Metadata of the article that will be visualized in OnlineAlone

Electronic supplementary material

Below is the link to the electronic supplementary material. MOESM1: Supplementary material 1 (f 173 KB).

ORIGINAL PAPER

A new approach for bounding awards in bankruptcy problems

José-Manuel Giménez-Gómez • M. Carmen Marco-Gil

Received: 7 March 2011 / Accepted: 21 December 2013
© Springer-Verlag Berlin Heidelberg 2014

Abstract

The solution for the contested garment problem, proposed in the Babylonic Talmud, suggests that each agent should receive at least some part of the resources whenever the claim exceeds the available amount. In this context, we propose a new method to define lower bounds on awards, an idea that has underlied the theoretical analysis of bankruptcy problems from its beginning (O'Neill, Math Soc Sci 2:345371, 1982) to present day (Dominguez and Thomson, Econ Theory 28:283-307, 2006). Specifically, starting from the fact that a society establishes its own set of commonly accepted equity principles, our proposal ensures to each agent the smallest amount she gets according to all the admissible rules. We analyze its recursive application for different sets of equity principles.

1 Introduction

A bankruptcy problem is a situation where a group of agents claim more of a perfectly divisible resource (the endowment) than what is available. In this context, a rule prescribes how to share the endowment among the agents, according to the profile of claims. A natural question arises: Should each agent have a guaranteed level of awards when dividing the endowment?

Electronic supplementary material The online version of this article
(doi:10.1007/s00355-013-0789-0) contains supplementary material, which is available to authorized users.
M. Giménez-Gómez
partament d'Economia and CREIP, Universitat Rovira i Virgili, Av. Universitat 1, 43204 Reus, Spain

[^0]The axiomatic and game theory approaches have been used for the normative analysis of bankruptcy problems, whose main goal is to identify rules by means of appealing properties. Following this line, the establishment of lower bounds on awards has been found reasonable by many authors. In fact, the formal definition of a rule already includes both upper and lower bounds on awards by requiring that no agent receives more than her claim and less than zero. O'Neill (1982) provides another lower bound on awards called respect of minimal rights, which requires that each agent receives at least what is left once the other agents have been fully compensated, or zero if this amount is negative. Herrero and Villar $(2001,2002)$ introduce the following two properties that bound awards. Sustainability says that if we truncate all claims at an agent i 's claim and there is enough to honor all claims, then agent i 's award should be equal to her claim. Exemption demands that agent i not be rationed when equal division provides her more than she claims. Moulin (2002) defines a new restriction on awards, called lower bound: each agent receives at least the amount corresponding to the egalitarian division except those who demand less, in which case their claims are met in full. Moreno-Ternero and Villar (2004) present a weaker notion of Moulin's lower bound, named securement, which says that each agent should obtain at least the n-th part of her claim truncated at the endowment. Finally, Dominguez (2012) proposes the min lower bound which modifies securement by replacing each agent's claim by the smallest one.

Apart from respect of minimal rights, a property that is implied by the definition of a rule, the other proposed lower bounds on awards have been justified by their own reasonability or appeal. In this paper, we propose a new definition along the line of O'Neill's proposal. Specifically, we define the agent's P-right as the smallest amount recommended to her by all the rules satisfying a set of 'basic' requirements. This set of commonly accepted principles is formed by those properties that a specific society decides to apply in the resolution of bankruptcy problems. Then, we define the associated bound on awards, respect of P-rights, by demanding that each agent should receive at least her P-right.

In general, the aggregate guaranteed amount by means of our P-rights will not exhaust the endowment. That is why we propose and analyze its recursive application, called the recursive P-rights process. Once each agent receives her P-right in the original problem, it is revised accordingly in order to define the residual problem. Then, each agent receives her P-right in this residual problem, and so on. The idea of recursion is not new. Indeed, it has already been used in the context of bankruptcy problems by Alcalde et al. (2005), in order to generalize a proposal by Ibn Ezra, and by Dominguez and Thomson (2006), whose starting point is Moreno-Ternero and Villar's concept of boundedness. Dominguez (2012) also studies the behavior of the recursive application of a generic bound.

