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Abstract 1 

Grape-seed procyanidins (GSPE) have been reported to improve insulin resistance in 2 

cafeteria rats. Since glucagon-like peptide-1 (GLP-1) is involved in glucose 3 

homeostasis, the preventive effects of GSPE on GLP-1 production, secretion, and 4 

elimination were evaluated in a model of diet-induced insulin resistance. Rats were fed 5 

a cafeteria diet for 12 weeks and 25 mg of GSPE/kg of body weight was administered 6 

concomitantly. Vehicle-treated cafeteria-fed rats and chow fed rats were used as 7 

controls. The cafeteria diet decreased active GLP-1 plasma levels, which is attributed to 8 

a decreased intestinal GLP-1 production, linked to reduced colonic enteroendocrine cell 9 

populations. Such effects were prevented by GSPE. In the same context, GSPE avoided 10 

the decrease on intestinal dipeptidyl-peptidase 4 (DPP4) activity, and modulated the 11 

gene expression of GLP-1 and its receptor in hypothalamus. In conclusion, the 12 

preventive treatment with GSPE abrogates the effects of the cafeteria diet on intestinal 13 

GLP-1 production and DPP4 activity. 14 

Keywords: GSPE/ GLP-1/ DPP-4/ insulinemia 15 

16 
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Introduction 17 

Procyanidins, a class of phenolic compounds, have been shown to improve glucose 18 

homeostasis in several models of glucose-homeostasis disruption 1. Chronic corrective 19 

treatment using grape-seed procyanidins ameliorates insulin resistance in a cafeteria diet 20 

model 2. These effects might be partially explained by their insulin-like effect on 21 

insulin-sensitive cell lines 3,4 as well as through their effects on pancreatic β-cell 22 

function, and by decreasing insulin secretion and production and lipid accumulation in 23 

the pancreas that is induced by the cafeteria diet 5. Moreover, we have previously 24 

reported that the chronic treatment of healthy rats with GSPE increases the 25 

insulin/glucose ratio after oral glucose administration compared to intraperitoneal 26 

glucose infusion, suggesting an incretin-like effect 6. However, the effect of 27 

procyanidins on incretins in an insulin resistance context has not been described yet. 28 

The main incretin hormones are glucagon-like peptide-1 (GLP-1) and glucose-29 

dependent insulinotropic peptide (GIP), which are secreted by the intestinal L- (ileum 30 

and colon) and K-cells (duodenum and jejunum), respectively 7. Plasma levels of GLP-1 31 

have been reported to be reduced in type 2 diabetic patients 8,9 and in mice with high-fat 32 

diet (HFD)-induced insulin resistance 10, and exogenous infusions of GLP-1 were 33 

shown to improve glycemia 11,12 and  insulin resistance 13 in these contexts. Along this 34 

line, therapies, including the use of bioactive food components, which would enhance 35 

the action of GLP-1, are of great interest to diminish the development of these 36 

pathologies. An Ilex paraguariensis leaf extract, which is rich in the phenolic 37 

compound 3,5-O-dicaffeoyl-D-quinic acid, was previouslyshown to improve glycemia 38 

and insulinemia in HF-fed mice, a result that was correlated with increased plasma 39 

levels of active GLP-1 14,15. Moreover, Dao et al. reported that chronic treatment with 40 
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resveratrol, a polyphenolic compound found in red grapes, improves portal and 41 

intestinal levels of active GLP-1 and pro-glucagon gene expression in HF-fed mice 10. 42 

The aim of this study was to assess whether preventive treatment with GSPE can 43 

counteract the effects of a cafeteria diet on glucose homeostasis, focusing on the GLP-1 44 

system. 45 

Materials and Methods 46 

Reagents 47 

The grape seed procyanidin extract (GSPE) was obtained from Les Dérivés Résiniques 48 

et Terpéniques (Dax, France) and was previously fully characterized by our research 49 

group 16.  50 

Glucose plasma concentrations were assayed using an enzymatic colorimetric kit 51 

