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Abstract  19 

It has been argued that in vitro activity of caspofungin (CSP) is not a good predictor 20 

of the in vivo outcome of echinocandins treatment. We evaluated the in vitro activity 21 

of CSP and the presence of FKS mutations in the hot spot 1 (HS1) region of FKS1 22 

and FKS2 genes of 17 Candida glabrata strains with a wide MICs range. The efficacy 23 

of CSP against systemic infections by all those strains was evaluated in a murine 24 

model. No HS1 mutations were found in the eight strains showing MICs of CSP ≤ 0.5 25 

µg/ml, but they were present in eight of the nine strains with MICs ≥ 1 µg/ml, i.e. 26 

three in the FKS1 and five in the FKS2 genes. CSP was effective to treat mice 27 

infected with strains with MICs ≤ 0.5µg/ml, showed variable efficacy in animals 28 

challenged with strains with MICs = 1µg/ml and did not work in those with strains with 29 

MICs > 1µg/ml. In addition, mutations outside the HS1 region were found in the FKS 30 

2 gene of six strains with different MICs, including a first time reported mutation, but 31 

their presence did not influence the drug efficacy. In vitro activity of CSP was 32 

compared with other echinocandin i.e., anidulafungin suggesting that MICs of both 33 

drugs as well as mutations in the HS1 regions of FKS1 or FKS2 genes are predictive 34 

of the outcome.  35 

 36 
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 Introduction  48 
 49 
Candida glabrata is a common agent of invasive candidiasis (IC) and the most 50 

prevalent species after C. albicans (1-3). Azoles and the lipid formulation of 51 

amphotericin B are commonly used for the treatment of IC, but for Candida glabrata 52 

with decreased azoles-susceptibility, echinocandins are the preferred front line 53 

therapy (4, 5). Caspofungin (CSP) has been successfully used in the treatment of 54 

oesophageal candidiasis and IC (including candidemia) (4, 6). Although in vitro CSP 55 

resistance among C. glabrata strains is rare, infections with poor or no response to 56 

treatment have been reported (7-13), therapeutic failure being associated with the 57 

presence of mutations in two hot spot (HS) regions of the fks genes (14). These 58 

genes encode the major subunit of the 1,3-β-D-glucan synthase complex which is 59 

involved in the synthesis of 1,3-β-D-glucan, the  major cell wall component (6,15-17). 60 

EUCAST has abstained from setting CSP breakpoints because of unacceptable 61 

variation in MIC ranges obtained over time and among centers and therefore 62 

recommends in the meantime that anidulafungin (AFG) or micafungin are used as a 63 

marker for CSP susceptibility (18). Recently, a similar approach was proposed by 64 

Espinel-Ingroff et al. (19). To detect reduced echinocandin susceptibility and to 65 

predict clinical failure, epidemiological cut-off values (ECVs) and clinical breakpoints 66 

(CBP) were established based on clinical, molecular, and microbiological data. 67 

Thereof, the proposed EUCAST CBP of AFG for C. glabrata are ≤ 0.06 µg/ml for 68 

susceptibility and > 0.06 µg/ml for resistance (18). The proposed ECV of CSP by 69 

CLSI for C. glabrata is 0.12 μg/ml, while the CBP are set at ≤ 0.12 µg/ml for 70 

susceptibility, 0.25 µg/ml for intermediate susceptibility and at ≥ 0.5 µg/ml for 71 



  

resistance (19). The aim of this study was to determine, using a murine model of 72 

disseminate infection by C. glabrata treated with CSP, whether MIC values and 73 

presence of FKS mutations in such fungus are predictive of in vivo outcome. 74 

 75 

 76 

Material and Methods 77 
 78 
Strains. Seventeen clinical C. glabrata strains representing a wide CSP and AFG 79 

MICs range (0.06 - 16 µg/ml and <0.03 – 4 µg/ml, respectively) were included in the 80 

study (Table 1). MICs were determined using a microdilution approach according to 81 

the CLSI standards (20).  82 

DNA sequence analysis of FKS genes 83 

Candida glabrata strains were grown at 37°C overnight on Sabouraud dextrose agar 84 

(SDA). DNA was extracted and purified as previously described (21). The HS1 85 

region, of the FKS1 and FKS2 genes were amplified and sequenced using previously 86 

described primers to detect the presence of possible mutations (22). The sequence 87 

quality was checked, the alignments were made and mutations detected using the 88 

