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Abstract

A common difficulty in the factor analysis of items designed to measure
psychological constructs is that the factor structures obtained using
exploratory factor analysis tend to be rejected if they are tested statistically
with a confirmatory factor model. An alternative to confirmatory factor
analysis is unrestricted factor analysis based on Procrustes rotation, which
minimizes the distance from a target matrix proposed by the researcher. In the
present article, we focus on the situation in which researchers propose a
partially specified target matrix but are prepared to allow their initial target to
be refined. Here we discuss RETAM as a new procedure for objectively
refining target matrices. To date, it has been recommended that this kind of
refinement be guided by human judgment. However, our approach is
objective, because the threshold value is computed automatically (not decided
on by the researcher) and there is no need to manually compute a number of
factor rotations every time. The new procedure was tested in an extensive
simulation study, and the results suggest that it may be a useful procedure in
factor analysis applications based on incomplete measurement theory. Its

http://eproofing.springer.com/journals_v2/printpage.php?token=eOjvLkjxTTKh1brkQXVjJp2_HkUL89uhuX4xTmZOvy_Iw7wSY4ICZg

2/33



4/2/2019 e.Proofing

feasibility in practice is illustrated with an empirical example from the
personality domain. Finally, RETAM is implemented in a well-known
noncommercial program for performing unrestricted factor analysis.
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Factor analysis (FA) applications designed to assess the structure of test items
are frequently based on the correlated-factor model, in which item scores are
assumed to measure two or more (related) dimensions. Furthermore, the pattern
of the relations between the items and the factors is typically expected to
approach a simple structure (Thurstone, 1947), but this expectation is generally
based on not too strong or incomplete substantive measurement theory (e.g.,
Henson & Roberts, 2006; Myers, Jin, Ahn, Celimli, & Zopluoglu, 2015).

FA assessment of item structures can be handled using either unrestricted or
exploratory factor analysis (EFA) or the more restrictive confirmatory factor
analysis (CFA) model. A common difficulty in the FA of items designed to
measure psychological constructs (such as personality, attitude, or
psychopathology), however, is that the structures obtained using EFA tend to be
rejected if they are statistically tested with a CFA model. To solve this problem,
some practitioners have proposed models based on very few items, because they
seem more likely to show an acceptable fit. In addition, items are sometimes
discarded ad hoc until the fit is acceptable. These procedures are likely to
capitalize on chance, so they cannot be recommended (Ferrando & Lorenzo
Seva, 2000).

To gain some insight into the source of the problem above, we shall first
consider the unrestricted FA model based r factors, which for a given item Y is

Y; :)\jlel+)\j292—|-'~-—|—)\jr97.—|-5j. 1
In the clearest structure corresponding to this model, each item will have a

salient loading on only one factor, and small or minor loadings on the remaining
factors. The resulting structure will be a perfect simple structure, a more
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restrictive approach than the simple-structure concept advocated by Thurstone
(1947), which corresponds to the idea of factorial simplicity as stated by Kaiser
(1974). Now, when a factor structure of this type is assessed with CFA, the usual
practice is to set the minor loadings found in the unrestricted solution (typically
those below .20, .30, or even .40) to zero. The corresponding CFA model is thus

given by (e.g.):

yj:)\j101+002+"’+097«+5j. 2

This equation corresponds to the maximum simplicity, in Kaiser’s (1974) sense.
In the model based on Eq. 2, it is hypothesized that the minor loadings found in
the unrestricted solutions are consistent with exact zeros in the population: Each
item is supposed to be a factorially pure measure of one sole trait, in the sense
that only this trait contributes to the variance of the item (Thurstone, 1947).

Although Model 2 is regarded as the ideal model, because it assigns meaning to
the estimated traits in the most unambiguous fashion (McDonald, 2005), the
assumption that all the items in a multidimensional questionnaire are pure
measures of a single trait is submitted to be generally unrealistic (Ferrando &
Lorenzo Seva, 2000). Therefore, if Model 1 is correct for the data, and Model 2
is fitted, a bad fit would be expected due to errors of specification, which in this
case would be errors of omission (significant loadings incorrectly omitted or
fixed to zero).

A viable alternative for assessing item structures under incomplete measurement
theory or when Model 2 is thought to be unrealistic (and so too restrictive) is to
use unrestricted or exploratory FA with target or Procrustes rotation (e.g.,
Browne, 2001), a hybrid approach that can be conceptually situated between
EFA and CFA (Asparouhov & Muthén, 2009). This approach provides an
unrestricted solution in which the model parameter values (particularly zeroes)
are not imposed. Rather, the sample factor solution is rotated to fit the proposed
population model as closely as possible, but the model parameters are not
artificially fixed to their expected values in the population.

Target rotation has been developed over more than seven decades (e.g., Mosier,
1939; Tucker, 1944), and at present many versions and approaches are derived
from its basic concept. This basic concept is (a) to define a target matrix H in
which the expected values for the loading parameters in the population are
specified, and (b) to rotate the initial loading matrix A so as to provide a least-
squares fit to H. By way of example, consider an expected factor model with
three factors (» = 3) and nine items (m = 9), in which each factor is expected to
be defined by three items, and the following target matrix is proposed:
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To assess the fit of sample data to this target matrix, the unrotated loading matrix
A should be rotated using an orthogonal Procrustes rotation (Cliff, 1966) or an
oblique Procrustes rotation (Mosier, 1939). Matrix H above is fully specified as
it was proposed in earlier versions of the target procedure (e.g., Tucker, 1944).

A less restrictive approach, in which the proposed target is only partially
specified, can also be considered, and it corresponds to latter specifications of
the procedure. In this approach, only the parameter values that are expected to be
zero in the population are specified in the target matrix. The partially specified
target for the example above would in this case be

*x 0 0

/* 0 0\

*x 0 0

0 = O
H=]0 x« 0],

0 = O

0 0 =«

0 0 =x

KO 0 *)

where the asterisks indicate the parameters that are not specified (i.e., the free
parameters in the loading matrix). To assess the fit of the sample data to this
partially specified target matrix, the unrotated loading matrix A should be
rotated using an orthogonal partially specified Procrustes rotation (Browne,
1972b) or an oblique partially specified Procrustes rotation (Browne, 1972a;
Gruvaeus, 1970).

