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Abstract

A global boundary defensive k-alliance in a graph G = (V,E) is a dom-
inating set S of vertices of G with the property that every vertex in S has k
more neighbors in S than it has outside of S. A global boundary offensive
k-alliance in a graph G is a set S of vertices of G with the property that
every vertex in V − S has k more neighbors in S than it has outside of S.
We define a global boundary powerful k-alliance as a set S of vertices of
G, which is both global boundary defensive k-alliance and global boundary
offensive (k + 2)-alliance. In this paper we study mathematical properties
of boundary powerful k-alliances. In particular, we obtain several bounds
(closed formulas for the case of regular graphs) on the cardinality of every
global boundary powerful k-alliance. In addition, we consider the case in
which the vertex set of a graph G can be partitioned into two boundary pow-
erful k-alliances, showing that, in such a case, k = −1 and, ifG is δ-regular,
its algebraic connectivity is equal to δ + 1.

Keywords: Alliances in graphs, powerful alliances, domination, algebraic
connectivity, Laplacian spectral radius.
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1 Introduction
The mathematical properties of alliances in graphs were first studied by P. Kris-
tiansen, S. M. Hedetniemi and S. T. Hedetniemi [12]. They proposed different
types of alliances: namely, defensive [9, 10, 12, 13, 14, 17], offensive [4, 6, 13, 18]
and dual or powerful alliances [1, 2]. The complexity of computing the minimum
∗This work was partly supported by the Spanish Ministry of Education through projects TSI2007-

65406-C03-01 ”E-AEGIS” and CONSOLIDER CSD2007-00004 ”ARES” and by the Rovira i Virgili
University through project 2006AIRE-09.
†ismael.gonzalez@urv.cat
‡juanalberto.rodriguez@urv.cat

1



cardinality of alliances is addressed in [3, 5, 6, 10, 11]. For instance, a defensive
alliance of a graphG is a set S of vertices ofGwith the property that every vertex
in S has at most one more neighbor outside of S than it has in S. An offensive
alliance of a graphG is a set S of vertices ofGwith the property that every vertex
in the boundary of S has at least one more neighbor in S than it has outside of
S. The combination of these two kind of alliances is called powerful alliance,
hence a powerful alliance is a set S of vertices of G, which is both, defensive
and offensive. A generalization of defensive alliances was presented by K. H.
Shafique and R. D. Dutton in [15, 16] where they define defensive k-alliance as a
set S of vertices of G with the property that every vertex in S has at least k more
neighbors in S than it has outside of S. In this paper, we study the mathematical
properties of a particular case of k-alliances that we call boundary k-alliances. A
global boundary defensive k-alliance in a graph G = (V,E) is a dominating set
S of vertices of G with the property that every vertex in S has k more neighbors
in S than it has outside of S [19]. Analogously, a global boundary offensive k-
alliance in a graph G is a dominating set S of vertices of G with the property
that every vertex in V − S has k more neighbors in S than it has outside of S.
In this paper we focus our attention on sets of vertices of G that are both global
boundary defensive k-alliances and global boundary offensive (k + 2)-alliances.
We call these types of alliances global boundary powerful k-alliances.

We begin by stating the terminology used. Throughout this article, G =
(V,E) denotes a simple graph of order |V | = n and size |E| = m. We denote
two adjacent vertices u and v by u ∼ v. For a nonempty set X ⊆ V , and a vertex
v ∈ V , NX(v) denotes the set of neighbors v has in X: NX(v) := {u ∈ X :
u ∼ v} and the degree of v in X is denoted by δX(v) = |NX(v)|. We denote the
degree of a vertex vi ∈ V by δ(vi) (or by δi for short) and the degree sequence of
G by δ1 ≥ δ2 ≥ · · · ≥ δn. The subgraph induced by S ⊂ V is denoted by 〈S〉
and the complement of the set S in V is denoted by S̄. Recall that a set S ⊂ V is
a dominating set in G if for every vertex u ∈ S̄, δS(u) > 0 (every vertex in S̄ is
adjacent to at least one vertex in S).

With the above notation we define boundary defensive (offensive) k-alliance
as follows [19].