BioNumerics Software V 6.6. Translation of nucleic acid sequence  into amino acid 89 

sequence was performed using EBI Transeq 90 

(http://www.ebi.ac.uk/Tools/st/emboss_transeq/) and amino acid alignments were made 91 

using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/).  92 

Animals. Male OF1 mice (Charles River, Criffa S.A., Barcelona, Spain) weighing 30 93 

g were used. All animal care procedures were supervised and approved by the 94 

Universitat Rovira i Virgili Animal Welfare and Ethics Committee. Mice were housed 95 

under standard conditions and immunosuppressed one day before  the infection by a 96 

single intraperitoneal (i.p.) injection of 200 mg/kg of cyclophosphamide (Genoxal; 97 



  

Laboratories Funk S.A., Barcelona, Spain) and a single intravenous (i.v.) injection of 98 

150 mg/kg of 5-fluorouracil (Fluorouracilo; FerrerFarma S.A., Barcelona, Spain) (23).  99 

Infection. All isolates were grown on SDA for 48 hours. Then cultures were 100 

suspended in sterile saline and adjusted to the desired concentration by 101 

haemocytometer counts and serial plating on SDA to confirm viability. For all the 102 

strains tested, mice were infected with 2 x 108 colony forming units (CFU) in 0.2 ml of 103 

sterile saline injected via the lateral tail vein (24). 104 

Treatment. CSP (Cancidas, Merck and Co., Inc., Whitehouse Station, N.J, USA) was 105 

administered at 1 mg/kg/d i.p., based on previous pharmacokinetic studies (24-26). 106 

The treatment was started 24 h after infection and lasted for seven days. In addition 107 

all animals received 5 mg/kg/d of ceftazidime subcutaneously to prevent bacterial 108 

infection. The therapy efficacy was evaluated through prolonging survival time and 109 

fungal tissue burden reduction. For the survival studies, groups of six mice were 110 

randomly established for each strain and checked daily for 30 days after infection. 111 

For the tissue burden studies, groups of six mice were also used, the animals being 112 

euthanatized five days post infection in order to compare the results with the control 113 

group, which started to die at this day. Kidneys were aseptically removed, weighed 114 

and mechanically homogenized in 1.0 ml of sterile saline. Serial 10-fold dilutions of 115 

the homogenates were placed on SDA and incubated for 48 h at 35 ºC to determine 116 

CFUs per gram of tissue.  117 

Statistics. Mean survival time was estimated by the Kaplan-Meier method and 118 

compared among groups using the Log Rank test. Colony counts in kidneys were 119 

analyzed using the Mann-Whitney U test. A P value ≤ .0.05 was considered 120 

statistically significant. 121 

Results and Discussion 122 



  

Table 1 shows the MICs of the strains tested, the results of survival and of fungal 123 

load studies, and the FKS mutations. Thirteen strains showed mutations in one of the 124 

two genes explored although HS1 mutations were only present in those strains with 125 

both AFG and CSP MICs ≥ 1 µg/ml, with the exception of strain JMI-2092 for CSP. 126 

One mutation outside the HS1 in the FKS2 gene (L707S), which has not been 127 

previously reported, was detected. This mutation was present in 6 (46%) strains 128 

which showed MICs as wide as 0.06 and 2 µg/ml for CSP and <0.03 and 1 µg/ml for 129 

AFG, but all strains that only had that mutation responded to CSP treatment.  130 

Although the same inoculum size was used for all the fungal strains tested, which 131 

could be a possible limitation of the study, an acute infection was achieved in all 132 

cases, showing a survival rate from 60% to 100% (data no shown). However, inocula 133 

adjustment strain by strain to obtain similar survival curves would increase 134 

enormously the number of animals used, thus transgressing ethical issues. In any 135 

case, variability was less in terms of fungal load than was observed in survival. 136 

Tissue burden study results correlated better with either MICs or with the presence of 137 