We first apply our methodology to the singleton P_{1}, whose only element is order preservation. We find that the recursive P-rights process leads to the Constrained Equal Losses rule. This result could be written as follows: 'For each bankruptcy problem, in the set of admissible rules according to P_{1}, the recursive application of the P-rights leads to the rule that provides greater awards to the agents with the larger claims'. Then, we analyze the generalization of this statement. With this aim we consider a new set of socially accepted principles, P_{2}, by adding to order preservation
the requirement of resource monotonicity and the midpoint property. In this case we demonstrate that the above statement is true, but only for two-agent problems in which the Dual of Constrained Egalitarian rule is obtained. Moreover, we conclude that the recursive P-rights process for n-agent problems presents important shortcomings. Specifically, we provide a three-agent problem for P_{2} in which the resulting rule defined by this process does not satisfy the equity principles on which it is based. Finally, we note that it is possible, even for two-agent problems, that the recursive P-rights process singles out a rule that is not the most generous to the largest claimant.

The paper is organized as follows. Section 2 presents the model. Section 3 proposes our new approach for bounding awards and its recursive application. By using the previous ideas for P_{1}, Sect. 4 provides a new basis for the Constrained Equal Losses rule. Section 5 considers our process for other sets of equity principles and shows that, in general, it can not be extended to more than two agents. Section 6 summarizes our conclusions. All the proofs are relegated to the appendices.

2 Preliminaries

We consider a group of agents, $N=\{1, \ldots, i, \ldots, n\}$, having claims on a resource. A bankruptcy problem is a situation where the sum of the agents' claims is equal to or greater than the amount available. Each agent $i \in N$ has a claim c_{i} on the endowment, E, a perfectly divisible good. Formally,

Definition 1 A bankruptcy problem, or simply a problem, is a vector $(E, c) \in \mathbb{R}_{++} \times$ \mathbb{R}_{+}^{n} such that $E \leq \sum_{i \in N} c_{i}$.

Hence, when the claims add up to more than the endowment, this should be rationed among agents.

Let \mathscr{B} denote the set of all problems; given $(E, c) \in \mathscr{B}, C$ denotes the sum of the agents' claims, $C=\sum_{i \in N} c_{i} ; L$ the total loss to distribute among the agents, $L=C-E$. Let \mathscr{B}_{0} be the set of problems in which claims are increasingly ordered, that is problems with $c_{i} \leq c_{j}$ for $i<j$.

A rule associates within each problem a distribution of the endowment among the agents.

Definition 2 A rule is a function, $\varphi: \mathscr{B} \rightarrow \mathbb{R}_{+}^{n}$, such that for each $(E, c) \in \mathscr{B}$,
(a) $\sum_{i \in N} \varphi_{i}(E, c)=E$ (efficiency) and \bigcirc
(b) $0 \leq \varphi_{i}(E, c) \leq c_{i}$ for each $i \in N$ (non-negativity and claim-boundedness).

Next are rules that will be used in the following sections, emphasizing their dual relations.

The Constrained Equal Awards rule (Maimonides, 12th century, among others) recommends equal awards to all agents subject to no one receiving more than her claim.

Constrained Equal Awards rule, $C E A$: for each $(E, c) \in \mathscr{B}$ and each $i \in N$, $C E A_{i}(E, c) \equiv \min \left\{c_{i}, \mu\right\}$, where μ is chosen so that $\sum_{i \in N} \min \left\{c_{i}, \mu\right\}=E$.

Piniles' rule (Piniles 1861) provides, for each problem $(E, c) \in \mathscr{B}$, the awards that the Constrained Equal Awards rule recommends for ($E, c / 2$) when the endowment is less than the half-sum of the claims. Otherwise, each agent first receives her halfclaim, then the Constrained Equal Awards rule is re-applied to the residual problem ($E-C / 2, c / 2$).

Piniles' rule, Pin: for each $(E, c) \in \mathscr{B}$ and each $i \in N$,

$$
\operatorname{Pin}_{i}(E, c) \equiv \begin{cases}C E A_{i}(E, c / 2) & \text { if } E \leq C / 2 \\ c_{i} / 2+C E A_{i}(E-C / 2, c / 2) & \text { if } E \geq C / 2\end{cases}
$$

The next rule, introduced by Chun et al. (2001), is inspired by the Uniform rule (Sprumont 1991), a solution to the problem of fair division when preferences are single-peaked. It makes the minimal adjustment in the formula for the Uniform rule, taking the half-claims as peaks and guaranteeing that awards are ordered in same way as claims.

Constrained Egalitarian rule, $C E$: for each $(E, c) \in \mathscr{B}$ and each $i \in N$,

$$
C E_{i}(E, c) \equiv \begin{cases}C E A_{i}(E, c / 2) & \text { if } E \leq C / 2 \\ \max \left\{c_{i} / 2, \min \left\{c_{i}, \delta\right\}\right\} & \text { if } E \geq C / 2\end{cases}
$$

where δ is chosen so that $\sum_{i \in N} C E_{i}(E, c)=E$.
Given a rule φ, its dual distributes what is missing in the same way that φ divides what is available (Aumann and Maschler 1985).

