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Abstract The solution for the contested garment problem, proposed in the Babylonic1

Talmud, suggests that each agent should receive at least some part of the resources2

whenever the claim exceeds the available amount. In this context, we propose a new3

method to define lower bounds on awards, an idea that has underlied the theoretical4

analysis of bankruptcy problems from its beginning (O’Neill, Math Soc Sci 2:345–5

371, 1982) to present day (Dominguez and Thomson, Econ Theory 28:283–307, 2006).6

Specifically, starting from the fact that a society establishes its own set of commonly7

accepted equity principles, our proposal ensures to each agent the smallest amount8

she gets according to all the admissible rules. We analyze its recursive application for9

different sets of equity principles.10

1 Introduction11

A bankruptcy problem is a situation where a group of agents claim more of a perfectly12

divisible resource (the endowment) than what is available. In this context, a rule13

prescribes how to share the endowment among the agents, according to the profile of14

claims. A natural question arises: Should each agent have a guaranteed level of awards15

when dividing the endowment?16

Electronic supplementary material The online version of this article

(doi:10.1007/s00355-013-0789-0) contains supplementary material, which is available to authorized users.

J.-M. Giménez-Gómez

Departament d’Economia and CREIP, Universitat Rovira i Virgili, Av. Universitat 1, 43204 Reus, Spain

M. C. Marco-Gil (B)

Department of Economics, Universidad Politécnica de Cartagena, C/ Real, 3, 30201 Cartagena, Spain

e-mail: carmen.marco@upct.es

123

Journal: 355 Article No.: 0789 TYPESET DISK LE CP Disp.:2014/1/28 Pages: 23 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f

http://dx.doi.org/10.1007/s00355-013-0789-0
Comment
Nota
Not would be better to put José-Manuel as J.M.? Is it not possible?

Comment
Nota
Substitute "Departamento de Economía" instead of "Departament of Economics".

Comment
Nota
Eliminate a comma after Real:"C/Real 3, ..."



u
n
co

rr
ec

te
d

p
ro

o
f

J.-M. Giménez-Gómez, M. C. Marco-Gil

The axiomatic and game theory approaches have been used for the normative analy-17

sis of bankruptcy problems, whose main goal is to identify rules by means of appealing18

properties. Following this line, the establishment of lower bounds on awards has been19

found reasonable by many authors. In fact, the formal definition of a rule already20

includes both upper and lower bounds on awards by requiring that no agent receives21

more than her claim and less than zero. O’Neill (1982) provides another lower bound22

on awards called respect of minimal rights, which requires that each agent receives23

at least what is left once the other agents have been fully compensated, or zero if24

this amount is negative. Herrero and Villar (2001, 2002) introduce the following two25

properties that bound awards. Sustainability says that if we truncate all claims at an26

agent i’s claim and there is enough to honor all claims, then agent i’s award should27

be equal to her claim. Exemption demands that agent i not be rationed when equal28

division provides her more than she claims. Moulin (2002) defines a new restriction29

on awards, called lower bound: each agent receives at least the amount corresponding30

to the egalitarian division except those who demand less, in which case their claims31

are met in full. Moreno-Ternero and Villar (2004) present a weaker notion of Moulin’s32

lower bound, named securement, which says that each agent should obtain at least33

the n-th part of her claim truncated at the endowment. Finally, Dominguez (2012)34

proposes the min lower bound which modifies securement by replacing each agent’s35

claim by the smallest one.36

Apart from respect of minimal rights, a property that is implied by the definition37

of a rule, the other proposed lower bounds on awards have been justified by their38

own reasonability or appeal. In this paper, we propose a new definition along the39

line of O’Neill’s proposal. Specifically, we define the agent’s P-right as the smallest40

amount recommended to her by all the rules satisfying a set of ‘basic’ requirements.41

This set of commonly accepted principles is formed by those properties that a specific42

society decides to apply in the resolution of bankruptcy problems. Then, we define the43

associated bound on awards, respect of P-rights, by demanding that each agent should44

receive at least her P-right.45

In general, the aggregate guaranteed amount by means of our P-rights will not46

exhaust the endowment. That is why we propose and analyze its recursive application,47

called the recursive P-rights process. Once each agent receives her P-right in the48

original problem, it is revised accordingly in order to define the residual problem.49

Then, each agent receives her P-right in this residual problem, and so on. The idea50

of recursion is not new. Indeed, it has already been used in the context of bankruptcy51

problems by Alcalde et al. (2005), in order to generalize a proposal by Ibn Ezra, and by52

Dominguez and Thomson (2006), whose starting point is Moreno-Ternero and Villar’s53

concept of boundedness. Dominguez (2012) also studies the behavior of the recursive54

application of a generic bound.55

We first apply our methodology to the singleton P1, whose only element is order56

preservation. We find that the recursive P-rights process leads to the Constrained57

Equal Losses rule. This result could be written as follows: ‘For each bankruptcy58

problem, in the set of admissible rules according to P1, the recursive application59

of the P-rights leads to the rule that provides greater awards to the agents with the60

larger claims’. Then, we analyze the generalization of this statement. With this aim we61

consider a new set of socially accepted principles, P2, by adding to order preservation62
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A new approach for bounding awards

the requirement of resource monotonicity and the midpoint property. In this case we63

demonstrate that the above statement is true, but only for two-agent problems in which64

the Dual of Constrained Egalitarian rule is obtained. Moreover, we conclude that the65

recursive P-rights process for n-agent problems presents important shortcomings.66

Specifically, we provide a three-agent problem for P2 in which the resulting rule67

defined by this process does not satisfy the equity principles on which it is based.68

Finally, we note that it is possible, even for two-agent problems, that the recursive69

P-rights process singles out a rule that is not the most generous to the largest claimant.70

The paper is organized as follows. Section 2 presents the model. Section 3 proposes71

our new approach for bounding awards and its recursive application. By using the72

previous ideas for P1, Sect. 4 provides a new basis for the Constrained Equal Losses73

rule. Section 5 considers our process for other sets of equity principles and shows that,74

in general, it can not be extended to more than two agents. Section 6 summarizes our75

conclusions. All the proofs are relegated to the appendices.76

2 Preliminaries77

We consider a group of agents, N = {1, . . . , i, . . . , n} , having claims on a resource.78

A bankruptcy problem is a situation where the sum of the agents’ claims is equal to or79

greater than the amount available. Each agent i ∈ N has a claim ci on the endowment,80

E, a perfectly divisible good. Formally,81

Definition 1 A bankruptcy problem, or simply a problem, is a vector (E, c) ∈ R++×82

R
n
+ such that E ≤

∑

i∈N ci .83

Hence, when the claims add up to more than the endowment, this should be rationed84

among agents.85

Let B denote the set of all problems; given (E, c) ∈ B, C denotes the sum of86

the agents’ claims, C =
∑

i∈N ci ; L the total loss to distribute among the agents,87

L = C − E . Let B0 be the set of problems in which claims are increasingly ordered,88

that is problems with ci ≤ c j for i < j .89

A rule associates within each problem a distribution of the endowment among the90

agents.91

Definition 2 A rule is a function, ϕ : B → R
n
+, such that for each (E, c) ∈ B,92

(a)
∑

i∈N

ϕi (E, c) = E ( efficiency) and93

(b) 0 ≤ ϕi (E, c) ≤ ci for each i ∈ N ( non-negativity and claim-boundedness).94

Next are rules that will be used in the following sections, emphasizing their dual95

relations.96

The Constrained Equal Awards rule (Maimonides, 12th century, among others)97

recommends equal awards to all agents subject to no one receiving more than her98

claim.99
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Constrained Equal Awards rule, CEA: for each (E, c) ∈ B and each i ∈ N ,100

