marcoulides, and Bentler (2016) based on

equivalence testing. This is a new approach to assessing the fit of structural equation

models that aim to endorse a model under the null hypothesis rather than reject it.

However, adjusted cutoff values derived from this perspective (T-size values) are

derived at present only for the root mean square error of approximation (RMSEA)

and the comparative fit index (CFI) measures based on the linear model. In our anal-

yses, both measures were based on the second-order (mean and variance) corrected

chi-square statistic proposed by Asparouhov and Muthen (2010). Model-data fit

Figure 1. Results of the simulation study
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results are in Table 1. Because they are very similar for the linear and CMV FAs,

they will be discussed together.

Overall, the fit of Spearman’s models does not reach the limits of acceptability,

whereas the fit of the tridimensional model is excellent by all standards. Regarding

equivalence testing in particular, we note that the minimum tolerable sizes of model

misspecification (T-sizes) for both RMSEA and CFI are very good in this model.

However, the explained common variance index indicates that 83% to 84% of the

common variance in the SHQ items can be explained by a single general factor. This

value is above the cutoff values proposed in the literature (Ferrando & Lorenzo-

Seva, 2017; Rodriguez et al., 2016a, 2016b), so it supports using the SHQ as a gen-

eral measure.

For each FA model (linear and explained common variance), Table 2 shows the

unidimensional pattern and the Promin rotated pattern with the dominant loadings

boldfaced. The bottom of the table shows the Burt–Tuker congruence coefficients

for assessing the similarity of the solutions. This is a measure of profile similarity

(see Lorenzo-Seva & Ten Berge, 2006) that is defined as

u x, yð Þ=
P

xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
x2

i

P
y2

i

p : ð24Þ

Expression (24) was used to assess the congruence between the corresponding col-

umns of the loading matrices. The overall congruence was obtained as the average of

the column congruences.

As Table 2 shows, the congruence values are in all cases high enough to consider

the two solutions virtually identical (Lorenzo-Seva & Ten Berge, 2006). So, we will

again discuss them together. First, Spearman’s solution exhibits positive manifold

with substantial loadings for all the items, and Hancock and Mueller’s (2001) H index

is very high, suggesting that the single factor is strong, well defined, and replicable

(Ferrando & Lorenzo-Seva, 2017; Rodriguez et al., 2016a, 2016b). Second, the solu-

tion in three factors is quite clear and is close to the structure expected ‘‘a priori.’’

Furthermore, the generalized H indices (see Ferrando & Lorenzo-Seva, 2017) are

acceptably high in all cases, suggesting that all the three primary factors are strong,

well-defined, and replicable. Overall, the results in Tables 1 and 2 make it hard to

decide on what the most appropriate modelling is in this case.

Tables 3 (linear FA) and 4 (CVM FA) show the results of the procedures proposed

in this article. The factor score estimates were Bartlett-ML in the linear case and EAP

in the CVM case. In the latter case, both the marginal reliability estimates and the

empirical correlations were corrected as described in Equations (21) to (23). The mar-

ginal reliability estimates of the general factor were 0.93 (linear) and 0.97 (CVM)

when based on Spearman’s model, and 0.92 (linear) and 0.96 (CVM) when based on

the second-order model.

There is substantial agreement among the results obtained across procedures

(empirical and model-based) and models (linear and CVM). So, the common results

will be discussed first. As for the main determinants: (a) the three primary factors are
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substantially correlated, so the correlations between the general factor score estimates

and the primary factor score estimates are also high; (b) the marginal reliabilities of

the primary factor score estimates are rather high; and (c) the marginal reliability of

the general factor score estimates is higher than that of any of the primary estimates.

Results (a) and (c) above would run against added-value conclusions. However, the

high marginal reliabilities (and so degree of determinacy) of the primary factors tips

the balance in favor of the added value decision. Note that this decision is less clear

in the case of the first primary factor (stress) which is the one that is most related to

the general factor. In fact, in one of the cell results (empirical approach, linear FA)

no added value is considered. Finally, we note that the present added-value results

are in agreement with the results of the simulation study discussed above, as the con-

ditions of the empirical study are similar to those in the first two graphs of the last

row in in Figure 1 with an interfactor-correlation value around 0.50.