Definition 1. A set S ⊆ V is a boundary defensive k-alliance inG, k ∈ {−δ1, . . . , δ1},
if

δS(v) = δS̄(v) + k, ∀v ∈ S. (1)

Definition 2. A set S ⊆ V is a boundary offensive k-alliance in G, k ∈ {2 −
δ1, . . . , δ1}, if

δS(v) = δS̄(v) + k, ∀v ∈ ∪u∈SNS̄(u). (2)
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2 Boundary powerful k-alliances
Definition 3. A set S ⊆ V is a (global) boundary powerful k-alliance in G =
(V,E), k ∈ {2− δ1, . . . , δ1}, if S is both (global) boundary defensive k-alliance
and (global) boundary offensive (k + 2)-alliance.

Figure 1: S1 = {1, 2, 3, 4} is a boundary powerful (−2)-alliance and S2 =
{5, 6, 7, 8} is a boundary powerful (0)-alliance.

It was shown in [19] that the cardinality of a boundary defensive k-alliance
S is bounded by ⌈

δn + k + 2
2

⌉
≤ |S| ≤

⌊
2n− δn + k

2

⌋
.

Analogously, in the case of a boundary offensive k-alliance S we have:⌈
δn + k

2

⌉
≤ |S| ≤

⌊
2n− δn + k − 2

2

⌋
.

Thus, the following result follows.

Remark 1. If S is a boundary powerful k-alliance in a graph, then⌈
δn + k + 2

2

⌉
≤ |S| ≤

⌊
2n− δn + k

2

⌋
.

Corollary 2. If S is a boundary powerful k-alliance in a complete graph G =
Kn, then |S| =

⌈
n+k+1

2

⌉
.

Theorem 3. If S is a global boundary powerful k-alliance in a graph, then⌈
2m+ n(k + 2)

2δ1 + 2

⌉
≤ |S| ≤

⌊
2m+ n(k + 2)

2δn + 2

⌋
.
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Proof. As S is a global boundary powerful k-alliance inG, then, for every v ∈ S,
δ(v) = 2δS̄(v) + k, and for every v ∈ S̄, δ(v) = 2δS(v)− (k + 2). Hence,∑

v∈S
δ(v) = 2

∑
v∈S

δS̄(v) + k|S|,

and ∑
v∈S̄

δ(v) = 2
∑
v∈S̄

δS(v)− (k + 2)(n− |S|).

Therefore, as
∑
v∈S

δS̄(v) =
∑
v∈S̄

δS(v),

2m = 4
∑
v∈S

δS̄(v) + |S|(2k + 2)− n(k + 2). (3)

Moreover,
δn − k

2
≤ δS̄(v) ≤ δ1 − k

2
, ∀ v ∈ S. (4)

Now, by using the above inequalities in equation (3) we obtain the bounds on
|S|.

Figure 2: S = {1, 2, 3, 4, 5, 6} is a global boundary powerful (0)-alliance.

Since for any δ-regular graph, m = δn
2 , the above theorem gives a closed

formula for the cardinality of any global boundary powerful k-alliance.

Corollary 4. If S is a global boundary powerful k-alliance in a δ-regular graph,
then

|S| =
⌈
n(δ + k + 2)

2(δ + 1)

⌉
.

The Euler formula states that for a connected planar graph of order n, size
m and f faces, m = n + f − 2. Hence, we obtain the following corollary of
Theorem 3.
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Corollary 5. Let G be a planar connected graph with f faces. If S is a global
boundary powerful k-alliance in G, then⌈

n(k + 4) + 2f − 4
2δ1 + 2

⌉
≤ |S| ≤

⌊
n(k + 4) + 2f − 4

2δn + 2

⌋
and, if G is δ-regular,

|S| = n(k + 4) + 2f − 4
2(δ + 1)

.

Figure 3: A planar and connected (3-regular) graph with f = 6 faces where
S = {1, 2, 4, 5, 6, 8} is a global boundary powerful (1)-alliance.

Theorem 6. If S is a global boundary powerful k-alliance in a graph, then⌈
n(2δn + k + 2)− 2m

2δn + 2

⌉
≤ |S| ≤

⌊
n(2δ1 + k + 2)− 2m

2δ1 + 2

⌋
.