CEAi (E, c) ≡ min {ci , µ} , where µ is chosen so that
∑

i∈N min {ci , µ} = E .101

Piniles’ rule (Piniles 1861) provides, for each problem (E, c) ∈ B, the awards that102

the Constrained Equal Awards rule recommends for (E, c/2) when the endowment103

is less than the half-sum of the claims. Otherwise, each agent first receives her half-104

claim, then the Constrained Equal Awards rule is re-applied to the residual problem105

(E − C/2, c/2).106

Piniles’ rule, Pin: for each (E, c) ∈ B and each i ∈ N ,107

Pini (E, c) ≡

{

CEAi (E, c/2) if E ≤ C/2

ci/2 + CEAi (E − C/2, c/2) if E ≥ C/2
108

The next rule, introduced by Chun et al. (2001), is inspired by the Uniform rule109

(Sprumont 1991), a solution to the problem of fair division when preferences are110

single-peaked. It makes the minimal adjustment in the formula for the Uniform rule,111

taking the half-claims as peaks and guaranteeing that awards are ordered in same way112

as claims.113

Constrained Egalitarian rule, CE: for each (E, c) ∈ B and each i ∈ N ,114

CEi (E, c) ≡

{

CEAi (E, c/2) if E ≤ C/2

max{ci/2, min{ci , δ}} if E ≥ C/2
115

where δ is chosen so that
∑

i∈N CEi (E, c) = E .116

Given a rule ϕ, its dual distributes what is missing in the same way that ϕ divides117

what is available (Aumann and Maschler 1985).118

The dual of ϕ, denoted by ϕd , is defined by setting for each (E, c) ∈ B and each119

i ∈ N , ϕd
i (E, c) = ci − ϕi (L , c).120

It is straightforward to check that the duality operator is well defined, since for121

each (E, c) ∈ B, (L , c) ∈ B and if ϕ satisfies efficiency, non-negativity and claim-122

boundedness, so does ϕd .123

The next rule, discussed by Maimonides (Aumann and Maschler 1985), is the dual124

of the Constrained Equal Awards rule (Herrero 2003). Specifically, it chooses the125

awards vector at which all agents incur equal losses, subject to no one receiving a126

negative amount.127

Constrained Equal Losses rule, CEL: for each (E, c) ∈ B and each i ∈ N ,128

CELi (E, c) ≡ max {0, ci − µ} , where µ is chosen so that
∑

i∈N max {0, ci − µ} =129

E .130

The Dual of Piniles’ rule selects, for each problem (E, c) ∈ B the awards vector131

that the Constrained Equal Losses rule recommends for (E, c/2) when the endowment132

is less than the half-sum of the claims. Otherwise, each agent first receives her half-133

claim, then the Constrained Equal Losses rule is re-applied to the residual problem134

(E − C/2, c/2).135
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Dual of Piniles’ rule, DPin: for each (E, c) ∈ B and each i ∈ N ,136

D Pini (E, c) ≡

{

ci/2 − min {ci/2, λ} if E ≤ C/2

ci/2 + (ci/2 − min {ci/2, λ}) if E ≥ C/2
137

where λ is such that
∑

i∈N DPini (E, c) = E .138

The Dual of Constrained Egalitarian rule gives the half-claims a central role. It139

makes the minimal adjustment in the formula for the Uniform rule, taking the half-140

claims as peaks and guaranteeing that losses are ordered in same way as claims.141

Dual of Constrained Egalitarian rule, DCE: for each (E, c) ∈ B and each i ∈ N ,142

DCEi (E, c) ≡

{

ci − max {ci/2, min {ci , δ}} if E ≤ C/2

ci − min {ci/2, δ} if E ≥ C/2
143

where δ is chosen so that
∑

i∈N DCEi (E, c) = E .144

3 A new approach: bounding awards from equity principles145

The lower bound of awards proposed by O’Neill (1982), called respect of minimal146

rights, requires that each agent receives at least what is left of the endowment after147

the other agents have been fully compensated, or zero if this amount is negative.148

Respect of minimal rights: for each (E, c) ∈ B and each i ∈ N , ϕi (E, c) ≥149

mi (E, c) = max{E −
∑

j �=i c j , 0}.150

This bound on awards is a consequence of efficiency, non-negativity and claim-151

boundedness together (Thomson 2003), the three conditions imposed by a rule (see152

Definition 2).1153

Following this line we introduce a new method for bounding awards based on a154

set of principles that are commonly accepted by a society. We propose the following155

extension of a problem.156

Definition 3 A problem with legitimate principles is a triplet (E, c, Pt ), where157

(E, c) ∈ B and Pt is a set of properties on which a particular society has agreed.158

Let P be the set of all subsets of properties of rules. Each Pt ∈ P represents159

a specific society which will always apply such principles for solving its problems.160

Finally, let BP be the set of all problems with legitimate principles.161

This modelling becomes really interesting if it is applied to some specific types of162

problems, since the more available information we have, the easier it is to agree on163

these principles. For example, let B
T
P ⊂ BP , the problems with legitimate principles164

that represent the collection of a given amount of taxes in a community. In this case,165

1 For each i ∈ N , if mi (E, c) > 0 and ϕi (E, c) < mi (E, c) either
∑

i∈N ϕi (E, c) < E , contradicting

efficiency, or there is j �= i such that ϕ j (E, c) > c j , contradicting claim-boundedness. Otherwise, that is,

if mi (E, c) = 0, by non-negativity ϕi (E, c) ≥ mi (E, c).
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progressivity (see Thomson 2003) may be commonly accepted. However, this property166

may not be reasonable in other situations.167

For each problem with legitimate principles, a society will consider as socially168

admissible any rule that satisfies the properties in Pt .169

Definition 4 A socially admissible rule, or simply an admissible rule, is a function,170

ϕ : BP → R
n
+, such that its application in B, ϕ : B → R

n
+, is a rule satisfying all171

properties in Pt .172

Let Φ denote the set of all rules and let Φ(Pt ) be the subset of rules satisfying Pt .173

Taking extended problems as a starting point, we propose a new lower bound on174

awards based on the application of the ordinary meaning of a guarantee. This bound,175

called P-rights, provides each agent the smallest amount recommended to her by all176

admissible rules. Formally,177

Definition 5 Given (E, c, Pt ) in BP , the P-right of each i ∈ N , si , is178

si (E, c, Pt ) = inf
ϕ∈Φ(Pt )

{ϕi (E, c)} .179

Now, we say that a rule respects P-rights if, for each Pt ∈ P, each (E, c) ∈ B and180

each i ∈ N , ϕi (E, c) ≥ si (E, c, Pt ).181

Note that if Pt is the empty set, the P-rights correspond with the concept of minimal182

rights.183

As in general, the sum of the agents’ P-rights of a problem with legitimate principles184

does not exhaust the endowment, a requirement of composition from the profile of185

these bounds arises in a natural way. It says that the awards vector of each problem186

should be equivalently obtainable either directly or by means of the following process.187

First, assigning to each agent her lower bound on awards. Second, adjusting claims188

down by these amounts. And third, applying the rule to divide the remainder. The189

following definition applies this idea to our bound on awards.190

Definition 6 Given Pt ∈ P, a rule ϕ satisfies P-rights first if for each (E, c) ∈ B and191

each i ∈ N , ϕi (E, c) = si (E, c, Pt ) + ϕi (E −
∑

i∈N si (E, c, Pt ), c − s(E, c, Pt )).192

Although many of the proposed lower bounds on awards are respected by most of193

the rules, composition from these lower bounds is quite demanding. For instance,194

respect of minimal rights is satisfied by any rule, but none of the Proportional,195

Constrained Equal Awards or Minimal Overlap rules satisfy minimal rights first196