The dual of φ, denoted by φ^{d}, is defined by setting for each $(E, c) \in \mathscr{B}$ and each $i \in N, \varphi_{i}^{d}(E, c)=c_{i}-\varphi_{i}(L, c)$.

It is straightforward to check that the duality operator is well defined, since for each $(E, c) \in \mathscr{B},(L, c) \in \mathscr{B}$ and if φ satisfies efficiency, non-negativity and claimboundedness, so does φ^{d}.

The next rule, discussed by Maimonides (Aumann and Maschler 1985), is the dual of the Constrained Equal Awards rule (Herrero 2003). Specifically, it chooses the awards vector at which all agents incur equal losses, subject to no one receiving a negative amount.

Constrained Equal Losses rule, $C E L$: for each $(E, c) \in \mathscr{B}$ and each $i \in N$, $C E L_{i}(E, c) \equiv \max \left\{0, c_{i}-\mu\right\}$, where μ is chosen so that $\sum_{i \in N} \max \left\{0, c_{i}-\mu\right\}=$ E.

The Dual of Piniles' rule selects, for each problem $(E, c) \in \mathcal{B}$ the awards vector that the Constrained Equal Losses rule recommends for $(E, c / 2)$ when the endowment is less than the half-sum of the claims. Otherwise, each agent first receives her halfclaim, then the Constrained Equal Losses rule is re-applied to the residual problem ($E-C / 2, c / 2$).

Dual of Piniles' rule, DPin: for each $(E, c) \in \mathscr{B}$ and each $i \in N$,

$$
\operatorname{DPin}_{i}(E, c) \equiv \begin{cases}c_{i} / 2-\min \left\{c_{i} / 2, \lambda\right\} & \text { if } E \leq C / 2 \\ c_{i} / 2+\left(c_{i} / 2-\min \left\{c_{i} / 2, \lambda\right\}\right) & \text { if } E \geq C / 2\end{cases}
$$

where λ is such that $\sum_{i \in N} \operatorname{DPin}_{i}(E, c)=E$.
The Dual of Constrained Egalitarian rule gives the half-claims a central role. It makes the minimal adjustment in the formula for the Uniform rule, taking the halfclaims as peaks and guaranteeing that losses are ordered in same way as claims.

Dual of Constrained Egalitarian rule, $D C E$: for each $(E, c) \in \mathscr{B}$ and each $i \in N$,

$$
D C E_{i}(E, c) \equiv \begin{cases}c_{i}-\max \left\{c_{i} / 2, \min \left\{c_{i}, \delta\right\}\right\} & \text { if } E \leq C / 2 \\ c_{i}-\min \left\{c_{i} / 2, \delta\right\} & \text { if } E \geq C / 2\end{cases}
$$

where δ is chosen so that $\sum_{i \in N} D C E_{i}(E, c)=E$.

3 A new approach: bounding awards from equity principles

The lower bound of awards proposed by O'Neill (1982), called respect of minimal rights, requires that each agent receives at least what is left of the endowment after the other agents have been fully compensated, or zero if this amount is negative.

Respect of minimal rights: for each $(E, c) \in \mathscr{B}$ and each $i \in N, \varphi_{i}(E, c) \geq$ $m_{i}(E, c)=\max \left\{E-\sum_{j \neq i} c_{j}, 0\right\}$.

This bound on awards is a consequence of efficiency, non-negativity and claimboundedness together (Thomson 2003), the three conditions imposed by a rule (see Definition 2). ${ }^{1}$

Following this line we introduce a new method for bounding awards based on a set of principles that are commonly accepted by a society. We propose the following extension of a problem.

Definition 3 A problem with legitimate principles is a triplet $\left(E, c, P_{t}\right.$), where $(E, c) \in \mathscr{B}$ and P_{t} is a set of properties on which a particular society has agreed.

Let P be the set of all subsets of properties of rules. Each $P_{t} \in P$ represents a specific society which will always apply such principles for solving its problems. Finally, let \mathscr{B}_{P} be the set of all problems with legitimate principles.

This modelling becomes really interesting if it is applied to some specific types of problems, since the more available information we have, the easier it is to agree on these principles. For example, let $\mathscr{B}_{P}^{T} \subset \mathscr{B}_{P}$, the problems with legitimate principles that represent the collection of a given amount of taxes in a community. In this case,

[^1]progressivity (see Thomson 2003) may be commonly accepted. However, this property may not be reasonable in other situations.