As for the common weighted-averages results shown at the bottom of Tables 3

and 4, according to criterion (18), when both the general factor score estimates and

Table 2. Factor Solutions for the Illustrative Example.

Linear solution CVM solution

Items GF PF1 PF2 PF3 GF PF1 PF2 PF3

i1 .491 .635 2.138 .021 .575 .660 2.106 .066
i2 .617 .646 .078 2.059 .701 .643 .179 2.053
i3 .637 .728 .054 2.099 .776 .729 .198 2.077
i4 .575 .749 2.099 2.043 .638 .772 2.043 2.045
i5 .650 .595 2.057 .173 .728 .628 2.038 .214
i6 .610 .705 .104 2.157 .657 .757 .139 2.188
i7 .590 .589 .012 .037 .648 .627 .042 .037
i8 .698 .534 .099 .138 .746 .590 .125 .109
i9 .614 .483 2.007 .203 .663 .523 .027 .184
i10 .509 .093 2.206 .735 .549 .092 2.229 .800
i11 .684 .037 .143 .645 .731 .047 .147 .679
i12 .608 2.022 .186 .572 .647 –.046 .214 .612
i13 .604 2.074 .075 .748 .674 2.097 .108 .817
i14 .548 .120 2.234 .784 .602 .170 2.274 .828
i15 .649 2.120 .384 .529 .679 2.146 .407 .567
i16 .530 .097 2.148 .693 .576 .101 2.168 .758
i17 .651 .150 .653 2.041 .701 .162 .703 2.042
i18 .656 .558 .143 .018 .712 .559 .214 .015
i19 .636 .032 .851 2.116 .675 .019 .902 2.105
i20 .661 2.015 .706 .103 .705 2.020 .756 .111
i21 .633 .037 .844 2.119 .679 .085 .861 2.134
i22 .619 2.103 .499 .356 .651 2.102 .524 .365
GH-index .932 .898 .897 .889 .949 .919 .922 .917

Note. CVM = categorical variable methodology. Factor Congruence: GF = 0.9994; PF1 = 0.9988; PF2 =

0.9934; PF3 = 0.9990; Overall = 0.9976.
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the primary factor estimates are used the PRMSE is substantially larger than the

PRMSE when the best single predictor is used in virtually all cases (those marked

with an asterisk).

In spite of the general agreement of the results discussed so far, consistent discre-

pancies also appear in Tables 3 and 4. With regard to the procedures, the general-

factor PRMSEs are always larger when obtained empirically than when based on the

second-order-model. And, as for the across-model comparisons, the marginal reliabil-

ity estimates of all, general, and primary factor score estimates are always larger under

the CVM-FA model. Together these results imply that the differences in PRMSEs that

lead to the added-value decision are largest under model-based estimation and CVM-

FA modelling. Also, given the smaller marginal reliabilities obtained in the linear

case, it is under this model that the weighted-averages increases are largest.

The results obtained so far are now summarized. Although the SHQ can be justifi-

ably used as a unidimensional measure, the three-factor solution is clear, strong, and

interpretable. Furthermore, the factor score estimates derived from the multiple solu-

tion are more accurate measures of the corresponding dimension than the general

Table 3. Added-Value Results for the Illustrative Example. Linear FA.

(a) Interfactor correlation matrix and basic estimates

F1 F2 F3 rk̂ĝ akg rk̂k̂

F1 1 0.90 0.95 0.88
F2 0.64 1 0.81 0.77 0.88
F3 0.56 0.46 1 0.78 0.70 0.88

(b) Proportional MSE reduction

Empirical Model based

From ĝ From k̂ From ĝ From k̂

F1 0.92 0.88 0.83 0.88
F2 0.76 0.88 0.54 0.88
F3 0.71 0.88 0.45 0.88

(c) Proportional MSE reduction. Weighted averages

Empirical Model based

From both ĝ and k̂ From k̂ From both ĝ and k̂ From k̂

F1 0.99 0.88* 0.96 0.88*
F2 0.93 0.88* 0.90 0.88*
F3 0.92 0.88* 0.89 0.88

Note. FA = factor analysis; MSE = mean squared error of prediction.