Proof. As S is a global boundary offensive (k + 2)-alliance in G, then

δn + k + 2
2

≤ δS(v) ≤ δ1 + k + 2
2

, ∀ v ∈ S̄. (5)

Now, as
∑
v∈S

δS̄(v) =
∑
v∈S̄

δS(v), by using (5), in equation (3), we obtain both

bounds on |S|.

Notice that the above theorem leads to Corollary 4.

Theorem 7. Let G = (V,E) be a graph and let S ⊂ V . Let c be the number of
edges of G with one endpoint in S and the other endpoint outside of S. If S is a
global boundary powerful k-alliance in G, with k 6= −1, then

|S| = 2(m+ n− 2c) + nk

2(k + 1)
.
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Proof. Let m〈S〉 be the size of 〈S〉. As S is a boundary defensive k-alliance in
G,

2m〈S〉 =
∑
v∈S

δS(v) =
∑
v∈S

δS̄(v) + k|S| = c+ k|S|.

Moreover, as S is a global boundary offensive (k + 2)-alliance in G,

c =
∑
v∈S̄

δS(v) =
∑
v∈S̄

δS̄(v) + (n− |S|)(k + 2) = 2m〈S̄〉+ (n− |S|)(k + 2).

Now, as m = m〈S〉+m〈S̄〉+ c, we obtain the value of |S|.

Corollary 8. Let G = (V,E) be a δ-regular graph and let S ⊂ V . Let c be the
number of edges of G with one endpoint in S and the other endpoint outside of S.
If S is a global boundary powerful k-alliance in G, with k 6= −1, then

(i) |S| = n(δ+k+2)−4c
2k+2 ,

(ii) c = n(δ2+2δ−k2−2k)
4(δ+1) .

Proof. (i) is trivial and (ii) is a direct consequence of Corollary 4 and Theorem
7.

3 Partitioning a graph into two global boundary pow-
erful k-alliances

Remark 9. Let G = (V,E) be a graph.

(i) S ⊂ V is a global boundary powerful (−1)-alliance in G, if and only if, S̄
is a global boundary powerful (−1)-alliance in G.

(ii) IfG can be partitioned into two global boundary powerful k-alliances, then
k = −1.

Proof. If S is a global boundary powerful k-alliance in G, then

δS(v) = δS̄(v) + k, ∀ v ∈ S (6)

and
δS(v) = δS̄(v) + k + 2, ∀ v ∈ S̄. (7)

(i) follows immediately from (6) and (7). If S̄ is a global boundary powerful
k-alliance in G, then

δS̄(v) = δS(v) + k, ∀ v ∈ S̄ (8)

and
δS̄(v) = δS(v) + k + 2, ∀ v ∈ S. (9)

Hence, by (6) and (9) (or by (7) and (8)), we obtain that k = −1.
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Figure 4: S = {1, ..., 8} and S̄ are global boundary powerful (−1)-alliances.

Theorem 10. Let G = (V,E) be a graph, if S is a global boundary powerful
(−1)-alliance in G, then⌈

n(δn + 1)
δ1 + δn + 2

⌉
≤ |S| ≤

⌊
n(δ1 + 1)
δ1 + δn + 2

⌋
.

Proof. From (6) and (7) we have,∑
v∈S

δS(v) =
∑
v∈S

δS̄(v)− |S| (10)

and ∑
v∈S̄

δS(v) =
∑
v∈S̄

δS̄(v) + n− |S|. (11)

Hence, as
∑
v∈S

δS̄(v) =
∑
v∈S̄

δS(v),

∑
v∈S

δS(v) =
∑
v∈S̄

δS̄(v) + n− 2|S|. (12)

Thus, by (12) we obtain the following inequalities,

|S|δ1 − 1
2
≥ (n− |S|)δn − 1

2
+ n− 2|S| (13)

and
|S|δn − 1

2
≤ (n− |S|)δ1 − 1

2
+ n− 2|S|. (14)

Solving the above inequalities for |S| we obtain the bounds.

Notice that the bounds obtained in the above theorem are attained, for in-
stance, in the case of the graph in Figure 4.
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Figure 5: S = {1, 2, 3, 4} and S̄ are global boundary powerful (−1)-alliances.

Corollary 11. If S is a global boundary powerful (−1)-alliance in a δ-regular
graph, then |S| = n

2 .