For each problem with legitimate principles, a society will consider as socially admissible any rule that satisfies the properties in P_{t}.

Definition 4 A socially admissible rule, or simply an admissible rule, is a function, $\varphi: \mathscr{B}_{P} \rightarrow \mathbb{R}_{+}^{n}$, such that its application in $\mathscr{B}, \varphi: \mathscr{B} \rightarrow \mathbb{R}_{+}^{n}$, is a rule satisfying all properties in P_{t}.

Let Φ denote the set of all rules and let $\Phi\left(P_{t}\right)$ be the subset of rules satisfying P_{t}.
Taking extended problems as a starting point, we propose a new lower bound on awards based on the application of the ordinary meaning of a guarantee. This bound, called P-rights, provides each agent the smallest amount recommended to her by all admissible rules. Formally,

Definition 5 Given $\left(E, c, P_{t}\right)$ in \mathscr{B}_{P}, the P-right of each $i \in N, s_{i}$, is

$$
s_{i}\left(E, c, P_{t}\right)=\inf _{\varphi \in \Phi\left(P_{t}\right)}\left\{\varphi_{i}(E, c)\right\}
$$

Now, we say that a rule respects P-rights if, for each $P_{t} \in P$, each $(E, c) \in \mathscr{B}$ and each $i \in N, \varphi_{i}(E, c) \geq s_{i}\left(E, c, P_{t}\right)$.

Note that if P_{t} is the empty set, the P-rights correspond with the concept of minimal rights.

As in general, the sum of the agents' P-rights of a problem with legitimate principles does not exhaust the endowment, a requirement of composition from the profile of these bounds arises in a natural way. It says that the awards vector of each problem should be equivalently obtainable either directly or by means of the following process. First, assigning to each agent her lower bound on awards. Second, adjusting claims down by these amounts. And third, applying the rule to divide the remainder. The following definition applies this idea to our bound on awards.

Definition 6 Given $P_{t} \in P$, a rule φ satisfies \mathbf{P}-rights first if for each $(E, c) \in \mathscr{B}$ and each $i \in N, \varphi_{i}(E, c)=s_{i}\left(E, c, P_{t}\right)+\varphi_{i}\left(E-\sum_{i \in N} s_{i}\left(E, c, P_{t}\right), c-s\left(E, c, P_{t}\right)\right)$.

Although many of the proposed lower bounds on awards are respected by most of the rules, composition from these lower bounds is quite demanding. For instance, respect of minimal rights is satisfied by any rule, but none of the Proportional, Constrained Equal Awards or Minimal Overlap rules satisfy minimal rights first (Thomson 2003). Let us note that this kind of composition is equivalent to apply a recursive method from a lower bound on awards. In fact, this process has been used to generate new rules. The rule proposed by Dominguez and Thomson (2006) results from applying such a procedure to the securement lower bound. Similarly, we define the recursive application of our P-rights, which we call the recursive P-rights process.

Definition 7 For each $m \in \mathbb{N}$, the recursive P-rights process at the m-th step, $R S^{m}$, associates for each $\left(E, c, P_{t}\right) \in \mathscr{B}_{P}$ and each $i \in N$,
$\left[R S^{m}\left(E, c, P_{t}\right)\right]_{i}=s_{i}\left(E^{m}, c^{m}, P_{t}\right)$,
where $\left(E^{1}, c^{1}\right) \equiv(E, c)$ and for $m \geq 2$,

$$
\left(E^{m}, c^{m}\right) \equiv\left(E^{m-1}-\sum_{i \in N} s_{i}\left(E^{m-1}, c^{m-1}, P_{t}\right), \quad c^{m-1}-s\left(E^{m-1}, c^{m-1}, P_{t}\right)\right)
$$

According to this process, at the first step each agent receives her P-right in the original problem. At the second step, we define a residual problem in which the endowment is what remains and the claims are adjusted down by the amounts just given. Then, each agent receives her P-right in this residual problem, and so on. In general, it cannot be ensured that the sum of the amounts that agents receive in each step exhausts the endowment. If this occurs, we define the Recursive P-rights rule.