(Thomson 2003). Let us note that this kind of composition is equivalent to apply a197

recursive method from a lower bound on awards. In fact, this process has been used198

to generate new rules. The rule proposed by Dominguez and Thomson (2006) results199

from applying such a procedure to the securement lower bound. Similarly, we define200

the recursive application of our P-rights, which we call the recursive P-rights process.201

Definition 7 For each m ∈ N, the recursive P-rights process at the m-th step, RSm ,202

associates for each (E, c, Pt ) ∈ BP and each i ∈ N ,203
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A new approach for bounding awards

[

RSm(E, c, Pt )
]

i
= si (Em, cm, Pt ),204

where (E1, c1) ≡ (E, c) and for m ≥ 2,205

(Em, cm) ≡ (Em−1−
∑

i∈N

si (Em−1, cm−1, Pt ), cm−1−s(Em−1, cm−1, Pt )).206

According to this process, at the first step each agent receives her P-right in the207

original problem. At the second step, we define a residual problem in which the208

endowment is what remains and the claims are adjusted down by the amounts just209

given. Then, each agent receives her P-right in this residual problem, and so on. In210

general, it cannot be ensured that the sum of the amounts that agents receive in each211

step exhausts the endowment. If this occurs, we define the Recursive P-rights rule.212

Definition 8 The Recursive P-rights rule, ϕR , associates for each (E, c, Pt ) ∈ BP213

and each i ∈ N , ϕR
i (E, c, Pt ) =

∑∞
m=1

[

RSm(E, c, Pt )
]

i
, whenever214

∑

i∈N

(

∞
∑

m=1

[

RSm(E, c, Pt )
]

i

)

= E .215

Note that the Recursive P-rigths rule satisfies non-negativity and claim-216

boundedness by construction. The next result, which is a specification to our con-217

text of a theorem provided by Dominguez (2012) for the recursive process based on a218

generic lower bound on awards, shows that whenever the P-rights provide a positive219

amount to some agent at each step, efficiency is met.2220

Theorem (Dominguez 2012) For each (E, c, Pt ) ∈ BP ,
∑

i∈N

(
∑∞

m=1

[

RSm(E, c,221

Pt )]i ) = E whenever for each m ∈ N there is i ∈ N such that si (Em, cm, Pt ) > 0.222

At this point we should mention some contributions that have certain features in223

common with our approach. In the context of Nash’s bargaining model, Damme (1986)224

uses the research on Nash equilibria of a non-cooperative game which is induced by225

a mechanism of successive concessions. Specifically, the agents’ strategies are the226

choice of a rule among a set of reasonable ones. The first variants of van Damme’s227

work for bargaining and bankruptcy problems were introduced by Chun (1984, 1989).228

From them, other mechanisms, related to ours, have been proposed. The unanimous229

concessions mechanism, provided by Marco et al. (1995) and modified by Herrero230

(2003) for its application to bankruptcy, is close to our recursive P-rights process,231

but the starting point and analysis of the two are quite different. Also for bargaining232

problems, Thomson (2012) introduces and studies the concept of closedness under233

recursion of a family of solutions, which means that the solution defined through the234

process is not only well-defined, but also belongs to the family of solutions considered.235

This idea, although in a different framework, is close to our definition of admissible236

rule, but the process he uses has no relation to ours.237

2 In this sense, the recursive application of the minimal rights does not satisfy efficiency, since from the

second step on, each agent receives nothing.
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4 A minimal requirement of fairness238

Next, we apply our method to the singleton P1 whose only element is order preser-239

vation,240

P1 ≡ {order preservation}.241

This property was introduced by Aumann and Maschler (1985). In fact, in our242

setting, where there are neither absolute nor relative priority classes, order preservation243

has been understood as a minimal requirement of fairness by many authors. It requires244

that if agent i’s claim is at least as large as agent j’s claim, she should receive at least245

as much as agent j does; furthermore, agent i’s loss should be at least as large as agent246

j’s loss.247

Order preservation: for each (E, c) ∈ B and each i, j ∈ N such that ci ≥ c j ,248

ϕi (E, c) ≥ ϕ j (E, c) and ci − ϕi (E, c) ≥ c j − ϕ j (E, c).249

Lemma 5 in Appendix 2 shows that the P1-rights for agents 1 and n are given by250

the Constrained Equal Losses and the Constrained Equal Awards rules, respectively.251

As a direct consequence of this result, for two-agent problems, these two rules mark252

out the area of all the admissible rules in P1. However, as shown in the next example,253

this fact cannot be generalized for problems with more than two agents.254

Example 1 Let N = {1, 2, 3} and (E, c) = (49, (18, 27, 40)) ∈ B. Thus, CEA255

(E, c) =
(

16 1
3
, 16 1

3
, 16 1

3

)

and CEL (E, c) = (6, 15, 28) . By Lemma 5 in Appen-256

dix 2, s1(E, c, P1)= 6 and s3(E, c, P1)= 16 1
3
. Moreover, T (E, c) =

(

9, 13 1
2
, 26 1

2

)

,257

where T denotes the Talmud rule.3 This rule satisfies order preservation and258

T2 (E, c) = 13 1
2

< CEL2 (E, c) < CEA2 (E, c) . Therefore, for agent 2 neither of the259

amounts provided by both CEL and CEA, is the smallest one she can get according260

to P1.261

The next result shows the Recursive P-rights rule for P1.262

Theorem 1 For each (E, c, P1) ∈ BP , the Recursive P-rights rule is the Constrained263

Equal Losses rule, that is, ϕR(E, c, P1) = CEL(E, c).264

Proof See Appendix 2. ⊓⊔265

To conclude this section, let us note that we have proved that the Recursive P-rights266

rule for P1 leads to the admissible rule which favors the largest claimant.267

5 Other sets of legitimate principles268

In this section, we consider other possible choices of ‘commonly accepted equity269

principles’. First, we propose P2 obtained by adding to P1 resource monotonicity and270

midpoint property,271

3 The Talmud rule (Aumann and Maschler 1985) assigns the awards that the Constrained Equal Awards

rule recommends for (E, c/2), when the endowment is less than the half-sum of the claims. Otherwise,

each agent receives her half-claim plus the amount provided by the Constrained Equal Losses rule when it

is applied to the residual problem (E-C/2, c/2).
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A new approach for bounding awards

P2 ≡ {order preservation, resource monotonici t y, midpointproperty}.272

Resource monotonicity Curiel et al. (1987), Young (1988) and others says that if273

the endowment increases, then all individuals should get at least what they received274

initially. This property has been widely accepted. Moreover, no rule violating this275

property has been proposed.276

Resource monotonicity: for each (E, c) ∈ B and each E ′ ∈ R+ such that C ≥ E ′ >277

E, ϕi (E ′, c) ≥ ϕi (E, c), for each i ∈ N .278

Midpoint property (Chun et al. 2001) requires that if the endowment is equal to the279

sum of the half-claims, then all agents should receive their half-claim. In this situation280

both gains and losses are equal. Thus, this property treats the problem of dividing281

awards or losses equally, but only in a very special case. In the words of Aumann and282

Maschler (1985), ‘it is socially unjust for different creditors to be on opposite sides of283

the halfway point, C/2’.284

Midpoint property: for each (E, c) ∈ B and each i ∈ N , if E = C/2, then285

ϕi (E, c) = ci/2.286

From Lemma 6 in Appendix 3 we obtain that the Constrained Egalitarian and the287

Dual of Constrained Egalitarian rules mark out the area of all the admissible rules288

satisfying properties in P2 for two-agent problems. Next, we show that the Recursive289

P-rights rule for P2 leads to the Dual of Constrained Egalitarian rule, but only for two-290

agent problems. Besides this, we demonstrate that the recursive P-rights process for291