* = substantial PRMSE according to (18).
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factor score estimates based on a single-factor or a second-order solution. So, more

relevant information for individual assessment is expected to be obtained if the tridi-

mensional solution is chosen. Finally, if individual measurement accuracy is highly

relevant (e.g., in high-stakes decisions), then the accuracy of the primary factor score

estimates is expected to be substantially enhanced if factor score estimates based on

the general factor are also used in the prediction. Note however that the use of this

procedure implies either (a) fitting both the unidimensional and the multidimensional

models or (b) fitting a second-order model.

Discussion

The approach proposed in this article has implications for two general issues in FA

applications. The first one is that goodness-of-fit alone is not a sufficient criterion for

deciding whether a given solution is appropriate or for choosing between two or

more alternative solutions. The second is that the factor scoring results are the most

relevant when the ultimate aim of the FA application is individual assessment. This

Table 4. Added-Value Results for the Illustrative Example. CVM FA.

(a) Interfactor correlation matrix and basic estimates

F1 F2 F3 rk̂ĝ akg rk̂k̂

F1 1 0.87 0.92 0.93
F2 0.70 1 0.78 0.76 0.93
F3 0.66 0.54 1 0.75 0.72 0.92

(b) Proportional MSE reduction

Empirical Model based

From ĝ From k̂ From ĝ From k̂

F1 0.81 0.93 0.83 0.93
F2 0.65 0.93 0.54 0.93
F3 0.60 0.92 0.45 0.92

(c) Proportional MSE reduction. Weighted averages

Empirical Model based

From both ĝ and k̂ From k̂ From both ĝ and k̂ From k̂

F1 0.96 0.93* 0.95 0.93*
F2 0.96 0.93* 0.94 0.93*
F3 0.95 0.92* 0.93 0.92*

Note. CVM = categorical variable methodology; FA = factor analysis; MSE = mean squared error of prediction.

* = substantial PRMSE according to (18).
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second issue does not appear to have received much attention in the FA literature

(see Ferrando & Navarro-González, 2018). However, the first one has received some

attention in recent years, in which awareness that overreliance on purely statistical

model-data fit is not the way to go has clearly been growing (Ferrando & Lorenzo-

Seva, 2017; Rodriguez et al., 2016a, 2016b). In agreement with both positions, we

proposed an approach for deciding between two alternative FA solutions (unidimen-

sional vs. correlated-multiple) that goes beyond model-data fit and is mostly based

on the scoring results.

Methodologically, the present proposal is an adaptation to the FA context of pro-

posals and principles that were originally made in the CTT context. Furthermore, the

basic determinants we derived in the FA context are in agreement with those origi-

nally obtained in CTT (which is indeed a positive result). Even so, we believe that

our FA adaptation is an original contribution, and as mentioned above, is of clear

interest for the FA practitioner. It is simple, feasible, and provides an auxiliary source

of information that allows the researcher to supplement decisions that, so far, are

based solely on goodness-of-fit benchmarks. Furthermore, its implementation in a

free, well-known, and user-friendly program makes it more likely to be used in

practice.

It is acknowledged that the proposal has its share of limitations and points that

deserve further study. For example, we found certain discrepancies across methods

and FA models that deserve further, possibly simulation-based research. In particular,

the PRMSEs are always larger when obtained empirically than when obtained via the

second-order model, and the marginal reliability estimates based on the CVM-FA

appear to be too optimistic.

The added-value criterion is an ‘‘internal’’ criterion, as are all the previous pro-

posals on the accuracy and determinacy of the factor score estimates (e.g., Tucker,

1971). However, when (a) individual prediction is also an aim of the study and (b)

relevant outside variables are available, then ‘‘external’’ criteria based on the rela-

tions between the estimated factor scores and these variables (e.g., Tucker, 1971)

could also be considered to choose the most appropriate solution. Thus, a simple and

immediate ‘‘external’’ extension of the approach proposed here would entail compar-

ing the squared multiple correlation between the primary factor score estimates and

the outside variable to the squared bivariate correlation between the general factor

score estimates and this variable. Certain issues, however, such as the choice of the

most appropriate type of factor score estimates in this context (e.g., Skrondal &

Laake, 2001), the role of marginal reliabilities in correcting for attenuation effects,

and the development of empirical and second-order model-based approaches clearly

require further research.
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