(GOD-PAP method from QCA, Tarragona, Spain). Insulin plasma concentrations were 52 

determined using Rat Insulin ELISA/Ultrasensitive Rat Insulin ELISA (Mercodia, 53 

Uppsala, Sweden). Total GIP and active GLP-1 plasma levels were measured using 54 

Rat/Mouse GIP (total) ELISA and GLP-1 (active) ELISA kits, respectively (Millipore, 55 

Madrid, Spain).  56 

DPP4 activity was determined using the colorimetric substrate H-glycylprolyl-57 

pnitroanilide p-tosyalte (Bachem, Bubendorf, Switzerland).  58 

Animal experimental procedures  59 

Female Wistar rats were purchased from Charles River Laboratories (Barcelona, Spain), 60 

housed in animal quarters at 22 ºC with a 12-h light/ 12-h dark cycle and maintained for 61 

1 week in quarantine. The animals were divided into the following three groups (8 62 
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animals/group): a control group fed with standard chow (Panlab, Barcelona, Spain) 63 

(CON); a group fed with a cafeteria diet (bacon, biscuits with pâté, muffins, carrots and 64 

milk with sugar) and water plus the standard diet and were vehicle-treated (CAF); and a 65 

group fed with the cafeteria diet and water plus the standard diet and treated with 25 mg 66 

GSPE/kg of body weight (bw) per day (CAF + GSPE). The treatments were 67 

administered by voluntary feeding of the GSPE dose using sweetened condensed milk, 68 

diluted 1:10 with water, as a vehicle. Every day, the food was withdrawn at 9 a.m. and 69 

was replaced at 4 p.m. 70 

At the 8th week of treatment, the rats were fasted overnight and an oral glucose 71 

tolerance test (OGTT) was performed. Briefly, 2 g glucose/kg bw was dissolved in 72 

water, administered by oral gavage, and tail blood samples were taken at 0, 15, 30 and 73 

120 min after the administration of the glucose load. The plasma glucose and insulin 74 

levels were measured.  75 

At the 9th week of treatment, the rats were fasted overnight, tail blood samples were 76 

taken and insulin levels were measured.  77 

After 12 weeks of GSPE treatment, the overnight fasted animals, were anesthetized with 78 

50 mg of pentobarbital/kg body weight and sacrificed by bleeding. The blood was 79 

collected and treated with a commercial DPP4 inhibitor (Millipore, Madrid, Spain) and 80 

a serine protease inhibitor, Pefabloc SC, (Roche, Barcelona, Spain) to prevent the 81 

inactivation of active GLP-1 and ghrelin, respectively. The animal tissue specimens 82 

were immediately frozen in liquid nitrogen and stored at -80 ºC until further analysis. 83 

All of the procedures were approved by the Experimental Animal Ethics Committee of 84 

the Universitat Rovira i Virgili (permission number: 4250). 85 
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Intestinal GLP-1 extraction 86 

Active GLP-1 was extracted from colon as previously described 17. Briefly, colon 87 

samples were homogenized using an ethanol-acid solution (100% ethanol-sterile water-88 

12 M HCl, 74:25:1), placed for 24 h at 4 ºC and centrifuged at 2,000 x g for 20 min at 4 89 

ºC. Supernatants were collected, diluted in 1X PBS and stored at -80 ºC until further 90 

analysis. Active GLP-1 was measured following the manufacturer’s instructions. 91 

Measurement of DPP4 activity 92 

DPP4 was extracted from rat intestine as previously described 6. Briefly, intestine 93 

samples were homogenized using lysis buffer (PBS containing 100 KIU/mL aprotinin 94 

and 1% Triton X-100), centrifuged at 1,000 x g at 4 ºC for 10 min to eliminate the 95 

cellular debris, and centrifuged twice at 20,000 x g at 4 ºC for 10 min. The supernatants 96 

were stored at -80º C until further analysis. 97 

To determine the activity of DPP4 in the intestinal lysates and the rat plasma samples, 98 

the specimens were incubated with 0.2 mM H-glycylprolyl-pnitroanilide p-tosyalte in 99 