P2 presents important shortcomings for n-agent problems. Specifically, this process292

provides a rule that is not admissible since it does not satisfy one of the equity principles293

upon which society initially agreed to found its decisions.294

Theorem 2 For each two-agent problem with legitimate principles in BP with P =295

P2, the Recursive P-rights rule is the Dual of Constrained Egalitarian rule, that is,296

ϕR(E, c, P2) = DCE(E, c).297

Proof See Appendix 3. ⊓⊔298

Proposition 1 The Recursive P-rights rule for P2 does not satisfy resource monotonic-299

ity for n-agent problems with n > 2.300

Proof See Appendix 4. ⊓⊔301

All of our previous results can be summarized by the following two statements:302

(a) For each two-agent problem, the P-rights recursive application of the two sets303

of properties considered up to now, leads to the admissible rule which favors the304

largest claimant.305

(b) If a society agree on the set of principles P2, the recursive P-rights process cannot306

be applied for n-agent problems.307

Next, we note that for other reasonable legitimate principles, on the one hand,308

statement (a) cannot be extended and, on the other hand, statement (b) can also be309

applied.310

123

Journal: 355 Article No.: 0789 TYPESET DISK LE CP Disp.:2014/1/28 Pages: 23 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f

Comment
Nota
It should be an space between "midpoint" and "property".

Comment
Nota
Put paranthesis from Curiel to (1988):"(Curiel...(1988))."In this case, eliminate the paranthesis of the years (such as the reference about the Midpoint property).



u
n
co

rr
ec

te
d

p
ro

o
f

J.-M. Giménez-Gómez, M. C. Marco-Gil

Let us consider the set of commonly accepted equity principles P3, obtained from311

P2 by substituting order preservation for a strengthened version, super-modularity,312

P3 ≡ {super -modulari t y, resourcemonotonici t y, midpoint property}.313

Super-modularity Dagan et al. (1997) demands that, when the endowment increases,314

if agent i’s claim is at least as large as agent j ’s claim, agent i’s share of the increment315

should be at least as large as agent j’s. Apart from the Constrained Egalitarian rule316

and its dual, all of the rules that have been introduced in the literature satisfy super-317

modularity.318

Super-modularity: for each (E, c) ∈ B, each E ′ ∈ R+ and each i, j ∈ N such that319

C ≥ E ′ > E and ci ≥ c j , ϕi (E ′, c) − ϕi (E, c) ≥ ϕ j (E ′, c) − ϕ j (E, c).320

In this context, the next results are obtained.321

Remark 1 For each two-agent problem with legitimate principles in BP with P = P3,322

the Recursive P-rights rule is admissible, but neither the Dual of Piniles’ rule nor323

Piniles’ rule coincides with it, that is, D Pin(E, c) �= ϕR(E, c, P3) �= Pin(E, c).324

Remark 2 The Recursive P-rights rule for P3 does not satisfy super-modularity for325

n-agent problems with n > 2.326

The proofs of the previous remarks are constructive. To prove Remark 1, several327

structures of a generic bankruptcy problem are considered regarding the values of the328

endowment and the agents’ claims. Then, knowing the P-rights for P3 (by means of329

an analogous result to Lemma 6) allows applying the recursive P-rights process to330

each structure and obtaining the Recursive P-rights rule for P3. The development of331

this proof reveals that the magnitude of the endowment with respect to the sum of the332

half-claims can change for different steps of the recursive P-rights process and this333

fact prevents that a similar result to Theorem 2 can be reached. The proof of Remark334

2 is similar to that of Proposition 1. Starting from defining a rule that recommends335

the smallest amount for agent 2 among all the admissible rules for P3, some steps of336

the recursive P-rights process are computed for two particular problems to contradict337

that the Recursive P-rights rule for P3 satisfies super-modularity.4338

This analysis warns of the dangers that may involve the composition of the puzzle339

with ‘a priori’ suitable pieces: ‘reasonable’ principles and recursion. Unfortunately,340

we have ascertained that it does not always provide admissible rules.341

6 Conclusions342

We would like to remark that our approach can be rewritten for losses by using the idea343

of duality. Because all the considered properties are self-dual, P1, P2 and P3 will be344

the same when focusing on losses.5 Moreover, let us note that given a set of self-dual345

4 The proofs of Remarks 1 and 2 are available from the authors under request.

5 Self-duality requires invariance regarding the perspective from which the problem is derived, that is,

dividing ‘what is available’ or ‘what is missing’. Formally, two properties, P and P ′, are dual if whenever

a rule, ϕ, satisfies P , its dual, ϕd , satisfies P ′. A property, P , is self-dual when it coincides with its dual.
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properties on which a particular society has agreed, Pt , a rule, ϕ, is admissible if and346

only if its dual, ϕd , is also admissible. Specifically, by considering (L , c, Pt ) for each347

(E, c, Pt ) we have that348

si (L , c, Pt ) = inf
ϕ∈Φ(Pt )

{ϕi (L , c)} = inf
ϕ∈Φ(Pt )

{ci − ϕd
i (E, c)} = ci − sup

ϕ∈Φ(Pt )

{ϕi (E, c)}.349

Thus, our process applied to losses is equivalent to the following. First, determine350

the agents’ upper bound on awards by searching for the supremum of what they are351

assigned among all the admissible rules in Pt . Then, revise each agent’s claim by her352

upper bound and if the sum of the revised claims is greater than the endowment, follow353

the recursive process until the sum of the revised claims is equal to the endowment.354

Therefore, if for each (E, c) ∈ B we consider its associated distribution of losses,355

that is the problem (L , c), the recursive application of the P-rights leads to: (i) the356

Constrained Equal Awards for P = P1; (ii) the Constrained Egalitarian rule for two-357

agent problems when P = P2; (iii) a new admissible rule for two-agent problems if358

P = P3; (iv) inadmissible rules for n-agent problems when n > 2 for both P2 and359

P3.360

In addition, let us note that none of our results requires the use of many of the361

axioms proposed in the literature on the theoretical analysis of bankruptcy problems.362

Nevertheless, it can be straightforwardly checked that all of them (Theorems 1 and 2,363

Proposition 1 and Remarks 1 and 2) remain the same if we add to the considered sets of364

legitimate principles (P1, P2, P3) some standard properties (such as continuity, claims365

monotonicity or homogeneity, among others) that are satisfied by those admissible rules366

that play a central role (CEA and CEL in Theorem 1; CE and DCE in Theorem 2 and367

Proposition 1; and Pin and D Pin in Remarks 1 and 2).6 This fact has conditioned the368

analysis of the generalization of the conclusion reached for P1. Specifically, the other369

legitimate principles sets have been established in looking for a trade-off between370

reasonability of properties and inadmissibility of the Constrained Equal Losses rule,371

for P2, and inadmissibility of both the Constrained Equal Losses and the Dual of372

Constrained Egalitarian rules, for P3.373

To sum up, this paper offers the understanding of old bankruptcy rules from a differ-374

ent perspective and uncovers some shortcomings with the application of our recursive375

process. In this line, the following issues are open: (i) the analysis of conditions on376

legitimate principles sets to guarantee that such principles are upheld when applying377

our approach, and (ii) the search for new procedures that ensure compatibility with378

socially accepted equity principles.379
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6 Formal definitions of these properties can be found in Thomson (2003).
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Appendix 1: General claims386

We present three claims which are used in the proofs of Appendices 2 and 3. Hence-387

forth, m ∈ N denotes the m-th step of the recursive P-rights process (see Definition388

7).389

First, for any problem with legitimate principles, the total loss to distribute is the390

same at every step of the recursive P-rights process.391

Claim 1 For each (E, c, Pt ) ∈ BP and each m ∈ N, Lm = L .392

Proof Let (E, c, Pt ) ∈ BP and m ∈ N. Then,393

Lm = Cm − Em =
∑

i∈N

(

ci −

m−1
∑

k=1

si (Ek, ck, Pt )