Definition 8 The Recursive P-rights rule, φ^{R}, associates for each $\left(E, c, P_{t}\right) \in \mathscr{B}_{P}$ and each $i \in N, \varphi_{i}^{R}\left(E, c, P_{t}\right)=\sum_{m=1}^{\infty}\left[R S^{m}\left(E, c, P_{t}\right)\right]_{i}$, whenever

$$
\sum_{i \in N}\left(\sum_{m=1}^{\infty}\left[R S^{m}\left(E, c, P_{t}\right)\right]_{i}\right)=E .
$$

Note that the Recursive P-rigths rule satisfies non-negativity and claimboundedness by construction. The next result, which is a specification to our context of a theorem provided by Dominguez (2012) for the recursive process based on a generic lower bound on awards, shows that whenever the P-rights provide a positive amount to some agent at each step, efficiency is met. ${ }^{2}$

Theorem (Dominguez 2012) For each $\left(E, c, P_{t}\right) \in \mathscr{B}_{P}, \sum_{i \in N}\left(\sum_{m=1}^{\infty}\left[R S^{m}(E, c\right.\right.$, $\left.\left.\left.P_{t}\right)\right]_{i}\right)=E$ whenever for each $m \in \mathbb{N}$ there is $i \in N$ such that $\mathrm{s}_{i}\left(E^{m}, c^{m}, P_{t}\right)>0$.

At this point we should mention some contributions that have certain features in common with our approach. In the context of Nash's bargaining model, Damme (1986) uses the research on Nash equilibria of a non-cooperative game which is induced by a mechanism of successive concessions. Specifically, the agents' strategies are the choice of a rule among a set of reasonable ones. The first variants of van Damme's work for bargaining and bankruptcy problems were introduced by Chun (1984, 1989). From them, other mechanisms, related to ours, have been proposed. The unanimous concessions mechanism, provided by Marco et al. (1995) and modified by Herrero (2003) for its application to bankruptcy, is close to our recursive P-rights process, but the starting point and analysis of the two are quite different. Also for bargaining problems, Thomson (2012) introduces and studies the concept of closedness under recursion of a family of solutions, which means that the solution defined through the process is not only well-defined, but also belongs to the family of solutions considered. This idea, although in a different framework, is close to our definition of admissible rule, but the process he uses has no relation to ours.

[^2]
4 A minimal requirement of fairness

Next, we apply our method to the singleton P_{1} whose only element is order preservation,

$$
P_{1} \equiv\{\text { order preservation }\}
$$

This property was introduced by Aumann and Maschler (1985). In fact, in our setting, where there are neither absolute nor relative priority classes, order preservation has been understood as a minimal requirement of fairness by many authors. It requires that if agent i 's claim is at least as large as agent j 's claim, she should receive at least as much as agent j does; furthermore, agent i 's loss should be at least as large as agent j 's loss.

Order preservation: for each $(E, c) \in \mathscr{B}$ and each $i, j \in N$ such that $c_{i} \geq c_{j}$, $\varphi_{i}(E, c) \geq \varphi_{j}(E, c)$ and $c_{i}-\varphi_{i}(E, c) \geq c_{j}-\varphi_{j}(E, c)$.

Lemma 5 in Appendix 2 shows that the P_{1}-rights for agents 1 and n are given by the Constrained Equal Losses and the Constrained Equal Awards rules, respectively. As a direct consequence of this result, for two-agent problems, these two rules mark out the area of all the admissible rules in P_{1}. However, as shown in the next example, this fact cannot be generalized for problems with more than two agents.

Example 1 Let $N=\{1,2,3\}$ and $(E, c)=(49,(18,27,40)) \in \mathscr{B}$. Thus, CEA $(E, c)=\left(16 \frac{1}{3}, 16 \frac{1}{3}, 16 \frac{1}{3}\right)$ and $C E L(E, c)=(6,15,28)$. By Lemma 5 in Appen$\operatorname{dix} 2, s_{1}\left(E, c, P_{1}\right)=6$ and $s_{3}\left(E, c, P_{1}\right)=16 \frac{1}{3}$. Moreover, $T(E, c)=\left(9,13 \frac{1}{2}, 26 \frac{1}{2}\right)$, where T denotes the Talmud rule. ${ }^{3}$ This rule satisfies order preservation and $T_{2}(E, c)=13 \frac{1}{2}<C E L_{2}(E, c)<C E A_{2}(E, c)$. Therefore, for agent 2 neither of the amounts provided by both $C E L$ and $C E A$, is the smallest one she can get according to P_{1}.

The next result shows the Recursive P-rights rule for P_{1}.
Theorem 1 For each $\left(E, c, P_{1}\right) \in \mathscr{B}_{P}$, the Recursive P-rights rule is the Constrained Equal Losses rule, that is, $\varphi^{R}\left(E, c, P_{1}\right)=C E L(E, c)$.