Tris-HCl buffer at 37 ºC, and the release of p-nitroanilide absorbance was measured 100 

every min at 405 nm for 30 min.   101 

Western Blot 102 

Protein was extracted from the intestine using RIPA lysis buffer (15 mM Tris-HCl, 1% 103 

Triton X-100, 0,1% SDS, 167 mM NaCl and 0.5% Na-deoxycholate) with a protease 104 

inhibitor cocktail (diluted 1:1000, Sigma-Aldrich) and 1 mM PMSF. The total protein 105 

levels of the lysates were determined using the Bradford method 18. The proteins were 106 

loaded and run on 10% SDS-polyacrylamide gels. The samples were transferred onto 107 

PVDF membranes (Bio-Rad Laboratories, Hercules, CA, USA), blocked at room 108 
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temperature using 5% (w/v) non-fat milk in TBST buffer (Tris-buffered saline with 109 

0.2% (v/v) Tween-20) and incubated overnight at 4 ºC with rabbit anti-β-actin antibody 110 

(Sigma-Aldrich) or anti-CD26 (Abcam, Cambridge, UK). After washing with TBST, 111 

the blots were incubated at room temperature with peroxidase-conjugated anti-rabbit 112 

secondary antibody (GE Healthcare, Buckinghamshire, UK). The blots were washed 113 

thoroughly in TBST, followed by TBS after immunoblotting, and the immunoreactive 114 

proteins were visualized using the ECL Plus Western blotting detection system (GE 115 

Healthcare). Densitometric analysis of the immunoblots was performed using ImageJ 116 

1.44p software; all proteins were quantified relative to the loading control. 117 

Quantitative RT-PCR 118 

The total RNA from the hypothalamus was extracted using an RNAeasy Kit (Qiagen, 119 

Hilden, Germany), and the total RNA from the duodenum and colon was extracted 120 

using the TRIzol reagent following the manufacturers’ protocols  cDNA was generated 121 

using a High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Madrid, 122 

Spain). Quantitative PCR amplification and detection were performed using the 123 

following TaqMan assay-on-demand probes (Applied Biosystems): Rn00562910_m1 124 

for DPP4, Rn00571500_m1 for GIP, Rn00562293_m1 for proglucagon, 125 

Rn01460420_g1 for PYY, Rn00572200_m1 for Chromogranin A (CgA), and 126 

Rn00562406_m1 for GLP-1 receptor (GLP-1R). β-actin was used as the reference gene 127 

(Rn00667869_m1). The relative mRNA expression levels were calculated using the 128 

∆∆Ct method. 129 

Data analyses 130 

AUC and HOMA-IR were calculated as previously described by Ou et al. and Matthews 131 

et al., respectively 19,20.  132 
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The results are expressed as the mean values ± SEM. The effects were assessed by 133 

ANOVA and Student’s t-test. All calculations were performed using SPSS software 134 

(SPSS, Chicago, USA). 135 

Results 136 

GSPE limits the cafeteria diet-induced decrease in intestinal GLP-1 biosynthesis  137 

To analyze whether a preventive treatment with procyanidins modulates the incretin 138 

levels in cafeteria diet-fed rats, basal GIP and GLP-1 levels in plasma were assessed in 139 

rats fed a cafeteria diet for 12 weeks simultaneously with 25 mg of GSPE/kg of bw. As 140 

shown in figure 1a, cafeteria-fed rats exhibited reduced plasma levels of active GLP-1. 141 

GSPE did not alter the active GLP-1 levels compared to the vehicle-treated cafeteria-fed 142 

rats. Total GIP levels were neither modified by the cafeteria diet nor by the GSPE 143 

treatment (figure 1b).   144 

To assess the effect of the cafeteria diet and GSPE treatment on incretin biosynthesis, 145 

we measured the GLP-1 levels and pro-glucagon gene expression in colon, as well as 146 

GIP gene expression in duodenum. As shown in figure 2, the colon levels of GLP-1 147 

were decreased by the cafeteria diet by approximately 30% compared to the control diet 148 