)

−

(

E −
∑

i∈N

m−1
∑

k=1

si (Ek, ck, Pt )

)

394

= C − E = L .395

⊓⊔396

Second, for each P ∈ {P1, P2, P3} , the order of the agents’ claims remains the397

same along the recursive P-rights process.398

Claim 2 For each (E, c, Pt ) ∈ BP with Pt ∈ {P1, P2, P3} and each i, j ∈ N, if399

cm
i ≤ cm

j , then cm+1
i ≤ cm+1

j .400

Proof Let (E, c, Pt ) ∈ BP with Pt ∈ {P1, P2, P3} , i, j ∈ N such that cm
i ≤ cm

j and401

ϕ∗, ϕ′ belonging to Φ(Pt ).402

Since, for each Pt ∈ {P1, P2, P3} , all the admissible rules satisfy order preserva-403

tion, for each ϕ ∈ Φ(Pt ), cm
i − ϕi (Em, cm) ≤ cm

j − ϕ j (Em, cm) so that,404

(a) If sm
i (E, c, Pt ) = ϕ∗

i (Em, cm) and sm
j (E, c, Pt ) = ϕ∗

j (Em, cm), by order preser-405

vation, cm
i − sm

i (Em, cm, Pt ) ≤ cm
j − sm

j (Em, cm, Pt ). Therefore, cm+1
i ≤ cm+1

j .406

(b) If sm
i (E, c, Pt ) = ϕ∗

i (Em, cm) and sm
j (E, c, Pt ) = ϕ′

j (Em, cm), by Definition 5,407

ϕ′
j (Em, cm) ≤ ϕ∗

j (Em, cm), so that, cm
i − ϕ∗

i (Em, cm) ≤ cm
j − ϕ∗

j (Em, cm) ≤408

cm
j − ϕ′

j (Em, cm). Therefore, cm+1
i ≤ cm+1

j . ⊓⊔409

Third, for each Pt ∈ {P1, P2, P3} , the sum of the amounts that agents are assigned410

by the recursive P-rights process is the entire endowment.411

Claim 3 For each (E, c, Pt ) ∈ BP with Pt ∈ {P1, P2, P3},
∑

i∈N

(
∑∞

m=1

[

RSm
412

(E, c, Pt )]i ) = E.413

Proof Given that for each Pt ∈ {P1, P2, P3} the P-rights always provide a positive414

amount to certain agents in each step, efficiency of the recursive P-rights process415

straightforwardly comes from Theorem 1 in Dominguez (2012), that we have partic-416

ularized within our context in Sect. 3. ⊓⊔417
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Appendix 2: Proof of Theorem 1418

We assume throughout this Appendix, without loss of generality, that (E, c) ∈ B0.7419

The proof is based on five lemmas. Before presenting them, we note the following420

two facts.421

Fact 1 For each (E, c) ∈ B0 and each i ∈ N , CELi (E, c) = max{0, ci − µ}, where422

µ is such that
∑

i∈N max{0, ci − µ} = E .423

Therefore, µ can be understood as the losses incurred by the agents who receive424

positive amounts by applying the CEL rule. A straightforward way to compute this425

rule, which will be useful later on, is as follows.426

For each (E, c) ∈ B0 and each i ∈ N , the loss imposed on agent i by CEL is427

γi = min {ci , αi } ,428

where429

αi =

⎛

⎝L −
∑

j<i

γ j

⎞

⎠ / (n − i + 1) .430

Therefore, for each i ∈ N ,431

CELi (E, c) = ci − γi .432

Hereinafter, for each m ∈ N, µm, αm
i and γ m

i will denote µ, αi and γi solving433
∑

i∈N CELi (Em, cm) = Em , respectively.434

Fact 2 By Fact 1 and Claim 1 we have:435

(a) For each (E, c) ∈ B0 and each i ∈ N , if γi = ci then, for each j < i, γ j = c j .436

(b) For each (E, c) ∈ B0 and each i ∈ N , if γi = αi then, αi = µ and for each437

j > i, α j = αi . Therefore, γi = µ.438

(c) For each m ∈ N and each i ∈ N , αm
i only depends on both the initial problem439

(E, c) and agent j’s claim for each j < i .440

Next, we provide the five lemmas on which Theorem 1 is based.441

The first lemma says that the losses incurred by the agents who receive positive442

amounts by applying the CEL rule is the same at all steps of the recursive P-rights443

process for P1.444

Lemma 1 For each (E, c, P1) with (E, c) ∈ B0 and each m ∈ N, µm+1 = µm .445

Proof Let agent i be the first agent who receives a positive amount at step m ∈ N446

according to the CEL rule. That is, if i = 1, for each k ∈ N , CELk(Em, cm) > 0.447

Otherwise, (i) CELi (Em, cm) > 0 and (ii) for each j < i, CEL j (Em, cm) = 0.448

7 If (E, c) ∈ B\B0, there is a permutation π such that π(c) is increasingly ordered and we can compute

ϕ(E, c) = π−1[ϕ(E, π(c))]. Where a permutation is a bijection applying N to itself and, abusing notation,

π(c) will denote the claim vector obtained by applying permutation π to its components, i.e. the i-th

component of π(c) is c j whenever j = π(i). Similar considerations apply for π [ϕ(E, c)].
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By (i) and Fact 2, cm
i > µm = αm

i . Given (ii) and Definition 7 of the recursive P-449

rights process for P1 at the m-th step, for each j < i, cm+1
j = cm

j . By Fact 2-(c),450

αm+1
i = αm

i = µm < cm
i . Furthermore,451

cm+1
i = cm

i − min
ϕ∈Φ(P1)

{

ϕi (Em, cm)
}

452

≥ cm
i − CELi (Em, cm) = cm

i −
(

cm
i − µm

)

453

= µm = αm+1
i .454

Therefore, by Claim 2 and Fact 2-(b), γ m+1
i = αm+1

i = µm+1. ⊓⊔455

The second lemma states that if at some step m ∈ N the agent i ’s P-right for P1 is456

CELi (Em, cm), then at each subsequent step, her P-right for P1 is zero.457

Lemma 2 For each (E, c) ∈ B0 and each i ∈ N, if there is m ∈ N such that458

si (Em, cm, P1) = CELi (Em, cm)459

then, for each h ∈ N460

si (Em+h, cm+h, P1) = 0.461

Proof Let (E, c) ∈ B0, i ∈ N and m ∈ N be such that462

si (Em, cm, P1) = CELi (Em, cm).463

Since464

CELi (Em, cm) = cm
i − min

{

cm
i , µ

}

,465

ci
m+1 = ci

m − CELi (Em, cm) = ci
m −

(

cm
i − min

{

cm
i , µ

})