Proof See Appendix 2.
To conclude this section, let us note that we have proved that the Recursive P-rights rule for P_{1} leads to the admissible rule which favors the largest claimant.

5 Other sets of legitimate principles

In this section, we consider other possible choices of 'commonly accepted equity principles'. First, we propose P_{2} obtained by adding to P_{1} resource monotonicity and midpoint property,

[^3]$$
P_{2} \equiv\{\text { order preservation, resource monotonicity, midpointproperty }\} .
$$

Resource monotonicity Curiel et al. (1987), Young (1988) and others says that if the endowment increases, then all individuals should get at least what they received initially. This property has been widely accepted. Moreover, no rule violating this property has been proposed.

Resource monotonicity: for each $(E, c) \in \mathscr{B}$ and each $E^{\prime} \in \mathbb{R}_{+}$such that $C \geq E^{\prime}>$ $E, \varphi_{i}\left(E^{\prime}, c\right) \geq \varphi_{i}(E, c)$, for each $i \in N$.

Midpoint property (Chun et al. 2001) requires that if the endowment is equal to the sum of the half-claims, then all agents should receive their half-claim. In this situation both gains and losses are equal. Thus, this property treats the problem of dividing awards or losses equally, but only in a very special case. In the words of Aumann and Maschler (1985), 'it is socially unjust for different creditors to be on opposite sides of the halfway point, $C / 2^{\prime}$.

Midpoint property: for each $(E, c) \in \mathscr{B}$ and each $i \in N$, if $E=C / 2$, then $\varphi_{i}(E, c)=c_{i} / 2$.

From Lemma 6 in Appendix 3 we obtain that the Constrained Egalitarian and the Dual of Constrained Egalitarian rules mark out the area of all the admissible rules satisfying properties in P_{2} for two-agent problems. Next, we show that the Recursive P-rights rule for P_{2} leads to the Dual of Constrained Egalitarian rule, but only for twoagent problems. Besides this, we demonstrate that the recursive P-rights process for P_{2} presents important shortcomings for n-agent problems. Specifically, this process provides a rule that is not admissible since it does not satisfy one of the equity principles upon which society initially agreed to found its decisions.

Theorem 2 For each two-agent problem with legitimate principles in \mathscr{B}_{P} with $P=$ P_{2}, the Recursive P-rights rule is the Dual of Constrained Egalitarian rule, that is, $\varphi^{R}\left(E, c, P_{2}\right)=\operatorname{DCE}(E, c)$.

Proof See Appendix 3.
Proposition 1 The Recursive P-rights rule for P_{2} does not satisfy resource monotonicity for n-agent problems with $n>2$.

Proof See Appendix 4.
All of our previous results can be summarized by the following two statements:
(a) For each two-agent problem, the P-rights recursive application of the two sets of properties considered up to now, leads to the admissible rule which favors the largest claimant.
(b) If a society agree on the set of principles P_{2}, the recursive P-rights process cannot be applied for n-agent problems.

Next, we note that for other reasonable legitimate principles, on the one hand, statement (a) cannot be extended and, on the other hand, statement (b) can also be applied.

Let us consider the set of commonly accepted equity principles P_{3}, obtained from P_{2} by substituting order preservation for a strengthened version, super-modularity,

$$
P_{3} \equiv\{\text { super-modularity, resourcemonotonicity, midpoint property }\}
$$

Super-modularity Dagan et al. (1997) demands that, when the endowment increases if agent i 's claim is at least as large as agent j 's claim, agent i 's share of the incremen should be at least as large as agent j 's. Apart from the Constrained Egalitarian rule and its dual, all of the rules that have been introduced in the literature satisfy supermodularity.

Super-modularity: for each $(E, c) \in \mathscr{B}$, each $E^{\prime} \in \mathbb{R}_{+}$and each $i, j \in N$ such that $C \geq E^{\prime}>E$ and $c_{i} \geq c_{j}, \varphi_{i}\left(E^{\prime}, c\right)-\varphi_{i}(E, c) \geq \varphi_{j}\left(E^{\prime}, c\right)-\varphi_{j}(E, c)$.

In this context, the next results are obtained.
Remark 1 For each two-agent problem with legitimate principles in \mathscr{B}_{P} with $P=P_{3}$, the Recursive P-rights rule is admissible, but neither the Dual of Piniles' rule nor $\operatorname{Piniles}$ ' rule coincides with it, that is, $\operatorname{DPin}(E, c) \neq \varphi^{R}\left(E, c, P_{3}\right) \neq \operatorname{Pin}(E, c)$.
Remark 2 The Recursive P-rights rule for P_{3} does not satisfy super-modularity for n-agent problems with $n>2$.