In the context of fully exploratory FA (i.e., situations in which researchers do not
explicitly propose a target matrix H or H"), some exploratory rotation
procedures that aim to identify the best possible simple structure have also
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adapted the Procrustes rotation approach. These exploratory rotation methods
use a two-step procedure: In the first step, a target matrix H (or H') that
maximizes factor simplicity is identified by using a simple structure rotation,
and in the second step, the unrotated loading matrix A is rotated using a
Procrustes rotation to fit the identified H target matrix. For example, Promax
rotation (Hendrickson & White, 1964) uses Varimax rotation (Kaiser, 1958) in
the first step to identify a fully specified target matrix H, and oblique Procrustes
rotation in the second step. Another example is Promin (Lorenzo-Seva, 1999): In
the first step, Promin uses weighted Varimax rotation (Cureton & Mulaik, 1975)
to identify a partially specified target matrix H', and oblique partially specified
Procrustes rotation in the second step.

In the present article, we focus on the situation in which the researcher is able to
tentatively propose a partially specified target matrix H* but is prepared for it to
be refined. For example, in cross-cultural studies, a researcher can propose a
target hypothesis for a new cultural population based on the results obtained in
previous different populations. However, he or she is willing to admit that this
hypothesis can be modified or refined to some extent when the new population is
assessed. This kind of situation is described by Browne (2001, p. 125), who
suggested that the target might be changed after the first rotation so that any
previously unspecified element in H could be specified to be zero, and new
rotations could then be carried out until the researchers were satisfied with the
outcome. Our proposal, however, is not guided by human judgment (as Browne
suggests), but by objective criteria.

In the procedure we propose, the initial target is theoretically or substantively
based, but the subsequent modifications are empirically driven. So, in the
exploratory—confirmatory continuum, our proposal falls closer to the exploratory
pole than the standard target rotation. This partially data-driven character means
that some problems (mainly capitalization on chance) might appear, and, as we
discussed below, they must be addressed. Overall, however, the results in this
article suggest that our proposal is expected to be quite useful in applied
research, especially when data have a complex structure. It can also be regarded
as a complement to, or in some cases even a better alternative than, the
analytical rotation procedures that have existed to date. From a methodological
point of view, finally, the refinement strategies we propose are adapted from
existing two-step rotation procedures (like Promin) that aim to identify simple
structure solutions and build partially specified target matrices H'.

Recently, Moore, Reise, Depaoli, and Haviland (2015) proposed a procedure
(iterated target rotation) in which a partially specified target rotation H" is
iteratively improved on the basis of an arbitrarily chosen threshold. This
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procedure, which was recently adapted to the context of bifactor models by
Abad, Garcia-Garzon, Garrido, and Barrada (2017), bears close resemblances to
our proposal. The main difference between the two is that ours starts with a
substantively informed target, whereas in Moore et al.’s proposal the initial
target is obtained from a standard factor rotation (i.e., it is empirically
informed). Further relations and differences will be discussed below in more
detail.

A new proposal for objectively refining a target
matrix

In the unrestricted factor analysis of test items, a correlation matrix R between m
items 1s analyzed in order to extract » factors, and the corresponding unrotated
loading matrix A of order m x r is rotated so as to approach the proposed
population model as closely as possible. In more detail, R is decomposed as

R =P&®P | ¥, 3

where P is a rotated loading matrix of order m x r, ® is the interfactor
correlation matrix of order » x r, and ¥ is a diagonal matrix of order m x m. In
the rotated loading matrix P, the loading values describe the relationship
between the m items and the » modeled factors. The partially specified target
matrix H” is a hypothetical proposal about how the relationships in P should be.

Our proposal to obtain an objectively refined target matrix (RETAM) starts from
the unrotated loading matrix A and the partially specified target matrix H"
proposed by the researchers. The RETAM proposal is based on the following
iterative four-step procedure:

Step 1 An initial transformation matrix S, is obtained as

f (So) = Procrustes (ASy, H"), 4

where S is a transformation matrix that minimizes the distance between the
product B = AS, and the partially specified target matrix H*. We propose that the
oblique rotation algorithm proposed by Browne (1972a) be used as the
Procrustes rotation. We prefer oblique to orthogonal rotation because the former
tends to produce simpler rotated matrices B.

Step 2 In this step, the partially specified target matrix is refined. This
involves comparing a threshold value with the obtained rotated loading
values in B. Where Moore et al. (2015) proposed using an arbitrary value
chosen by the researchers (e.g., Moore, 2013, tested the values .05, .10, and
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.15), we prefer to use a more objective approach for determining the
thresholds, and in particular the Promin approach (Lorenzo-Seva, 1999),
which is specifically intended for a partially specified target (the scenario
considered here). In Promin, a threshold value is obtained for each column
of B in a four-step procedure. First, matrix C is computed as the row-
normalization of B. Second, the mean and the standard deviation of the
squared elements of each column of C are computed. Let v ( x 1) be the
vector with the means, and let s ( x 1) be the vector with the standard
deviations. Third, the objective threshold value t (j=1...r)for each
column is obtained as

Sj 5
t; =+ —.
J ”J‘|'4

Finally, once the threshold values are available, a new partially specified target

;. 1s built: Each squared element c?j i1s compared to the corresponding
threshold value l in order to decide whether the 4 i element in Hj, is to be
specified as a zero value or set as an unspecified parameter. Later in this article,
we shall discuss the refinement strategies that can be applied to build the refined
target matrix Hy . When k> 1, if the matrices H; and H; , are identical (i.e.,
no changes have been made to the refined target matrix), then the objective
refinement of the target matrix is finished, and the procedure must move on to
the final step. It is acknowledged that other methods could be used to establish
an objective refinement. For example, Moore (2013) proposed using the standard
errors of the rotated loadings to determine whether the zero value falls within the
95% confidence intervals of the loading: If so, the loading is set to zero in the
target matrix; otherwise, the element is set as a nonspecified element. Other
researchers might prefer to compute the loading confidence intervals by using
resampling techniques. On some occasions, the iteration could get stuck in an
infinite loop (if H; and Hj_, are identical but H} and H; , are not
identical): To avoid this, a maximum of number iterations can be set in advance.
We must point out that in our simulation studies we never found such strange
situations.

Step 3 A new transformation matrix S, is obtained as

f (Sk) = Procrustes (AS;, H}), 6
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where S, minimizes the distance between the product B = AS, and the partially
specified target matrix Hj . Again, it is based on oblique Procrustes rotation.
Once B is available, go to Step 2.