Figure 5 shows an example of a 5-regular graph, which can be partitioned
into two global boundary powerful (−1)-alliances.

Theorem 12. Let S ⊂ V be a global boundary powerful (−1)-alliance in a graph
G = (V,E) and let M ⊂ E be a cut set with one endpoint in S and the other

endpoint outside of S. Then
⌈

2m+n
2δ1+2

⌉
≤ |S| ≤

⌊
2m+n
2δn+2

⌋
and |M | = 2m+n

4 .

Proof. As S is a global boundary defensive (−1)-alliance in G, for every v ∈ S,
δ(v) = 2δS̄(v)− 1, therefore,∑

v∈S
δ(v) = 2|M | − |S|.

Moreover, as S̄ is a global boundary offensive 1-alliance in G, for every v ∈ S̄,
δ(v) = 2δS(v)− 1, therefore,∑

v∈S̄

δ(v) = 2|M | − n+ |S|.

Hence, 2m = 4|M | − n. So, the value of |M | follows. The bounds on |S| are
obtained from the above equation by using that, for every v ∈ S, δn+1

2 ≤ δS̄(v) ≤
δ1+1

2 .

Notice that the above result leads to the Corollary 11.
It is well-known that the second smallest Laplacian eigenvalue of a graph,

frequently called algebraic connectivity, is probably the most important informa-
tion contained in the Laplacian spectrum. Also, the Laplacian spectral radius (the
largest Laplacian eigenvalue of a graph) contains important information about the
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graph. These eigenvalues, are related to several important graph invariants and
they impose reasonably good bounds on the values of several parameters of graphs
which are very hard to compute.

The algebraic connectivity of G, µ, and the Laplacian spectral radius, µ∗,
satisfy the following equalities shown by Fiedler [7],

µ = 2nmin

{ ∑
vi∼vj

(wi − wj)2∑
vi∈V

∑
vj∈V (wi − wj)2

: w 6= αj for α ∈ R

}
(15)

and

µ∗ = 2nmax

{ ∑
vi∼vj

(wi − wj)2∑
vi∈V

∑
vj∈V (wi − wj)2

: w 6= αj for α ∈ R

}
, (16)

where V = {v1, v2, ..., vn}, j = (1, 1, ..., 1) and w ∈ Rn.
The following result shows the relationship between the algebraic connectiv-

ity (and the Laplacian spectral radius) of a graph and the cardinality of its global
boundary powerful (−1)-alliances.

Theorem 13. If X ⊂ V is a global boundary powerful (−1)-alliance in G =
(V,E), then, without loss of generality,

n

2
+

⌈√
n2(µ− 1)− 2nm

4µ

⌉
≤ |X| ≤ n

2
+

⌊√
n2(µ∗ − 1)− 2nm

4µ∗

⌋
and

n

2
−

⌊√
n2(µ∗ − 1)− 2nm

4µ∗

⌋
≤ |X̄| ≤ n

2
−

⌈√
n2(µ− 1)− 2nm

4µ

⌉
.

Proof. On one hand, by Theorem 12 we have,∑
v∈X

δX̄(v) =
2m+ n

4
. (17)

On the other hand, by equations (15) and (16), taken w ∈ Rn defined as,

wi =
{

1 if vi ∈ X;
0 otherwise, (18)

we have

µ ≤

n
∑
v∈X

δX̄(v)

|X|(n− |X|)
≤ µ∗. (19)

Now, by using equation (17) in (19) we obtain both bounds on |X|. Moreover, as
|X̄| = n− |X|, the bounds on |X̄| follows.
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By Corollary 11 and the above theorem we obtain the following conse-
quence.

Theorem 14. Let G = (V,E) be a δ-regular graph. If G contains a global
boundary powerful (−1)-alliance, then the algebraic connectivity of G is µ =
δ + 1.

The above theorem gives a necessary condition for the existence global
boundary powerful (−1)-alliances. Thus we obtain, for instance, that the Icosa-
hedron does not contain global boundary powerful (−1)-alliances; because its al-
gebraic connectivity is µ = 5−

√
5. Notice that the same occurs for the Petersen

graph because, in this case, δ = 3 and µ = 2.
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