The proofs of the previous remarks are constructive. To prove Remark 1, several structures of a generic bankruptcy problem are considered regarding the values of the endowment and the agents' claims. Then, knowing the P-rights for P_{3} (by means of an analogous result to Lemma 6) allows applying the recursive P-rights process to each structure and obtaining the Recursive P-rights rule for P_{3}. The development of this proof reveals that the magnitude of the endowment with respect to the sum of the half-claims can change for different steps of the recursive P-rights process and this fact prevents that a similar result to Theorem 2 can be reached. The proof of Remark 2 is similar to that of Proposition 1. Starting from defining a rule that recommends the smallest amount for agent 2 among all the admissible rules for P_{3}, some steps of the recursive P-rights process are computed for two particular problems to contradict that the Recursive P-rights rule for P_{3} satisfies super-modularity. ${ }^{4}$

This analysis warns of the dangers that may involve the composition of the puzzle with 'a priori' suitable pieces: 'reasonable' principles and recursion. Unfortunately, we have ascertained that it does not always provide admissible rules.

6 Conclusions

We would like to remark that our approach can be rewritten for losses by using the idea of duality. Because all the considered properties are self-dual, P_{1}, P_{2} and P_{3} will be the same when focusing on losses. ${ }^{5}$ Moreover, let us note that given a set of self-dual

[^4]properties on which a particular society has agreed, P_{t}, a rule, φ, is admissible if and only if its dual, φ^{d}, is also admissible. Specifically, by considering $\left(L, c, P_{t}\right)$ for each (E, c, P_{t}) we have that
$s_{i}\left(L, c, P_{t}\right)=\inf _{\varphi \in \Phi\left(P_{t}\right)}\left\{\varphi_{i}(L, c)\right\}=\inf _{\varphi \in \Phi\left(P_{t}\right)}\left\{c_{i}-\varphi_{i}^{d}(E, c)\right\}=c_{i}-\sup _{\varphi \in \Phi\left(P_{t}\right)}\left\{\varphi_{i}(E, c)\right\}$.

Thus, our process applied to losses is equivalent to the following. First, determine the agents' upper bound on awards by searching for the supremum of what they are assigned among all the admissible rules in P_{t}. Then, revise each agent's claim by her upper bound and if the sum of the revised claims is greater than the endowment, follow the recursive process until the sum of the revised claims is equal to the endowment.

Therefore, if for each $(E, c) \in \mathscr{B}$ we consider its associated distribution of losses, that is the problem (L, c), the recursive application of the P-rights leads to: (i) the Constrained Equal Awards for $P=P_{1}$; (ii) the Constrained Egalitarian rule for twoagent problems when $P=P_{2}$; (iii) a new admissible rule for two-agent problems if $P=P_{3}$; (iv) inadmissible rules for n-agent problems when $n>2$ for both P_{2} and P_{3}.

In addition, let us note that none of our results requires the use of many of the axioms proposed in the literature on the theoretical analysis of bankruptcy problems. Nevertheless, it can be straightforwardly checked that all of them (Theorems 1 and 2, Proposition 1 and Remarks 1 and 2) remain the same if we add to the considered sets of legitimate principles (P_{1}, P_{2}, P_{3}) some standard properties (such as continuity, claims monotonicity or homogeneity, among others) that are satisfied by those admissible rules that play a central role (CEA and CEL in Theorem 1; CE and DCE in Theorem 2 and Proposition 1; and Pin and D Pin in Remarks 1 and 2). ${ }^{6}$ This fact has conditioned the analysis of the generalization of the conclusion reached for P_{1}. Specifically, the other legitimate principles sets have been established in looking for a trade-off between reasonability of properties and inadmissibility of the Constrained Equal Losses rule, for P_{2}, and inadmissibility of both the Constrained Equal Losses and the Dual of Constrained Egalitarian rules, for P_{3}.

To sum up, this paper offers the understanding of old bankruptcy rules from a different perspective and uncovers some shortcomings with the application of our recursive process. In this line, the following issues are open: (i) the analysis of conditions on legitimate principles sets to guarantee that such principles are upheld when applying our approach, and (ii) the search for new procedures that ensure compatibility with socially accepted equity principles.