Final step The final transformation matrix S is obtained as

f(S) = Procrustes (AS, H;), 7

where the Procrustes rotation can be either orthogonal (Browne, 1972b) or
oblique (Browne, 1972a), depending on the restrictions that have been imposed
on the population model. The final rotated loading matrix is obtained as

P = AS, 8

and the interfactor correlation matrix is obtained as

=515t 9

Refinement strategies related to RETAM

As we already pointed out, different refinement models can be applied in Step 2
to build the refined target matrix Hj . We propose three refinement strategies
related to RETAM:

Make Complex (MC) The specified elements of the initial partially specified
target matrix H* (i.e., the values defined as zero values in the target matrix) can
be changed to nonspecified values in the refined target matrix Hj . From a
practical point of view, these would be situations in which researchers would
assume that some of the items in the analysis that were initially defined as

factorially pure could actually be complex items (i.e., items with cross-loadings).

From a substantive point of view, the refinement of the target matrix is the least
possible refinement, and the refined target matrix H; does not importantly
contradict the substantive model on which the initial partially specified target
matrix H* is based.

Make Simple (MS) The nonspecified elements of the initial partially specified
target matrix H* can be changed to specified values in the refined target matrix
H,. (i.e., values defined as zero values in the target matrix). This is the
refinement proposed by Browne (2001, p. 125). From a practical point of view,
these are the situations in which researchers assume that the items in the analysis
might be incorrectly assigned to a factor in the initial target matrix (i.e.,
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misspecified items). From a substantive point of view, the refinement of the
target matrix is more important than in MC, and the refined target matrix Hj
can importantly contradict the substantive model on which the initial partially
specified target matrix H*is based. Researchers must carefully study how the
refinement procedure has changed the initial proposal of the target matrix H* in
order to assess whether the final target matrix Hj, can be accepted from a

substantive point of view.

Complete Refinement (CR) All elements of the initial partially specified
target matrix H* can change their role in the partially specified target matrix.
From a practical point of view, these are situations in which researchers assume
that (1) the items in the analysis can be complex items (i.e., items with cross-
loadings), and (2) the items in the analysis can be incorrectly assigned to a factor
in the initial target matrix (i.e., misspecified items). From a substantive point of
view, the refinement of the target matrix is more important than in either of the
previous strategies, and the refined target matrix Hj can strongly contradict

the substantive model on which the initial partially specified target matrix H* is
based. Once more, researchers must carefully study how the refinement
procedure has changed the initial proposal of the target matrix H* in order to
assess whether the final target matrix Hj can be accepted from a substantive
point of view. In addition, this strategy can be defined as the most exploratory
refinement model.

The performance of RETAM in different situations will be assessed below, to
determine whether any of the refinement strategies is superior to the others.

Some substantive and practical considerations

As we discussed above, when the CFA model is used in an exploratory way (e.g.,
Browne, 2001) by modifying and discarding items ad hoc until the fit is
acceptable, the problem of capitalization on chance is likely to occur. In our
view, modifications of an initial CFA solution can only be acceptable if the
changes are sound and in agreement with the theory, and if the problem of
capitalizing on change is satisfactorily addressed.

Because RETAM starts from a theoretically derived target and then uses
empirically derived modifications, our procedure can be accused of the same
problems mentioned above in the CFA context. For this reason, we suggest that
researchers use RETAM in the following way: First, the original sample must be
split into two random halves; second, the RETAM procedure should be applied
to the first subsample to obtain a refined target matrix; and third, the refined
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target matrix should be taken as a fixed target matrix (without further
refinements) to be used in the second subsample. If the rotated loading matrix in
the second subsample is congruent with the rotated loading matrix in the first
subsample, then researchers will be more confident that the final solution has not
merely been specifically fitted to the sample data, but that it generalizes to the
population for which the analysis is intended.

The cross-validation study requires that the sample be divided into two
subsamples. As a consequence, the sample may need to be larger than the sample
size needed when computing a standard EFA. In the next section, we shall assess
which sample sizes would be advisable when using the MC, MS, and CR
strategies.

A second potential problem when RETAM is used concerns the order and sign
indeterminacies of the target and rotated pattern matrices, in the sense that the
order of the factor columns is interchangeable, and each column is
interchangeable with its negative (e.g., Myers, Ahn, Lu, Celimli, & Zopluoglu,
2017). In a real application, particularly when the procedure is based on an
initial target specification, like the one here, this problem is expected to be
unimportant. However, it potentially exists, so we must recommend that
researchers control the process and use appropriate reordering or sign-change
modifications, should they be needed.

Simulation study

The simulation studies reported in this section were intended to assess the
functioning of RETAM under different scenarios. In general terms, the design
attempted to mimic the conditions expected in empirical applications, and so to
provide realistic choices. The main settings in our simulation study were based
on the simulation studies by Myers, Ahn, and Jin (2013), and Myers, Jin, Ahn,
Celimli, and Zopluoglu (2015). Two main preliminary hypotheses can be
advanced from these simulation studies when no refinement is applied. First,
factorial congruence (to be defined below) is expected to increase with the
number of targets. Second, there is an interactive effect between the number of
targets and communality, so that the increase in congruence with the number of
targets decreases when communality is high. As for the specific performance of
the proposed RETAM strategies, we preferred not to advance any hypothesis and
to maintain the study as essentially exploratory.

Method
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The design consisted of two simulation studies. Study 1 explored the capabilities
of the MC, MS, and CR strategies associated with RETAM to recover the
population loading matrix. Study 2 explored the sample sizes needed to carry out
the cross-validation analysis.

We specified three population models, each with a different level of
communality (low, wide, or high). The models were taken from the population
loading matrices proposed by MacCallum, Widaman, Preacher, and Hong
(2001), which included 20 measured variables (m = 20) and three factors (» = 3).
We selected these population matrices because, as Myers et al. (2015) pointed
out, they have characteristics that mimic realistic situations in the context of
EFA and have already proved to be useful in a number of simulation studies in
the literature. For each of the three population models, we built 12 partially
specified target matrices in which the number of specified elements in the target
matrices ranged from 12 to 30. The specified values in the target matrix were set
to zero (i.e., they were expected to be zero values in the population loading
matrix). In addition to changing the number of specified values, we also changed
the precision of the specification in the target matrix, in order to introduce some
level of error. We considered that loading values lower than absolute .20 in the
population model should be set as specified values in the target matrix (i.e.,
values expected to be zero in the population), and as unspecified values in the
target matrix otherwise. If we consider this criterion, the numbers of unspecified
values in the target matrices should be 29, 30, and 32, respectively, for the
population models with low, wide, and high communality. On the other hand,
two kinds of error could be produced:

1. If the loading value in the population model is lower than absolute .20 and
is set as an unspecified value in the target matrix, then an error has been
committed. We call this type of error Free-errors, because the element has
been erroneously set as a free element in the target matrix.