= min
{

cm
i , µ

}

.466

Then,467

CELi (Em+1, cm+1) = cm+1
i − min

{

cm+1
i , µ

}

468

= min
{

cm
i , µ

}

− min
{

min
{

cm
i , µ

}

, µ
}

469

= min
{

cm
i , µ

}

− min
{

cm
i , µ

}

= 0.470

Therefore,471

si (Em+1, cm+1, P1) = 0.472

By Fact 1 we have that if at some step k ∈ N CELi (Ek, ck) = 0, then473

CELi (Ek+h, ck+h) = 0 for each h ∈ N. Then, agent i’s P-right for P1 is, from474

step m + 1 on, zero. ⊓⊔475

The next lemma establishes that, if agent i’s P-right for P1 is, at each step, a476

different amount from that provided by the CEL rule then, the total amount received477

by this agent is at most her award as calculated by the CEL rule applied to the initial478

problem.479
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Lemma 3 For each (E, c) ∈ B0 and each i ∈ N , if for each m ∈ N480

si (Em, cm, P1) �= CELi (E, c), then481

ϕR
i (E, c, P1) =

∞
∑

k=1

si (Ek, ck, P1) ≤ CELi (E, c).482

Proof Let (E, c) ∈ B0 and i ∈ N . If for each m ∈ N si (Em, cm, P1) �= CELi (E, c),483

by Definition 5 ,484

si (Em, cm, P1) < CELi (Em, cm) = cm
i − µ = ci −

m−1
∑

k=1

si (Ek, ck, P1) − µ.485

So that,486

si (Em, cm, P1) +

m−1
∑

k=1

si (Ek, ck, P1) < ci − µ,487

that is, for each m ∈ N488

m
∑

k=1

si (Ek, ck, P1) < CELi (E, c).489

Therefore, the sequence {am}m∈N, where am =
∑m

k=1 si (Ek, ck, P1) for each m ∈ N,490

is bounded above. Since, by construction {am}m∈N is monotonically increasing,491

by applying basic properties of sequences limit computation (see, for instance,492

Blume and Simon 1994) we have that limm→∞

∑m
k=1 si (Ek, ck, P1) exists and493

limm→∞

∑m
k=1 si (Ek, ck, P1) ≤ CELi (E, c). ⊓⊔494

The fourth lemma says that if at some step m ∈ N, an agent’s P-right for P1 is the495

amount provided by the CEL rule for the problem (Em, cm), then the total amount496

received by this agent up to that step is given by the CEL rule applied to the initial497

problem.498

Lemma 4 For each (E, c) ∈ B0 and each i ∈ N , if there is m∗ ∈ N, m∗ > 1,499

such that si (Em∗
, cm∗

, P1) = CELi (Em∗
, cm∗

) and si (Em∗−1, cm∗−1, P1) �= CELi500

(Em∗−1, cm∗−1) then,501

m∗
∑

k=1

si (Ek, ck, P1) = CELi (E, c).502

Proof Let (E, c) ∈ B0, i ∈ N and m∗ ∈ N, m∗ > 1 be such that si (Em∗
, cm∗

, P1) =503

CELi (Em∗
, cm∗

) and si (Em∗−1, cm∗−1, P1) �= CELi (Em∗−1, cm∗−1). Sinceϕi (Em∗−1,504

cm∗−1) < CELi (Em∗−1, cm∗−1), CELi (Em∗−1, cm∗−1) > 0. Therefore, cm∗−1
i > µ505
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and by Lemma 1, cm∗

i ≥ µ. Then, at step m∗, agent i has received506

m∗
∑

k=1

si (Ek, ck, P1) =

m∗−1
∑

k=1

si (Ek, ck, P1) + CELi (Em∗

, cm∗

)507

=

m∗−1
∑

k=1

si (Ek, ck, P1) +
[

cm∗

i − min
{

cm∗

i , µ

}]

508

=

m∗−1
∑

k=1

si (Ek, ck, P1)509

+

⎡

⎣

⎛

⎝ci −

m∗−1
∑

k=1

si (Ek, ck, P1)

⎞

⎠ − min
{

cm∗

i , µ

}

⎤

⎦

510

= ci − min
{

cm∗

i , µ

}

= ci − µ.511

Therefore,512

m∗
∑

k=1

si (Ek, ck, P1) = CELi (E, c).513

⊓⊔514

The last lemma shows that the P-rights for agents 1 and n, when considering P1,515

correspond to the CEL and CEA rules, respectively.516

Lemma 5 For each (E, c, P1) ∈ BP with (E, c) ∈ B0, s1(E, c, P1) = CEL1(E, c)517

and sn(E, c, P1) = CEAn(E, c).518

Proof Let (E, c, P1) with (E, c) ∈ B0. First, we show that s1(E, c, P1) =519

CEL1(E, c). There are two cases.520

• CEL1 (E, c) = 0. By non-negativity, s1(E, c, P1) = CEL1(E, c).521

• CEL1 (E, c) > 0. By the definition of the CEL rule, c1 − CEL1 (E, c) = c j−522

CEL j (E, c) for each j �= 1. Let us suppose that there is ϕ ∈ Φ(P1) such that523

ϕ1 (E, c) < CEL1 (E, c) . By efficiency, ϕ j (E, c) > CEL j (E, c) for some j �=524

1. Then, c1 − ϕ1 (E, c) > c j − ϕ j (E, c) , contradicting order preservation.525

Therefore, s1(E, c, P1) = CEL1(E, c).526

Second, it can be similarly obtained that sn(E, c, P1) = CEAn(E, c). ⊓⊔527

Proof of Theorem 1 Let (E, c) ∈ B0. There are two cases.528

Case a: All claims are equal. Then, by definition of P-rights for P1, each agent receives529

the same amount and the entire endowment is distributed at the first step. Therefore,530

ϕR(E, c, P1) = CEL(E, c).531

Case b: There are at least two agents whose claims differ. Let S = {r ∈ N |532

sr (Em, cm, P1) = CELr (Em, cm) at some step m ∈ N} and T = N \ S. By Lemma 5,533
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s1(E, c, P1) = CEL1(E, c). Furthermore, by Lemmas 2 and 4, for each agent r ∈ S,534

we have that ϕR
r (E, c, P1) = CELr (E, c). Moreover, for each agent l ∈ T , by Lemma535

3, ϕR
l (E, c, P1) ≤ CELl(E, c). Then, since ϕR(E, c, P1) exhausts the endowment,536

by Claim 3, ϕR(E, c, P1) = CEL(E, c). ⊓⊔537

Appendix 3: Proof of Theorem 2538

We assume throughout this Appendix, without loss of generality, that (E, c) ∈ B0539

(see Footnote 7). Next we present a lemma and a fact, which the proof of Theorem 2540

is based on.541

The lemma shows that the P-rights for agents 1 and n, when considering P2,542

correspond to the DCE and C E rules, respectively.543

Lemma 6 For each (E, c, P2) ∈ BP with (E, c) ∈ B0, s1(E, c, P2) = DCE1(E, c)544

and sn(E, c, P2) = CEn(E, c).545

Proof First, we show that s1(E, c, P2) = DCE1(E, c). Let (E, c, P2) with (E, c) ∈546

B0. If E = C/2, by the midpoint property, s1(E, c, P2) = DCE1(E, c). Next, we547

consider the rest of the possibilities.548

Case a: E < C/2. There are four subcases.549

• DCE1 (E, c) = 0. By non-negativity, s1(E, c, P2) = DCE1(E, c).550

• DCE1 (E, c) > 0 and DCE j (E, c) = c j/2 for each j �= 1. Let us suppose551

that there is ϕ ∈ Φ(P2) such that ϕ1 (E, c) < DCE1 (E, c) . By efficiency,552

ϕ j (E, c) > c j/2 for some j �= 1. By the midpoint property, ϕ (C/2, c) = c/2.553

Then, ϕ j (E, c) > ϕ j (C/2, c), contradicting resource monotonicity. Therefore,554

s1(E, c, P2) = DCE1(E, c).555

• DCE1 (E, c) > 0 and DCE j (E, c) �= c j/2 for each j �= 1. By the definition of556

the DCE rule, c1 − DCE1 (E, c) = c j − DCE j (E, c) for each j �= 1. Let us557

suppose that there is ϕ ∈ Φ(P2) such that ϕ1 (E, c) < DCE1 (E, c) . By efficiency,558