(figure 2a), a reduction that was accompanied by a significant down-regulation of the 149 

pro-glucagon gene expression (figure 2b). The GSPE treatment prevented the decrease 150 

in colon levels of GLP-1 produced by cafeteria-diet, although it did not reach control 151 

levels (figure 2a). This effect was also observed for the expression of the pro-glucagon 152 

gene as shown in figure 2b. GIP gene expression in the duodenum was unaffected 153 

either by the cafeteria diet or the GSPE treatment (0.93 ± 0.17 and 0.89 ± 0.10, 154 

respectively, versus control (1.03 ± 0.09) (P > 0.05)). 155 
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GSPE prevents the cafeteria diet-induced decrease of enteroendocrine cells in the colon 156 

To determine whether the reduction in GLP-1 is due to a modulation of GLP-1 gene 157 

expression or to a general effect on GLP-1 producing cells, we tested the effects of the 158 

cafeteria diet and GSPE on PYY, another hormone that is also secreted by intestinal L-159 

cells. We evaluated PYY gene expression, and as shown in figure 2c, it was 160 

significantly down-regulated due to the cafeteria diet, whereas GSPE treatment partially 161 

blocked this effect. 162 

Next, we analyzed the gene expression of CgA, a marker of endocrine differentiation. 163 

Figure 2d shows that the expression of CgA gene in colon was significantly decreased 164 

in the CAF group, whereas GSPE treatment prevented the effect of the cafeteria diet, 165 

similar to the effect observed for GLP-1 and PYY. The expression of CgA gene in the 166 

duodenum was also assessed, but it was unaffected by the cafeteria diet or by the GSPE 167 

treatment (0.88 ± 0.11 and 1.13 ± 0.27, respectively, versus control (1.16 ± 0.22) (P > 168 

0.05)).  169 

GSPE modulates intestinal DPP4 170 

To assess whether the cafeteria diet and the GSPE treatment could also modify the 171 

enzyme responsible for incretin degradation, DPP4, the plasma and intestinal levels of 172 

DPP4 activity were measured at the end of the treatment. As shown in figure 3a, 173 

plasma DPP4 activity was slightly but significantly decreased by the cafeteria diet, 174 

whereas it was unaffected by the GSPE treatment. Intestinal DPP4 activity was also 175 

reduced by the cafeteria diet, whereas in contrast to the effects in plasma, the 176 

simultaneous GSPE treatment prevented this decrease (figure 3b).  To analyze whether 177 

the preventive effect elicited by GSPE was due to a modulation of DPP4 production, its 178 

gene and protein expression were also evaluated in the intestine. As shown in figures 3c 179 
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and 3d, DPP4 gene expression and protein levels were reduced by the cafeteria diet, 180 

which is consistent with what was observed in terms of its activity. GSPE prevented the 181 

cafeteria-induced decrease in DPP4 protein expression, but elicited no effect at the gene 182 

expression level. 183 

GSPE treatment modulates the expression of GLP-1 and GLP-1 receptor genes in the 184 

hypothalamus 185 

To evaluate the systemic preventive effects of GSPE on GLP-1 production, pro-186 

glucagon gene expression was also assessed in the hypothalamus. As shown in figure 187 

4a, the cafeteria diet tended to up-regulate pro-glucagon expression and GSPE treatment 188 

further enhanced this effect. We also evaluated the sensitivity to GLP-1 by assaying 189 

GLP-1 receptor (GLP-1R) gene expression, and we found that its expression was 190 

unaffected by the cafeteria diet, whereas it was down-regulated by the GSPE treatment 191 

compared to cafeteria-fed rats treated with the vehicle (figure 4b).  192 

GSPE modulates insulinemia after 9 weeks of treatment 193 

To assess whether a preventive GSPE treatment can modulate insulinemia, an OGTT of 194 

2 h was performed at the 8th week of treatment. As shown in figure 5, insulin AUC 195 

(area under the curve) was increased in cafeteria diet-fed rats, whereas a preventive 196 