2. If the loading value in the population model is larger than absolute .20 and
is set as a specified value in the target matrix, then an error has also been
committed. We call this type of error Fixed-errors, because the element has
been erroneously set as a fixed element in the target matrix.

Table 1 summarizes the percentages of Free-errors and Fixed-errors for the
partially specified target matrix related to each population matrix. For example,
for the population model with wide communality, we constructed three target
matrices with 30 unspecified elements (i.e., free elements) and 30 specified
elements (i.e., fixed elements). In the first target matrix, no error was introduced
(i.e., the free and the fixed elements in the target matrix were all properly
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defined). In the second target matrix, 27% of the free elements (i.e., a total of
eight elements out of 30) were Free-errors, and 27% of the fixed elements (i.e., a
total of eight elements out of 30) were Fixed-errors. In the third target matrix,
50% of the free elements (i.e., a total of 15 elements out of 30) were Free-errors,
and 50% of the fixed elements (i.e., a total of 15 elements out of 30) were Fixed-
errors. As a second example, again for the population model with wide
communality, we constructed three target matrices with 36 unspecified elements
(i.e., free elements) and 24 specified elements (i.e., fixed elements). In the first
target matrix, 20% of the free elements (i.e., a total of six elements out of 30)
were Free-errors, and no error was introduced in the fixed elements. In the
second target matrix, 40% of the free elements (i.e., a total of 12 elements out of
30) were Free-errors, and 20% of the fixed elements (i.e., a total of six elements
out of 30) were Fixed-errors. In the third target matrix, 60% of the free elements
(i.e., a total of 18 elements out of 30) were Free-errors, and 40% of the fixed
elements (i.e., a total of 12 elements out of 30) were Fixed-errors. This
procedure was followed to construct the 36 partially specified target matrices
(i.e., 12 target matrices for each population matrix). The 36 partially specified
target matrices were checked to confirm that the rotation identification
conditions were met (see Myers et al., 2017; Myers et al., 2015). To help other
researchers replicate our study, we can offer interested readers the set of target
matrices that we produced. As an independent variable of the simulation studies,
we included the levels of Free-errors and Fixed-errors in the partially specified
target matrix used to rotate each sample loading matrix. The number of specified
elements in the target matrix (12, 18, 24, or 30) was also recorded.

Table 1

Levels of specification error for the 36 targets: 12 targets related to low communality, 12
targets related to wide communality, and 12 targets related to high communality

Target elements Error in target matrix

Communality
Free Fixed to Zero Free Fixed Free Fixed Free Fixed

30 30 3% 0% 29% 28% 52% 52%

36 24 23% 0% 42% 21% 61% 41%
Low

42 18 42% 0% 58% 17% 71% 31%

48 12 61% 0% 71% 10% 81% 21%

30 30 0% 0% 27%  27% 50% 50%

36 24 20% 0% 40% 20% 60% 40%
Wide

42 18 40% 0% 57% 17% 70% 30%

48 12 60% 0% 70% 10% 80% 20%
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30 0% 6% 21%  25% 46% 47%
Target elements Error in target matrix
Communality 36 24 14% 0% 36%  19%  57% 38%
High Free Fixed to Zero Free Fixed Free Fixed Free Fixed
42 18 36% 0% 54%  16% 68% 28%
48 12 57% 0% 68% 9% 79% 19%

Overdetermination (m : r = 20 : 3) and model error (i.e., population RMSEA =
.065) were kept constant. The level of model error has been defined in the
literature as a fair fit (Browne & Cudeck, 1992). Interfactor correlations were
not manipulated, either. Moore et al. (2015) carried out a simulation study on
target rotations, and they reported that the correlations among the factors in the
population had little to no influence on the relative abilities of the rotations to
approximate the population factor structure. In our simulation study, we set the
interfactor correlations to zero in the population.

Study 1

Manipulated factors

The study was based on a 3 x 3 x 4 design and 500 replicas per condition. The
independent variables were (1) sample size: N = 100, 300, 500; (2) communality:
low (item communalities between .20 and .40, with an average of .32), wide
(item communalities between .20 and .80, with an average of .49), and high
(item communalities between .60 and .80, with an average of .69); and (3)
number of specified targets: 12, 18, 24, 30. Please note that the 36 partially
specified target matrices were used in the study, and that the levels of Free-errors
and Fixed-errors in the matrices used to rotate each sample loading matrix were
also recorded as independent variables in the study.

Rotation identification

Although the population loading matrices provided by MacCallum et al. (2001)
were not rotated (because the authors provided them already rotated using direct
quartimin rotation), the sample loading matrices were rotated using oblique
partially specified rotation (Browne, 1972a), in which the partially specified
target matrices were the 36 matrices summarized in Table 1. As in Myers et al.
(2015), we checked that the conditions for factor specification were met for each
of the 36 target matrices.

Data generation

The simulated data were generated by a linear common factor model, which
included both major and minor factors. The minor factors aimed to be a realistic
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representation of empirical cases (MacCallum & Tucker, 1991). Because a
common factor model with a limited number of common factors will never fit
exactly at the population level, each variable is considered to be composed of
one part that is consistent with the common factor model and another that is not.
The latter is called the model error and is represented by the minor factors
(based on the middle model by Tucker, Koopman, & Linn, 1969). This approach
has been taken in earlier research to assess the performance of PA (see, e.g.,
MacCallum & Tucker, 1991). In the simulation study, the sample correlation
matrices were modeled as

R=AA +0%+ Ayp + Agg, 10

where A is the population loading matrix, @ is a diagonal matrix of unique
coefficients, A, - is the model error in the covariance structure, and Ag. is the
sampling error. As population loading matrices and unique coefficients, we used
the data offered by MacCallum, Widaman, Zhang, and Hong (1999) related to 20
observed variables, three common factors, and the three different levels of
communality. The model error was manipulated so that a population RMSEA =
.065 was expected. The sample error was manipulated by using samples of
different sizes (100, 300, 500) drawn from a normal random distribution (0, 1).
In the first step, a correlation matrix R* was obtained as R*=AA + ©% + A ME-
Then we computed the Cholesky decomposition of R* = L'L, where L is an
upper triangular matrix. The sample data matrix of continuous variables X was
finally obtained as X = ZL, where Z is a matrix of random standard normal
scores, with rows equal to the corresponding sample size and a number of
columns equal to the corresponding number of variables.