HS1 FKS mutations than survival studies, i.e. none of the strains with MICs of CSP 138 

or  AFG <1 µg/ml showed HS1 mutations and CSP treatment reduced fungal load in 139 

all cases. Strains with MICs of both drugs >1 µg/ml showed HS1 mutations and the 140 

outcome was always negative; all the strains with MICs = 1 µg/ml, with the exception 141 

of one for CSP, showed HS1 mutations and the treatment response was positive only 142 

in 1 of the 5 cases. Interestingly this case of favourable outcome might be explained 143 

due by the strain (JMI-297) showed additional mutations on FKS1, one inside of the 144 

HS1 and the other outside the hot spot. Those mutations may have a compensatory 145 

effect in the gene, leading to differences in the quaternary structure of the protein or 146 

differences in permeability that cause such a variation in the MIC (27). 147 



  

Antifungal susceptibility testing for echinocandins has been standardized by the CLSI 148 

and EUCAST and has proven to be useful in the detection of resistance in Candida 149 

spp. (28). However, only the CLSI has set up the CBP for CSP since EUCAST has 150 

shown significant inter-laboratory variations with remarkably wide MIC ranges, 151 

truncated dilutions and bimodal MIC distributions (18, 19,, 28, 29). This variability 152 

might be caused by many factors such as CSP powder source, stock solutions 153 

solvent, powder storage time, length and temperature, and MIC determination testing 154 

parameters, may be the cause of such variability (29, 30). For that reason EUCAST 155 

has only established CBP for AFG, and micafungin and recommends these 156 

echinocandins for susceptibility testing instead CSP (18, 28). In the present study, no 157 

significant variations on the CSP MICs were found, despite the in vitro susceptibility 158 

testing being carried out in three different laboratories, and correlation among MICs 159 

ranges for both AFG and CSP, presence of HS1 mutations and in vivo outcome was 160 

found. 161 

The in generally good response of C. glabrata infections to CSP is well known and 162 

previous animal studies have shown a high efficacy of that drug in reducing the 163 

fungal load in kidney at doses as low as 0.3 mg/kg (24, 31-33). In our study, we have 164 

chosen CSP at doses of 1 mg/kg because previous pharmacodynamic studies, in a 165 

neutropenic murine model of invasive infection by C. glabrata, demonstrated that this 166 

dose can simulate a serum drug exposure in mice comparable to that in humans (24, 167 

25, 34).  There have been few previous studies that have attempted to correlate CSP 168 

susceptibility and FKS mutations with the in vivo outcomes of invasive infection by C. 169 

glabrata and they have yielded contradictory results (35, 36). Shields et al., (35) 170 

demonstrated in patients with IC that the presence of FKS mutations has a higher 171 

predictive value for echinocandin treatment failure than MICs, but using a murine 172 

model of incasive C. glabrata infection Lepak et al., (36) showed that CSP efficacy 173 



  

was closely linked to the in vitro MIC rather than to the presence of FKS mutations.  174 

Our results show that MICs of AFG ≤ 0.5 µg/ml which coincided with the absence of 175 

FKS mutations, were predictive of positive therapeutic response and  mice infected 176 

with strains with MICs >1 µg/ml, which coincided with the presence of FKS mutations 177 

did not respond to the CSP treatment. The mutation L707S, located outside of the 178 

HS regions in the FKS2 gene, elevated the MICs of AFG within some isolates above 179 

even the ECV but did not influence the echinocandin efficacy. Similarly, Casthaneira 180 

et al., (37), who reported that strains carrying amino acid substitutions outside the 181 

defined HS exhibit MICs > ECV. However, further studies are necessary to ascertain 182 

if they can confer resistance to AFG or micafungin.  183 

The presence of mutations related with resistance to echinocandins is not a rare 184 

phenomenon in C. glabrata (38). It was demonstrated that different resistance 185 

mechanisms can evolve in a very short period during the treatment with the drug. 186 

Singh-Babak et. al., (39) sequencing the whole genome of a susceptible isolate 187 

recovered before to CSP treatment and the last resistant isolate from a patient that 188 

received multiple round of echinocandin treatment for recurrent candidemia revealed 189 

that in less than one year 9 non-synonymous mutations were accumulated during 190 

evolution in the patient. One was in FKS 2 gene and the others in genes not 191 

previously involved in echinocandin resistance providing novel resistance 192 

mechanism.  193 

Although studies with more strains are needed, our results suggest that both AFG 194 

MICs and FKS HS mutations, if not compensatory mutations are involved, but not 195 