GSPE treatment prevented this effect.  197 

Moreover, fasting plasma insulin and glucose levels were measured after 9 and 12 198 

weeks to test whether preventive GSPE treatment affects insulin resistance induced by 199 

the cafeteria diet. As shown in figure 6a, HOMA-IR was significantly increased after 9 200 

weeks of cafeteria diet, whereas a simultaneous treatment with 25 mg of GSPE/kg of 201 

bw prevented this effect, resulting in a healthier HOMA-IR. However, after 12 weeks, 202 
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GSPE treatment was unable to prevent the increase in HOMA-IR induced by the 203 

cafeteria diet (figure 6b).  204 

Discussion  205 

Procyanidins from grape seed have been shown to improve insulin resistance, eliciting a 206 

corrective effect when the glucose homeostasis of the animal has been slightly disturbed 207 

by a cafeteria diet 1,2,5,21. However, whether GSPE can act in a preventive way has not 208 

yet been described. Moreover, GSPE has been shown to elicit an incretin-like effect in 209 

healthy rats 6. However, our understanding of the effects of GSPE on the incretin 210 

system in animals with disturbed glucose homeostasis remains limited.  In this study, 211 

we developed a 12-week cafeteria diet-fed model that caused a decrease in GLP-1 212 

plasma levels and production in the intestine, with no effects on GLP-1 production and 213 

detection in the hypothalamus. The cafeteria diet also caused a decrease in the amount 214 

of DPP4 enzyme at the plasma level and in the intestine, and the HOMA-IR clearly 215 

revealed the induction of insulin-resistance. We found that procyanidins were able to 216 

counteract several of these effects, which were predominantly found in the intestine.  217 

Regarding GLP-1 production, the CAF+GSPE animals exhibited an increased amount 218 

of GLP-1 in colonic cells, with a simultaneous increase in GLP-1 mRNA. Similarly, 219 

Dao et al. reported that resveratrol increased the colon levels of active GLP-1, together 220 

with an increase in pro-glucagon gene expression, in mice fed with a HFD 10. Dao et al. 221 

also suggested that the increase in GLP-1 production by resveratrol might explain its 222 

preventive effects on plasma levels of GLP-1, which are reduced in the vehicle-treated 223 

HFD-fed mice after the administration of an oral glucose load but are increased in the 224 

resveratrol-treated HFD-fed animals 10. Actually, an acute dose of GSPE has also been 225 

found to effectively improve glucose-stimulated GLP-1 secretion in healthy rats 226 
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(submitted results). Besides, some other proanthocyanidins (i.e., berry purees 22 and the 227 

tetrameric procyanidin cinnamtannin A2 23) have been shown to elicit this effect. 228 

Our results showed that treatment with GSPE also up-regulated the colon expression of 229 

the PYY gene, a hormone that has been reported to be co-expressed with GLP-1 in 230 

enteroendocrine L-cells 24. Enteroendocrine cells actively self-renew and differentiate 231 

throughout the life of an animal 25, and procyanidins are known to modify cell 232 

proliferation 21,26,27. Therefore, we assessed whether GSPE modulated CgA levels, a 233 

marker of endocrine cells 28,29. We found that GSPE again counteracted the effects of 234 

the cafeteria diet. Our results suggest that the modulation on GLP-1 production is not 235 

only due to a direct modulation of its gene expression but also to changes in the amount 236 

of enteroendocrine cells, which were reduced by the cafeteria diet. There are no 237 

previous studies that have analyzed the effects of a cafeteria diet on the number of 238 

enteroendocrine cells. A high-fat diet was suggested to increase the proliferation of L-239 

cells, causing a dysfunction and reducing GLP-1 secretion 30. The different results 240 

might be attributed to differences in experimental conditions (type of diet, animal 241 

gender, length of the study) between studies. Moreover, that study analyzed the effects 242 

within the duodenum, whereas we found effects that were limited to the colon, the 243 

predominant location for GLP-1 production 31. In contrast, we found that the expression 244 