Dependent variables

The population and the sample loading matrices were compared. Please note that
the sample loading matrices were rotated with no target refinement and using
MC, MS, and CR refinement strategies. Congruence and discrepancy indices
were used to assess the degree to which the true generated structures were
recovered. The congruence index was the Burt—Tucker coefficient of
congruence, a measure of profile similarity (see Lorenzo-Seva & ten Berge,
2006) that is defined as

>z 10

SR P ST

Equation 10 was used to assess the congruence between the columns of the
population loading matrix and the columns of the fitted loading matrices. The
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overall congruence between two loading matrices is usually reported by
calculating the average of the column congruence. Lorenzo-Seva and ten Berge
(2006) pointed out that a value in the range [.85—.94] corresponds to a fair
similarity, whereas a value higher than .95 implies that the factor solutions
compared can be considered equal. The discrepancy index was the root-mean
squared residual (RMSR) between the population model and the data-fitted
model, a measure of profile distance that is defined as

RMSR (X,Y) 11

= [(1/mr) f: zr: (mij - yij)z'

To analyze the size of the effects, analyses of variance were carried out with the
IBM SPSS Statistics version 20 program. Cohen (1988, pp. 413—414) suggested
that for eta-squared (?) effect sizes, threshold values of .02 represent small
effects, .13 medium effects, and .26 or more large effects.

Study 2

This simulation study explored the sample sizes needed to perform the cross-
validation analysis. Mainly it was a replication of the previous simulation study,
except for the way the sample size was manipulated. The idea was to generate a
sample of very low size (N = 50), randomly divide the sample in order to refine
the target using the first random sample, and rotate the loading matrices obtained
in both (the first and the second) samples. If the congruence value between the
two rotated solutions was lower than .96, then a new sample would be obtained
with a sample size of ten extra observations. When the threshold value of .96
was obtained, we recorded the sample size of the final sample. The RETAM was
applied with the MC, MS, and CR strategies. For each experimental condition,
500 replications were computed. To determine an advisable threshold value for
the size of the sample needed when each refinement strategy was computed, the
distributions of the sample sizes of the two conditions in the study (i.e., the
Number of targets specified as zero and Communality) were recorded for the 500
replications, and the 95th percentile was taken as the advisable threshold.

Results

Study 1 The correlations of the percentages of Free-errors and Fixed-errors in
the target matrices with the congruence and discrepancy indices are shown in
Table 2. When no refinement was applied, as the percentage of both types of

http://eproofing.springer.com/journals_v2/printpage.php?token=eOjvLkjxTTKh1brkQXVjJp2_HkUL89uhuX4xTmZOvy_Iw7wSY4ICZg

16/33



4/2/2019 e.Proofing

error increased, the congruence index decreased and the discrepancy index
increased. This effect was more important for Free-errors (i.e., when the loading
value in the population model was lower than absolute .20 and was set as an
unspecified value in the target matrix). Furthermore, performance was observed
to depend on the refinement strategy used:

1. When the MC strategy was used, congruence and discrepancy values were
independent of the percentage of Free-errors;

2. When the MS strategy was used, congruence and discrepancy values were
independent of the percentage of Fixed-errors (when the loading value in
the population model was larger than absolute .20 and was set as a
specified value in the target matrix);

3. When the CR strategy was used, congruence and discrepancy values were
independent of both percentages of error.

Table 2

Correlations of congruence and discrepancy values with the percentages of error in the
target matrices

Congruence index Discrepancy index
Refinement
strategy Error in free  Errorin fixed  Errorinfree  Error in fixed
elements elements elements elements

No _ 472 _ 333 426 202
refinement

Make

complex —.093 —.288 121 300

Make simple - .415 —.090 364 .029
Complete _ 043 064 047 046
refinement

Correlation values larger than .20 are printed in bold
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Tables 3 (congruence results) and 4 (discrepancy results) summarize the
behavior of the RETAM approach. When no refinement was computed, the
population loading matrix was systematically recovered badly (i.e., congruence
values were lower than .95, and discrepancy indices were larger than .10). The
MC refinement strategy correctly recovered the population solution when the
sample was large, the communality was high, and the number of elements in the
target fixed as zero was low. The MS refinement strategy performed similarly,
except for the number of elements fixed to zero: Now the more elements were
fixed, the better the population matrix was recovered. The CR strategy
systematically recovered the population loading matrix. In terms of discrepancy,
low sample sizes and wide communality were the most difficult situations to
manage.

Table 3

Averages and standard deviations (given in parentheses) of the congruence index

C o No Make Make Complete
ondition . . .
refinement complex simple refinement
.894 948 942 970
Overall
(.087) (.057) (.067) (.029)
Sample size
.884 934 928 956
N =100
(.085) (.060) (.069) (.039)
.898 953 948 976
N =300
(.087) (.054) (.064) (.020)
901 953 950 979
N =500
(.087) (.054) (.066) (.017)
Communality
907 985 966 992
High
(.085) (.021) (.057) (.006)
.859 926 912 965
Wide
(.100) (.064) (.083) (.017)
916 934 948 953
Low
(.058) (.056) (.044) (.038)

Values higher than the threshold of .95 are printed in bold
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Condition

870
12

(.107)

873
18

(.092)

923
24

(.056)

911
30

(.071)

Table 4

Condition

189
Overall
(.129)
Sample size
199
N =100
(.119)
185
N =300
(.130)
183
N =500
(.136)
Communality
220
High
(.179)
Wide 220

refinement

refinement

Make
complex

Number of targets specified as zero elements

959
(.041)
950
(.060)
953
(.050)
934
(.069)

Make
complex

116
(.054)

132
(.051)
110
(.052)
105
(.053)

.080
(.033)
157

e.Proofing

Make
simple

904
(.089)
937
(.067)
965
(.036)
961
(.043)

Values higher than the threshold of .95 are printed in bold

Make
simple

136
(.117)

154
(.131)
129
(.112)
125
(.104)

121
(.135)
184

Values larger than the threshold of .10 are printed in bold

Complete
refinement

971
(.026)
971
(.026)
970
(.029)
968
(.035)

Averages and standard deviations (given in parentheses) of the discrepancy index

Complete
refinement

092
(.032)

111
(.034)
086
(.027)
081
(.027)