FKS mutations outside the known HS regions, seems useful for predicting, at least 196 

with our experimental model, the therapeutic outcome.  197 



  

Table 1 Isolates of Candida glabrata, in vitro activity of caspofungin (CSP), mutations on FKS genes and mean survival time (MST) 198 
and  fungal load in kidney. 199 

Strains 

MICa  (µg /ml) Mutation MSTb (95%CI) 
Mean (±standard deviation)                
log10 CFU/g of kidney tissue 

AFG CSP FKS1 FKS2 Controls Treated group P value Control Treated  group P value 

FMR 11381 <0.03 0.06 - - 18.1 (4.56-31.78) 22.17 (9.43-34.91)c 0.050 6.367(±0.333) 5.397±0.227 c 0.034 

UTHSC 08-134 <0.03 0.06 - L707Sd 10.5 (0.42-20.58) 18.67 (5.63-31.70) 0.052 4.762±0.226 1.623±0.110 c 0.019 

FMR 8489 <0.03 0.12 - L707Sd 18.1 (4.56-31.78) 30.00 (30.00-30.00)c 0.004 8.318±0.393 6.005±0.262 c 0.042 

FMR 8498 <0.03 0.12 - L707Sd 18.5 (5.26-31.70) 19.00 (6.34-31.66) 0.326 6.968±0.567 4.030±0.549 c 0.015 

UTHSC 11-149 0.03 0.25 - - 13.8 (0.67-27.00) 30.00 (30.00-30.00) c 0.004 6.827±0.371 5.685±0.101 c 0.039 

UTHSC 11-68 0.03 0.25 - - 10.6 (0.67-20.66) 25.17 (17.30-33.03) c 0.002 7.018±0.383 5.712±0.156 c 0.023 

UTHSC 073662 0.03 0.5 - - 14.0 (0.97-27.02) 30.00 (30.00-30.00) c 0.004 7.427±0.548 4.732±0.304 c 0.014 

UTHSC 10461 0.03 0.5 - L707Sd 17.6 (3.48-31.85) 18.5 (5.263-31.74) 0.186 6.377±0.368 5.152±0.076 c 0.028 

JMI-2092 0.5 1 - L707Sd 15.6 (3.85-27.48) 22.17 (9.43-34.91)c 0.037 4.955±0.656 3.665±0.136 c 0.038 

JMI-206 1 1 - F659Se 16.3 (4.87-27.80) 23.00 (11.62-37.38) 0.212 7.174±0.094 7.044±0.416 0.061 

JMI-211 1 1 - S663Pe 7.1 (5.02-9.30) 13.83 (0.66-27.00) 0.174 6.711±0.587 6.391±0.179 0.055 

JMI-297 1 1 
S629Pe, 
R631Se, 
A1037Td 

- 15.0 (2.71-27.29) 21.83 (8.55-35.11)c 0.008 5.436±0.269 3.558±0.061 c 0.029 

JMI-760 1 1 - S663Pe 8.0 (6.67-9.33) 16.00 (4.14-27.85) 0.062 6.706±0.539 6.782±0.364 0.064 

JMI-10956 1 2 - F659Ve, L707Sd 18.3 (4.85-31.82) 19.67 (7.78-31.55) 0,192 5.34±0.155 4.882±0.340 0.078 

JMI-14378 2 4 S629Pe - 7.5 (5.53-9.46) 12.00 (9.79-14.20) 0.073 7.669±0.428 7.046±0.546 0.063 

JMI-127 2 16 S629Pe - 14.8 (2.32-27.35) 7.16 (5.62-8.71) 0.432 5.00±0.528 5.587±0.387 0.455 

JMI-729 4 >16 - F663Pe 6.66 (4.95-8.38) 9.33 (8.47-10.19) 0.331 5.599±0.170 5.381±0.171 0.052 
a, Minimal inhibitory concentration (MIC) of caspofungin (CSP) and anidulafungin (AFG). The last given for comparison as 200 
recommended by Arendrup MC. et al. in EUCAST technical note (18)  201 
b, MST, mean survival time in days 202 
c, P value < 0.05 in comparison to the respective control group 203 
d, Mutations outside of the hot spot 1(HS1) region of the  FKS1 and FKS2 genes  204 



  

e, Mutations in the  hot spot 1(HS1) region of the  FKS1 and FKS2 genes.  205 
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