of CgA and GIP genes in the duodenum, where GIP-producing cells are predominantly 245 

found 32, was unchanged in our experiment, which is consistent with the unaltered 246 

plasma levels of GIP.   247 

The effects of GSPE on DPP4 are consistent with our previous results, which 248 

demonstrated the sensitivity of intestinal DPP4 to GSPE and a lack of GSPE effects on 249 

plasma DPP4 6. In this study, we found that GSPE prevents the decrease in intestinal 250 
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DPP4 activity and protein caused by a cafeteria diet. These results differ from previous 251 

observations because we had shown an inhibitory effect of 25 mg of GSPE/kg of bw 252 

after 45 days of treatment in healthy animals or after 30 days in animals with cafeteria 253 

diet-induced insulin resistance 6. The effect that a cafeteria diet elicited on DPP4 is 254 

unclear.  Several authors have reported an increase in circulating DPP4 activity in 255 

humans with obesity or type 2 diabetes 33-35 and in rats with type 1 diabetes or impaired 256 

glucose tolerance 36,37. However, limited studies in humans have shown decreased 257 

plasma DPP4 activity in diabetic subjects 38 and unchanged activity in obese, diabetic 258 

and impaired-glucose tolerance subjects 34,39. Taking together, these data indicate that a 259 

severe degree of hyperglycemia is required to induce an increase on circulating DPP4 260 

activity, whereas mild hyperglycemia is insufficient to induce its increase 34,39. Our 261 

model supports this conclusion because the cafeteria diet did not affect glycemia, which 262 

is consistent with the lack of increased DPP4. In contrast, we found a decrease that is 263 

partially prevented by GSPE. In a completely different context, the flavonoid apigenin 264 

has been reported to counteract the decrease in DPP4 activity caused by cancer in a 265 

colorectal carcinoma cell lines, an observation that is in line with the effects on DPP4 266 

observed in our study 40. However, there is limited information regarding DPP4 activity 267 

in the intestine. Thus, it is difficult to make further conclusions. Considering that this is 268 

the first preventive study on GSPE effects, further studies are warranted to fully assess 269 

the implications of the DPP4 inhibition in the cafeteria diet-fed model and of the 270 

opposing effects elicited by GSPE. 271 

To evaluate the systemic preventive effects of GSPE on GLP-1, we analyzed GLP-1 272 

and its receptor in the hypothalamus, where they are also expressed 41,42. Previous 273 

studies have shown that brain pro-glucagon gene expression is up-regulated by HFD 274 

43,44. We observed a tendency to increase hypothalamic pro-glucagon gene expression. 275 
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However, we found that GLP-1 expression was stimulated in CAF+GSPE rats. This 276 

stimulation is consistent with the reduced expression of the GLP-1R gene. Knauf et al. 277 

found that blockade of brain GLP-1Rs in HF-fed mice improves insulin resistance and 278 

enhances glucose utilization by muscle 43. The available evidence suggests that enteric 279 

glucose absorption activates GLP-1R-sensitive CNS networks that promote enhanced 280 

glucose disposal. Furthermore, brain GLP-1R signaling controls peripheral blood flow 281 

and insulin sensitivity predominantly under hyperinsulinemic/hyperglycemic 282 

conditions. The relative importance of central versus peripheral GLP-1 action for the 283 

control of glucose homeostasis remains unclear 42. 284 

All of these results demonstrate that GSPE interacts with the GLP-1 system, 285 

predominantly preventing the negative effects induced by a cafeteria diet. Therefore, the 286 

CAF+GSPE animals were expected to show an improved glucose metabolism compared 287 

to the CAF group. At the 8th week, we performed an OGTT and found that the GSPE 288 

treatment corrected the glucose-induced increase in insulin AUC as expected. Indeed, 289 

these results are consistent with the action of a GSPE corrective treatment of 4 weeks, 290 

which was previously shown to improve peripheral insulin resistance at the same dose 2. 291 