061
(.011)
121
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C ‘e Make Make Complete
ondition . . .
refinement complex simple refinement
(.101) (.054) (.107) (.016)
128 A11 .103 .096
Low
(.042) (.040) (.107) (.030)
Number of targets specified as zero elements
.248 107 205 .092
12
(.202) (.058) (.194) (.032)
201 A17 137 .092
18
(.101) (.058) (.071) (.032)
150 J11 .099 .094
24
(.067) (.049) (.047) (.034)
157 128 102 .093
30
(.068) (.058) (.049) (.033)

Values larger than the threshold of .10 are printed in bold

Table 5 summarizes the sizes of the main effects in the simulation study and
shows the interactions that produced effect sizes larger than .02 in terms of #7.
When no refinement was computed, the main effects of communality and
number of targets specified as zero (and their interaction) were at some point
substantial, a result that agrees with the preliminary hypotheses above. When
MC refinement was applied, only the main effect of communality was
substantial; this means that when the communality is low (i.e., low loading
values are observed in the loading matrix), MC refinement may have trouble
recovering the population loading matrix. When MS refinement was applied,
only the main effect of number of targets specified as zero was substantial; this
means that when just a few elements in the target matrix are fixed to zero, the
MS refinement may help recover the population loading matrix. Finally, when
the CR strategy was applied, the main effects of sample size and communality
showed substantial effects; this means that this approach works better with large
samples and high communality.

Table 5

Univariate analysis of variance effect sizes 7

No Make
refinement complex

Make
simple

Complete

Effect refinement
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C D ¢cC D C D C D

No Make Make Complete

Main effects gffect refinement complex simple refinement
Sample size (N) o m G » @ o o1C AD
Communality (h) .08 .11 21 35 11 .09 .31 .58

Number of targets specified as
zero elements (T) .07 .09 .03 .02 .13 .13 .00 .00

Two-way interactions
N x h .01 .00 .02 .01 .02 .01 .08 .04
hxT .07 .08 .03 .02 .07 .06 .00 .00

Only substantial interactions are printed. C stands for the congruence index, and D
stands for the discrepancy index. Values of at least the threshold of .13 are printed in
bold.

Study 2 Table 6 shows the 95th percentiles for each condition in the study
after the 500 replications. When the MC refinement is used, the largest samples
are advisable if the number of elements specified as zero is high and the
communality low. In our study, a sample of 420 observations would be needed in
these conditions. On the other hand, when the number of elements specified as
zero is low and the communality high, a sample of 80 observations could suffice.
When the MS refinement is used, the largest samples are advisable if the number
of elements specified as zero and the communality are both low. In our study, a
sample of 460 observations would be needed in these conditions. Again, when
the number of elements specified as zero and the communality are both high, a
sample of 80 observations could suffice. When the CR strategy is used, the
number of elements specified as zero makes no difference, and only
communality need be taken into account. When the communality is low, a
sample size of 390 might be advisable, whereas a sample of 80 observations may
be enough when the communality is high.

Table 6

Sample sizes recommended to compute the cross-validation study

Complete
refinement

Refinement
strategy:

Make complex Make simple
Communality: Low Wide High Low Wide High Low Wide High
Number of targets specified as zero elements

12 390 170 80 460 350 140 390 160 80
18 390 170 80 430 200 100 390 160 80
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Refinement Make complex Make simple Cqmplete
strategy: refinement

Communality: Low Wide High Low Wide High Low Wide High
24 400 170 90 410 180 90 390 160 80
30 420 180 90 400 179 80 390 160 80

Finally, as was pointed out by an anonymous reviewer, it should be noted that
the cross-validation procedure is only useful for analyzing consistency across
half samples, but not necessarily for drawing conclusions about accuracy.

Illustrative examples with real data

A 38-item version of the Overall Personality Assessment Scale (OPERAS; Vigil-
Colet, Morales-Vives, Camps, Tous, & Lorenzo-Seva, 2013) was administered to
a sample of 4,085 participants. The scales aim to assess six independent factors:
extraversion (EX; seven items), emotional stability (ES; seven items),
conscientiousness (CO; seven items), amiability (AM; seven items), openness to
experience (OE; seven items), and social desirability (SD; three items). All 38
items are positively worded and use a 5-point Likert response format.

Examination of the item scores showed that the response distributions were
generally skewed. So the item scores were treated as ordered-categorical
variables, and the factor analysis based on the polychoric interitem correlations
was the model chosen to fit the data. This model is an alternative
parameterization of the multidimensional item response theory graded response
model.

Since the interitem polychoric correlation matrix had good sampling adequacy
(KMO = .871), six factors were extracted by using robust factor analysis based
on the diagonally weighted least squares criterion, as implemented in the
FACTOR program (Ferrando & Lorenzo-Seva, 2017), and these reached
acceptable goodness-of-fit levels: RMSEA = .036 (values between .010 and .050
are considered to be close), CFI =.970, GFI = .989, and WRMR = 0.026.

Because each item on the scale was expected to be related to a single factor, a
rotation target might easily be proposed by a researcher: A partially specified
target matrix was proposed in which each item had a nonspecified value in the
factor that it was expected to assess, and zeros otherwise. This target matrix
indicates that each item was expected to be a good indicator of a single factor
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(i.e., to have a single salient loading on a factor). However, some researchers
believe that this expectation is not realistic, and that personality items are
frequently complex indicators (see, e.g., Woods & Anderson, 2016). The
complexity of personality items is defined in the context of the periodic table of
personality. In this context, the largest salient loading of a personality item
informs as to the factor that this item mainly assesses, whereas secondary salient
loadings (i.e., loading values of the item that are not as large as the main salient
loading but still large enough to be meaningfully interpreted) define other
factors in which a person’s response to the item also gives some substantial
information. Although it is easy to propose the main loading of an item in
advance, it is not so easy to propose secondary salient loadings. In conclusion,
although the researcher can easily propose a partially specified target, he or she
might also expect some items not to be pure indicators of a single factor, and
must be prepared to accept that some items could turn out to be complex
indicators.

In addition to substantive dimensions, OPERAS also aims to measure SD. Now,
because responses to personality items are frequently expected to be biased by
SD (see, e.g., Ferrando, Lorenzo-Seva, & Chico, 2009), it is reasonable to
assume that some of the items analyzed here were complex, with a main salient
loading on the corresponding personality factor and a secondary loading on the
SD factor.