ϕ j (E, c) > DCE j (E, c) for some j �= 1. Then, c1 −ϕ1 (E, c) > c j −ϕ j (E, c) ,559

contradicting order preservation. Therefore, s1(E, c, P2) = DCE1(E, c).560

• DCE1 (E, c) > 0 and there are S, T, ∅ �= S ⊂ N\{1}, and ∅ �= T ⊂ N\{1} such561

that for each l ∈ S, DCEl (E, c) �= cl/2, and for each k ∈ T, DCEk (E, c) =562

ck/2. By the definition of the DCE rule, c1 − DCE1 (E, c) = c j − DCE j (E, c)563

for each j ∈ S. Let us suppose that there is ϕ ∈ Φ(P2) such that ϕ1 (E, c) <564

DCE1 (E, c) . By efficiency, ϕ j (E, c) > DCE j (E, c) for some j �= 1. Then, if565

j ∈ S, c1−ϕ1 (E, c) > c j −ϕ j (E, c) , contradicting order preservation. If j ∈ T,566

by the midpoint property, ϕ (C/2, c) = c/2. Then, ϕ j (E, c) > ϕ j (C/2, c),567

contradicting resource monotonicity. Therefore, s1(E, c, P2) = DCE1(E, c).568

Case b: E > C/2. There are two subcases.569

• DCE1 (E, c) = c1/2. Let us suppose that there is ϕ ∈ Φ(P2) such that ϕ1 (E, c) <570

c1/2. By the midpoint property, ϕ (C/2, c) = c/2. Then, ϕ1 (E, c) < ϕ1 (C/2, c),571

contradicting resource monotonicity. Therefore, s1(E, c, P2) = DCE1(E, c).572
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• DCE1 (E, c) > c1/2. By the definition of the DCE rule, c1 −DCE1 (E, c) = c j−573

DCE j (E, c) , for each j ∈ N\{1}. Let us suppose that there is ϕ ∈ Φ(P2) such574

that ϕ1 (E, c) < DCE1 (E, c) . By efficiency, ϕ j (E, c) > DCE j (E, c) for some575

j �= 1. Then, c1 − ϕ1 (E, c) > c j − ϕ j (E, c) , contradicting order preservation.576

Therefore, s1(E, c, P2) = DCE1(E, c).577

Second, it can be similarly obtained that sn(E, c, P2) = CEn(E, c). ⊓⊔578

The following fact provides two conditions that will be used in the proof of Theorem579

2.580

Fact 3 Let (E, c) ∈ B0 be a two-agent problem. By Lemma 6, at each step m ∈581

N, s1(Em, cm, P2) = DCE1(Em, cm). Therefore, next inequality characterizes the582

fact that agent 1 is guaranteed nothing at each step m ∈ N583

s1(Em, cm, P2) = 0 ⇔ Em ≤ min
{

cm
2 − cm

1 , cm
2 /2

}

. (1)584

Now, applying (1) to m = 2 and substituting, in terms of the problem at step m − 1,585

the expressions of Em and cm
i for each i ∈ N , that is586

Em = Em−1 − s1(Em−1, cm−1, P2) − s2(Em−1, cm−1, P2)587

and588

cm
i = cm−1

i − si (Em−1, cm−1, P2),589

we have the next inequality,590

s1(E2, c2, P2) = 0 ⇔ E ≤ min

{

c2 − c1 + 2s1(E, c, P2),

c2/2 + s2(E, c, P2)/2 + s1(E, c, P2)
(2)591

Proof of Theorem 2 Let (E, c)∈ B0. By Lemma 6, at each step m ∈ N, s1(Em, cm, P2)592

= DCE(Em, cm). Given this, we show that agent 1’s P-right for P2 at each step593

m ≥ 2, is zero, so agent 1’s Recursive P-rights rule for P2 is the Dual of Constrained594

Egalitarian rule. Then, since ϕR(E, c, P2) exhausts the endowment, given Claim 3,595

ϕR(E, c, P2) = DCE(E, c).596

If c1 = c2, by the definition of the Recursive P-rights rule for P2, each agent i receives597

the same amount at the initial step. If c1 �= c2 and E = (c1 + c2) /2 by the midpoint598

property, each agent i receives her half-claim, ci/2. Therefore, in both cases, at the599

initial step the endowment is exhausted and ϕR(E, c, P2) = DCE(E, c).600

When c1 �= c2 there are three cases.601

Case 1: s1(E, c, P2) = 0.602

By (1) for m = 1, E ≤ min {c2 − c1, c2/2} . Now, in the following step (2) states that603

s1(E2, c2, P2) = 0 ⇔ E ≤ min{c2 − c1, c2/2 + s2(E, c, P2)/2},604

which follows from605

E ≤ min {c2 − c1, c2/2} .606
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A new approach for bounding awards

Given that s1(E2, c2, P2) = 0, if the previous reasoning is applied to (E2, c2, P2),607

we obtain that s1(E3, c3, P2) = 0. Then, extending this argument henceforth we608

can conclude that s1(Em, cm, P2) = 0 at each step m > 2. So ϕR
1 (E, c, P2) = 0.609

Therefore, by Claim 3, ϕR(E, c, P2) = (0, E) = DCE(E, c).610

In Cases 2 and 3, we show that at m = 2 agent 1’s P-right for P2 is zero. Case 1 can611

then be applied to the residual problem with legitimate principles, so from m = 2 on,612

s1(Em+h, cm+h, P2) = 0, for each h ∈ N, and ϕR
1 (E, c, P2) = s1(E, c, P2).613

Case 2: s1(E, c, P2) > 0 and c2/2 ≥ c2 − c1. There are five subcases.614

Subcase 2.1: c2 − c1 ≤ E ≤ c1. Then, s1(E, c, P2) = (E + c1 − c2)/2 and615

s2(E, c, P2) = E/2. Now, substituting these expressions in (2),616

s1(E2, c2, P2) = 0 ⇔ E ≤ min{E, c1/2 + 3E/4} ⇔ E ≤ 2c1,617

which is true, as in this region, E ≤ c1. Therefore,618

ϕR(E, c, P2) = ((E + c1 − c2)/2, (E − c1 + c2)/2) = DCE(E, c).619

Subcase 2.2: c1 ≤ E ≤ (c1 + c2)/2. Then, s1(E, c, P2) = E − c2/2 and620

s2(E, c, P2) = E − c1/2. Now, substituting these expressions in (2),621

s1(E2, c2, P2) = 0 ⇔ E ≤ min{2E − c1,+3E/2 − c1/4} ⇔ E ≥ c1,622

which is obviously fulfilled in this region. Therefore,623

ϕR(E, c, P2) = (E − c2/2, c2/2) = DCE(E, c).624

Subcase 2.3: (c1+c2)/2 ≤ E ≤ (c1+c2)/2+(c2−c1)/2 = c2. Then, s1(E, c, P2) =625

c1/2 and s2(E, c, P2) = c2/2. Again, by substituting these expressions in (2),626

s1(E2, c2, P2) = 0 ⇔ E ≤ min{c2, 3c2/4 + c1/2}.627

On the one hand, E ≤ c2 is fulfilled since c2 is the endowment-upper bound of this628

region. On the other hand, in Case 2 c2/2 ≥ c2 − c1 which implies c1/2 ≥ c2/4629

and 3c2/4 + c1/2 ≥ c2 then, again by the endowment-upper bound of this region,630

E ≤ 3c2/4 + c1/2 is true. Therefore,631

ϕR(E, c, P2) = (c1/2, E − c1/2) = DCE(E, c).632

Subcase 2.4: c2 ≤ E ≤ 2c1. Then, s1(E, c, P2) = (E +c1−c2)/2 and s2(E, c, P2) =633

E/2. Now, substituting these expressions in (2),634

s1(E2, c2, P2) = 0 ⇔ E ≤ min{E, c1/2 + 3E/4} ⇔ E ≤ 2c1,635

which is obviously fulfilled in this region. Therefore,636

ϕR(E, c, P2) = ((E + c1 − c2)/2, (E − c1 + c2)/2) = DCE(E, c).637
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Subcase 2.5: 2c1 ≤ E . Then, s1(E, c, P2) = (E + c1 − c2)/2 and s2(E, c, P2) =638