This effect was maintained at 9 weeks, when we observed an improved HOMA-IR due 292 

to GSPE pretreatment. However, surprisingly, after 12 weeks, our results do not show a 293 

clear improvement in the HOMA-IR by the GSPE treatment.   This might be due to the 294 

dose of GSPE, since we previously described a high variability on the insulin levels 295 

after different GSPE doses. Working with healthy animals, we have previously shown 296 

that this variability is not dose-dependent 45. In fact higher GSPE doses for a longer 297 

time showed an improved insulinemia and glycemia in type 2 diabetic rats 46,47. This 298 

was accompanied by an improved functionality of β-cells related to the GSPE 299 

treatment, as we have previously found with lower doses 5,27.  300 
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In conclusion, we have found that a cafeteria diet induces a decrease in active GLP-1 301 

levels by decreasing GLP-1 production in the colon, which might be attributed to a loss 302 

of enteroendocrine cells, an effect that is prevented by simultaneous treatment with 303 

GPSE. GSPE treatment also increased hypothalamic GLP-1 production, and down-304 

regulated GLP-1Rs, opposing the effects of the cafeteria diet. This preventive action 305 

also impacts intestinal DPP4, predominantly by preventing the decrease in its activity 306 

and protein levels.  307 
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DPP4, dipeptidyl-peptidase 4; GSPE, grape seed procyanidin extract; bw body weight; 309 
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FIGURE CAPTIONS 481 

Figure 1. Effect of cafeteria diet and GSPE on incretin plasma levels. Effects on 482 

plasma active GLP-1 levels (A), and total GIP levels (B) were assayed after 12 weeks of 483 

cafeteria diet and preventive treatment with 25 mg of GSPE/kg of bw. The data are 484 

displayed as the mean ± SEM. a and b, statistically significant differences at P < 0.05. 485 

Figure 2. Effect of cafeteria diet and GSPE on hormone production and CgA gene 486 

expression in colon. Effects on colon active GLP-1 content (A), and gene expression of 487 

proglucagon (B), PYY (C), and CgA (D) were determined after 12 weeks of cafeteria 488 

diet and simultaneous treatment with 25 mg of GSPE/kg of bw. The data are displayed 489 

as the mean ± SEM. a, b and c, statistically significant differences at P < 0.05. 490 

Figure 3. Effect of cafeteria diet and GSPE on DPP4. After 12 weeks of cafeteria diet 491 

and simultaneous treatment with 25 mg of GSPE/kg of bw, DPP4 activity was 492 

determined in plasma (A), and intestine (B). Intestinal DPP4 gene expression (C) and 493 

protein expression (D) were also assessed by RT-PCR and Western Blot, respectively. 494 

The data are displayed as the mean ± SEM. a, b and c, statistically significant 495 

differences at P < 0.05.  496 

Figure 4. Effect of cafeteria diet and GSPE on hypothalamic GLP-1 and GLP-1R. 497 

Effects on hypothalamic gene expression of pro-glucagon (A), and GLP-1R (B) were 498 

assessed after 12 weeks of cafeteria diet and preventive treatment with 25 mg of 499 

GSPE/kg of bw. The data are displayed as the mean ± SEM. a and b, statistically 500 

significant differences at P < 0.05. 501 

Figure 5. Effect of cafeteria diet and GSPE on insulinemia. After 8 weeks of 502 

cafeteria diet and a preventive treatment with 25 mg of GSPE/kg of bw, a 2 h-OGTT 503 
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was performed, insulin was analyzed at time 0, 30 and 120 min (A), and the AUC was 504 

calculated (B). The data are displayed as the mean ± SEM. a and b, statistically 505 

significant differences at P < 0.05. 506 

Figure 6. Effect of cafeteria diet and GSPE on insulin resistance. Plasma glucose 507 

and insulin levels were measured and HOMA-IR was calculated after 9 weeks (A), and 508 

12 weeks (B) of cafeteria diet and preventive treatment with 25 mg of GSPE/kg of bw. 509 

The data are displayed as the mean ± SEM. a and b, statistically significant differences 510 

at P < 0.05. 511 
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