In summary, then, this is a research context in which an initial target hypothesis
can be proposed for all of the items under study. At the same time, however, it is
also reasonable to consider that this hypothesis could be modified or refined to a
certain extent. This midpoint location between exploratory and confirmatory is a
perfect scenario to illustrate how RETAM can be useful to practitioners, and to
this end, three different approaches will be presented. In each approach, the
researcher adopts a different attitude to the dataset. Finally, since the five
personality factors are typically considered orthogonal in the literature, the
rotations computed were systematically orthogonal rotations. To help other
researchers best understand our results, we can offer interested readers the set of
targets and rotated loading matrices that we obtained in the three analyses that
follow.

First analysis

In the first analysis, the aim was to propose an initial hypothesis that assumed
the simplest factor solution (i.e., that each item was related to a single factor).
Although the researcher feels confident that he has correctly identified which
factor is related to each item, other substantial secondary loadings can also be
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expected. As a consequence, the most advisable RETAM strategy would be to
allow the target to become more complex than initially proposed (i.e., the MC
refinement strategy).

RETAM made eight changes to the target. Items 33 and 34 (which were expected
to assess OP) were adjusted so that they could show a much more complex
behavior: They were also expected to load on the AM personality factor and to
the SD factor. As an example, the content of Item 33 is “I feel curious about the
world around me.” Three other personality items were also expected to become
complex items and to load on another personality factor and on the SD factor:
Item 18 (CO), Item 27 (AM), and Item 28 (AM). As an example, the content of
Item 27 is “I am very critical of others.” Finally, an SD item (37) was allowed to
show a salient loading on a personality factor (AM). The content of this item is
“Sometimes I have taken advantage of someone.” As can be observed, the items
related to CO and AM are the most susceptible to becoming biased by SD. At
the same time, items related to SD can also be biased by some personality factor
(like AM).

We compared the rotated pattern matrix obtained (1) when the researcher-
defined target matrix was used and (2) when the RETAM refined target matrix
was used. Both rotated pattern matrices were quite similar: The congruence
indices between the corresponding columns ranged from .985 to .995. These
values were clearly larger than the threshold of .95 (Lorenzo-Seva, & ten Berge,
2006). Secondary loading values in the rotated pattern related to the researcher-
defined target seemed to suggest that some of the items were not as simple as the
ones proposed in the target matrix. However, these secondary loadings were
largest in the rotated pattern related to the RETAM refined target matrix. In this
regard, the rotation based on the refined target helped to better understand the
complexity of some items.

It is also interesting to note that some items, which seemed simple in the rotation
based on the researcher-defined target matrix, showed their complexity in the
rotation based on the RETAM refined target matrix. An example is Item 1 (“I
make friends easily”). This item was expected to be related only to the EX
factor. However, the rotation based on the RETAM refined target matrix
suggested that it is actually a complex item that is also related to the AM factor.

Second analysis

In the second analysis, the simplest initial hypothesis was again proposed, as
above. However, now the researcher does not feel so confident of correctly
identifying which factor is related to each item, which means that some items
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could have a single salient loading on an unexpected factor. In addition, the
researcher could expect to observe some substantial secondary loadings. As a
consequence, the most advisable RETAM strategy here would be to allow the
target to be fully refined (i.e., the CR strategy).

A total of 13 changes were made to the target: Ten values specified as zero by
the researcher were set to be nonspecified values, and three values set to be
nonspecified values by the researcher were set to be specified zero values.
Overall, the most remarkable change was that the three items (Items 26, 27, and
28) that the researcher expected to define the AM factor were changed to
become items that were expected to load on the same factor as the SD items. In
addition, seven items were expected to show secondary salient loadings. The
table also shows the rotated pattern matrix based on the refined target. In this
context, the factor that the researcher expected to be related to SD turned out to
be a mixture of SD and AM. In addition, the factor that the researcher expected
to be related to AM was a mixture of AM and OE. Finallythree-ttems(Hems32;

b >
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Third analysis

In the third analysis, the researcher felt confident enough to propose six items,
each of which was expected to be a good indicator of a single different factor
(i.e., to have a single salient loading on a factor). At the same time, even if she
expected the items to be simple indicators of a single factor, she preferred not to
propose a hypothesis for the other items in the analysis. It must be noted that this
is a weak target matrix (since very few values were defined). As a consequence,
the most advisable RETAM strategy would be to allow the target to become
simpler than initially proposed (i.e., the MS refinement strategy).

A total of 156 changes were made to the target. To summarize these changes, 26
items were defined by the refined procedure as simple indicators of a single
complex itewn"l";.EWith"two salient loading values). In addition, once again the
three items (Items 26, 27, and 28) that the researcher expected to define the AM
factor loaded on the same factor as the SD items. Fhe-table-also-shows-the

refined-target-matrbe Both rotated pattern matrices were quite similar: the
congruence indices between corresponding columns ranged from .961 to .995.
However, the loading simplicity index (Lorenzo-Seva, 2003) reported that the
simplicity of the rotated pattern based on the refined target matrix was larger
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(value of .417) than the simplicity of the rotated pattern based on the researcher-
defined target (value of .397).

Comparison of the three analyses

To determine whether the three analyses based on the different refinement
strategies produced substantially different rotated pattern matrices, we computed
the congruence coefficients between the columns of the rotated pattern matrices.
As can be observed in Table 7, the outcomes related to four factors (EX, EE,
CO, and OE) remained quite constant, regardless of the refinement strategy.
However, the strategy based on MC produced slight differences in the outcomes
related to the AM factor (congruence values equal or slightly larger than .95).
The differences were clearer in the SD factor.

Table 7

Congruence coefficient value among the three RETAM strategies used in the three analyses
of the illustrative example

RETAM strategies EX EE CO AM OE SD
MC vs. CR 995 997 992 954 996 940
MC vs. MS 995 998 988 950 995 920
CR vs. MS 998 998 995 999 997 994

EX, extraversion; ES, emotional stability; CO, conscientiousness; AM, amiability;
OE, openness to experience; SD, social desirability. Values lower than the threshold
of .95 are printed in bold

It is interesting to point out that two different refinement strategies (MS and CR)
led to quite congruent rotated pattern solutions. This was due more to the initial
target proposed by the researcher than to the procedure itself. If the MS
approach had been used in this dataset based on the first researcher-defined
target matrix, then the MC and MS strategies would have been much more
congruent with each other. This means that the usefulness of each strategy to a
researcher would depend on the researcher-defined target, and his or her
personal position when analyzing each particular dataset. It must also be noted
that if a set of items have a clear and strong relationship with one another (like
the items in EE in our illustrative example), the same final result is expected to
be attained, regardless of the position of the researcher or the chosen refinement
target procedure. However, if the items have a more ambiguous relationship,
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then researchers must decide on their personal position and the refinement target
they will use.