E −c1. Here, the substitution of these expressions in (2) does not imply any restriction,639

so that,640

ϕR(E, c, P2) = ((E + c1 − c2)/2, (E − c1 + c2)/2) = DCE(E, c).641

Case 3: s1(E, c, P2) > 0 and c2/2 ≤ c2 − c1. There are four subcases.642

Subcase 3.1: c2/2 ≤ E ≤ (c1 + c2)/2. Then, s1(E, c, P2) = E − c2/2 and643

s2(E, c, P2) = E − c1/2. Now, substituting these expressions in (2),644

s1(E2, c2, P2) = 0 ⇔ E ≤ min{2E − c1,+3E/2 − c1/4} ⇔ E ≥ c1,645

inequality fulfilled as in this region c2/2 ≤ c2 −c1, implying c1 ≤ c2/2. Therefore,646

ϕR(E, c, P2) = (E − c2/2, c2/2) = DCE(E, c).647

Subcase 3.2: (c1 + c2)/2 ≤ E ≤ c1 + c2/2. Then s1(E, c, P2) = c1/2 and648

s2(E, c, P2) = c2/2. Now, substituting these expressions in (2),649

s1(E2, c2, P2) = 0 ⇔ E ≤ min{c2, 3c2/4 + c1/2}.650

Both inequalities E ≤ c2 and E ≤ 3c2/4 + c1/2 are satisfied as in this region651

c2/2 ≤ c2 − c1, which implies c1 ≤ c2/2. Therefore,652

ϕR(E, c, P2) = (c1/2, E − c1/2) = DCE(E, c).653

Subcase 3.3: c1 + c2/2 ≤ E ≤ c2. Then, s1(E, c, P2) = c1/2 and s2(E, c, P2) =654

E − c1. Now, substituting these expressions in (2),655

s1(E2, c2, P2) = 0 ⇔ E ≤ min{c2, c2/2 + E/2} ⇔ E ≤ c2,656

which is the endowment-upper bound in this region. Therefore,657

ϕR(E, c, P2) = (c1/2, E − c1/2) = DCE(E, c).658

Subcase 3.4: c2 ≤ E . Then, s1(E, c, P2) = (E+c1−c2)/2 and s2(E, c, P2) = E−c1.659

Here, the substitution of these expressions in (2) does not imply any restriction, so660

that,661

ϕR(E, c, P2) = ((E + c1 − c2)/2, (E − c1 + c2)/2) = DCE(E, c).662

⊓⊔663
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A new approach for bounding awards

Appendix 4: Proof of Proposition 1664

Let us consider the rule ϕ∗ : B → R
n
+ which, without loss of generality, is defined665

for each (E, c) ∈ B0 as follows (see footnote 7).666

667

Case a: If c3 − c2 ≤ 3
16

c1 and c3 − c2 ≤ c2 − c1 ,668

ϕ∗(E, c) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(0, 0, E) if 0 ≤ E ≤ c3 − c2

(

E − (c3 − c2)

3
,

E − (c3 − c2)

3
,

E + 2(c3 − c2)

3

)

if c3 − c2 ≤ E ≤ 6(c3 − c2)

(

E

2
−

4

3
(c3−c2),

E

2
−

4

3
(c3 − c2),

8

3
(c3 − c2)

)

if 6(c3−c2)≤ E ≤ 8(c3 − c2)

(

E

3
,

E

3
,

E

3

)

if 8(c3 − c2) ≤ E ≤ 3
2 c1

(

c1

2
,

c1

2
, E − c1

)

if 3
2 c1 ≤ E ≤ 3

2 c1 + c3 − c2

(

c1

2
,

E − (c3−c2)

2
−

c1

4
,

E + (c3 − c2)

2
−

c1

4

)

if 3
2 c1+c3 − c2 ≤ E ≤

c1
2 +c2

(

c1

2
, E −

c1 + c3

2
,

c3

2

)

if
c1
2 + c2 ≤ E ≤ C

2

C E(E, c) if E ≥ C
2

669

Case b: Otherwise, ϕ∗(E, c) ≡ CE(E, c)670

Note that, it is easy to check that ϕ∗ is an admissible rule for P2 satisfying other671

standard properties such as continuity, claims monotonicity and homogeneity (see672

Footnote 6). Moreover, for each of the following problems in which we apply it, ϕ∗
673

recommends the smallest amount for agent 2 among all the admissible rules for P2. By674

Lemma 6, we know that for each (E, c, P2) ∈ BP , s1(E, c, P2) = DCE1(E, c) and675

s3(E, c, P2) = CE3(E, c). Taking into account these facts, next we compute some676

steps of the recursive P2-rights process for the problem (E, c) =
(

21,
(

5, 19 1
2
, 20

))

∈677

B.678

Step m = 1:
(

E1, c1
)

= (21, (5, 19 1
2
, 20)), CE(E1, c1) =

(

2 1
2
, 9 1

4
, 9 1

4

)

, DCE679

(E1, c1) =
(

1 1
4
, 9 3

4
, 10

)

and ϕ∗(E1, c1) =
(

2 1
2
, 9, 9 1

2

)

. Then,680

s(E1, c1, P2) =

(

1
1

4
, 9, 9

1

4

)

.681

Step m = 2:
(

E2, c2
)

=
(

1 1
2
,
(

3 3
4
, 10 1

2
, 10 3

4

))

, CE(E2, c2) =
(

1
2
, 1

2
, 1

2

)

, DCE682

(E2, c2) =
(

0, 1
8
, 7

8

)

and ϕ∗(E2, c2) =
(

5
12

, 5
12

, 2
3

)

. Then,683

s(E2, c2, P2) =

(

0,
5

12
,

1

2

)

.684
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Step m = 3:
(

E3, c3
)

=
(

7
12

,
(

3 3
4
, 10 1

12
, 10 1

4

))

, CE(E3, c3) =
(

7
36

, 7
36

, 7
36

)

, DCE685

(E3, c3) =
(

0, 5
24

, 3
8

)

and ϕ∗(E3, c3) =
(

5
36

, 5
36

, 11
36

)

. Then,686

s(E3, c3, P2) =

(

0,
5

36
,

7

36

)

.687

Step m = 4:
(

E4, c4
)

=
(

1
4
,
(

3 3
4
, 9 17

18
, 10 1

18

))

, CE(E4, c4) =
(

1
12

, 1
12

, 1
12

)

, DCE688

(E4, c4) =
(

0, 5
72

, 13
72

)

and ϕ∗(E4, c4) =
(

5
108

, 5
108

, 17
108

)

. Then,689

s(E4, c4, P2) =

(

0,
5

108
,

1

12

)

.690

Therefore,691

ϕR

(

21,

(

5, 19
1

2
, 20

)

, P2

)

=

4
∑

k=1

s(Ek, ck, P2) +

∞
∑

k=5

s(Ek, ck, P2)692

=

(

5

4
, 9

65

108
, 10

1

36

)

+

∞
∑

k=5

s(Ek, ck, P2).693

Now, let us consider the problem (E ′, c) =
(

22 1
4
,
(

5, 19 1
2
, 20

))

. By the midpoint694

property,695

ϕR

(

22
1

4
,

(

5, 19
1

2
, 20

)

, P2

)

=

(

2
1

2
, 9

3

4
, 10

)

.696

By Definition 5 we have that for each m ∈ N and each i ∈ N si (Em, cm, P2) ≥697

0. Therefore, the two previous distributions contradict resource monotonicity as the698

highest agent receives less when the endowment increases.699
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