Conclusions

The outcomes of the simulation study seem to suggest that no one RETAM
refinement model can be regarded as systematically superior to the others. When
the researcher can set a large number of elements to zero in the target matrix, the
MC refinement is advisable. When the researcher prefers to set a low number of
elements to zero in the target matrix, then the MS refinement is advisable.
Finally, the CR strategy may be useful to researchers who can modify their
initial target matrix (and possibly the implicit substantive model) during the
analysis. This would be the case for a factor analysis that is closer to a

however, must be aware that this exploratory approach may require a larger
sample (especially if communalities are low).

Discussion

Traditionally, factor analysis has been artificially split into two approaches:
exploratory factor analysis (to be applied when the researcher does not have a
hypothesis about the population model) and confirmatory factor analysis (to be
applied when the researcher has a definitive hypothesis about the population
model). In the first situation, exploratory rotations can be used. In the second
situation, the researcher assesses the fit of the proposed model using a sample
(and probably working with specific software, such as LISREL or Mplus).
However, between these two extremes, a large number of situations are
sometimes closer to one of the two poles and sometimes are in the middle (e.g.,
Henson & Roberts, 2006; Myers et al., 2015). Applied researchers who find
themselves in one of these indefinite intermediate points have no clear
methodological alternative. They must choose between (1) dropping their weak
tentative hypothesis (and computing a full exploratory analysis) or (2) making as
if the tentative hypothesis was a definitive one and proceeding with a CFA. Our
proposal is aimed at researchers who have a tentative hypothesis and are
prepared to refine this hypothesis in an exploratory way (e.g., Browne, 2001).

We have proposed RETAM as a new procedure for objectively refining target
matrices in the context of unrestricted FA. To date, it has been recommended
that this kind of refinement be guided by human judgment (see Browne, 2001).
Furthermore, the approach has already being used by applied researchers. For
example, Ayr, Yeates, Taylor, and Browne (2009) presented an FA of
postconcussive symptoms in children with mild traumatic brain injuries. They
made a number of Procrustes rotations based on progressively refined target

http://eproofing.springer.com/journals_v2/printpage.php?token=eOjvLkjxTTKh1brkQXVjJp2_HkUL89uhuX4xTmZOvy_Iw7wSY4ICZg

27133



4/2/2019

e.Proofing
matrices, used a threshold value of .40 to correct misspecifications of the items
to the factors, and finished with a multidimensional test of 39 items and four
factors. Conceptually, their approach was similar to our refinement Model 2. In
comparison with these proposals, however, ours (a) is more objective (because
the researcher does not need to set a necessarily arbitrary threshold value), (b) is
computed automatically (there is no need to manually compute a number of
factor rotations every time), and (c) controls for capitalization on chance, as we
discuss below. Methodologically, our approach incorporates proposals that
already exist in the factor-analytic literature, mainly the iteration procedure for
refining a target (Moore et al., 2015) and the Promin procedure (Lorenzo-Seva,
1999) for objectively defining the thresholds. The resulting proposal in which
these developments are combined, however, appears to be new.

Overall, RETAM can be regarded as a hybrid procedure, in the sense that it
combines theoretically derived specifications (the initial target) with analytical,
empirically informed specifications (the refinement procedure). In this way, our
procedure falls between a pure analytical rotation and a target rotation. In our
view, it is of particular interest for those applications in which a priori
knowledge or theory allow for a specification that is more detailed than merely
setting the number of factors and deciding whether or not they are correlated
(i.e., pure analytical rotation). However, it is not so complete as to allow a
definite target to be specified. Rather, the initial target might be too strict (i.e.,
complex items wrongly specified as pure items) or too lenient, and in both cases
the proposed procedure is expected to be able to arrive at a more correct final
target.

As long as the initial information available is more than is required by a purely
analytical rotation, we believe that our proposal is more appropriate. A wide
variety of analytical rotation options exist, which understand the structure of
item—factor relations in different ways. So, if an initial structure is proposed
(albeit only tentatively), the process becomes less determined by the analytical
simplification criterion (i.e., rows, columns, or both) and more guided by theory.
To understand this point in more detail, note that RETAM does not seek to
simplify rows or columns as analytical criteria do, but rather to identify a pattern
of salient loadings, starting from a theoretically informed initial pattern.

Because different analytical rotation criteria tend to lead to diverging solutions
when the factor structure is complex (e.g., Moore et al., 2015), we believe that
the extra initial guidance provided by RETAM will be especially important for
complex structures, and the results of our simulation point in this direction.
Despite this, however, the simulation results do not suggest a consistent
superiority of the strategies related to their use. Some researchers prefer to
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specify the initial target by using very few items per factor (i.e., markers), and in
this case, MS seems to be the best refinement. Others tend to start with highly
restrictive targets (i.e., following a typical CFA approach), and if they do, MC is
the strategy to choose. CR is the strategy closest to pure EFA, so if would be
justified in the case of a very weak measurement theory.

Because of its partially data-driven component, RETAM is potentially prone to
theoretically unjustified ad hoc modifications, capitalization on chance, and
problems of pattern indeterminacy. Thus, we strongly emphasize that the
potential problems should be addressed by using a well-designed cross-
validation schema (Simulation Study 2 provided guidance on this point) and
carefully controlling the process, which includes a check that the final rotated
loading matrix has a substantive interpretation that is consistent with the theory.

Our illustrative example aimed to show how a researcher can advance a
hypothesis based on the factor in which (a) each item is expected to be a good
indicator of a single factor, but (b) secondary factor loadings can be expected
(which are much more difficult to predict). In addition, we showed that,
depending on their personal positions, researchers can propose (a) a strong
hypothesis, or (b) a weak hypothesis. Both of these positions can be combined
with a different refinement strategy. In the first position, an MC strategy (i.e.,
setting free loading values initially specified to be zero in the target) may be
more advisable, whereas in the second position an MS strategy (i.e., setting
loading values initially specified to be free values in the target) may be more
useful. The CR would be an exploratory option even when a strong target has
been defined.

The authors’ experience suggests that proposals such as the present one can only
be applied in practice when they are implemented in user-friendly and easily
available software. For this reason, the procedure proposed here has been
implemented in the 10.7 version of the program FACTOR (Ferrando & Lorenzo-
Seva, 2017). To compute a RETAM approach with FACTOR, the user has to
provide an initial (partially specified) target matrix and determine the refinement
model to be applied. In addition, a cross-validation assessment based on split-
half random subsamples can be selected.
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