Acknowledgments The authors are deeply grateful to Francisco Javier Martínez de Albéniz, Montserrat Ferré, Josep Enric Peris, Begoña Subiza, William Thomson, an anonymous referee and the associated editor of this journal, who really helped us improve our initial draft. For their suggestions we also thank seminar participants at both Universities Barcelona and Rovira i Virgili. The usual caveats apply. Financial support from Universitat Rovira i Virgili, Banco Santander and Generalitat de Catalunya under project 2011LINE-06 and the Barcelona GSE are gratefully acknowledged.

[^5]
Appendix 1: General claims

We present three claims which are used in the proofs of Appendices 2 and 3. Henceforth, $m \in \mathbb{N}$ denotes the m - t h step of the recursive P-rights process (see Definition 7).

First, for any problem with legitimate principles, the total loss to distribute is the same at every step of the recursive P-rights process.

Claim 1 For each $\left(E, c, P_{t}\right) \in \mathscr{B}_{P}$ and each $m \in \mathbb{N}, L^{m}=L$.

Proof Let $\left(E, c, P_{t}\right) \in \mathscr{B}_{P}$ and $m \in \mathbb{N}$. Then,

$$
\begin{aligned}
L^{m}=C^{m}-E^{m} & =\sum_{i \in N}\left(c_{i}-\sum_{k=1}^{m-1} s_{i}\left(E^{k}, c^{k}, P_{t}\right)\right)-\left(E-\sum_{i \in N} \sum_{k=1}^{m-1} s_{i}\left(E^{k}, c^{k}, P_{t}\right)\right) \\
& =C-E=L
\end{aligned}
$$

Second, for each $P \in\left\{P_{1}, P_{2}, P_{3}\right\}$, the order of the agents' claims remains the same along the recursive P-rights process.

Claim 2 For each $\left(E, c, P_{t}\right) \in \mathscr{B}_{P}$ with $P_{t} \in\left\{P_{1}, P_{2}, P_{3}\right\}$ and each $i, j \in N$, if $c_{i}^{m} \leq c_{j}^{m}$, then $c_{i}^{m+1} \leq c_{j}^{m+1}$.

Proof Let $\left(E, c, P_{t}\right) \in \mathscr{B}_{P}$ with $P_{t} \in\left\{P_{1}, P_{2}, P_{3}\right\}, i, j \in N$ such that $c_{i}^{m} \leq c_{j}^{m}$ and $\varphi^{*}, \varphi^{\prime}$ belonging to $\Phi\left(P_{t}\right)$.

Since, for each $P_{t} \in\left\{P_{1}, P_{2}, P_{3}\right\}$, all the admissible rules satisfy order preservation, for each $\varphi \in \Phi\left(P_{t}\right), c_{i}^{m}-\varphi_{i}\left(E^{m}, c^{m}\right) \leq c_{j}^{m}-\varphi_{j}\left(E^{m}, c^{m}\right)$ so that,
(a) If $s_{i}^{m}\left(E, c, P_{t}\right)=\varphi_{i}^{*}\left(E^{m}, c^{m}\right)$ and $s_{j}^{m}\left(E, c, P_{t}\right)=\varphi_{j}^{*}\left(E^{m}, c^{m}\right)$, by order preservation, $c_{i}^{m}-s_{i}^{m}\left(E^{m}, c^{m}, P_{t}\right) \leq c_{j}^{m}-s_{j}^{m}\left(E^{m}, c^{m}, P_{t}\right)$. Therefore, $c_{i}^{m+1} \leq c_{j}^{m+1}$.
(b) If $s_{i}^{m}\left(E, c, P_{t}\right)=\varphi_{i}^{*}\left(E^{m}, c^{m}\right)$ and $s_{j}^{m}\left(E, c, P_{t}\right)=\varphi_{j}^{\prime}\left(E^{m}, c^{m}\right)$, by Definition 5, $\varphi_{j}^{\prime}\left(E^{m}, c^{m}\right) \leq \varphi_{j}^{*}\left(E^{m}, c^{m}\right)$, so that, $c_{i}^{m}-\varphi_{i}^{*}\left(E^{m}, c^{m}\right) \leq c_{j}^{m}-\varphi_{j}^{*}\left(E^{m}, c^{m}\right) \leq$ $c_{j}^{m}-\varphi_{j}^{\prime}\left(E^{m}, c^{m}\right)$. Therefore, $c_{i}^{m+1} \leq c_{j}^{m+1}$.

Third, for each $P_{t} \in\left\{P_{1}, P_{2}, P_{3}\right\}$, the sum of the amounts that agents are assigned by the recursive P-rights process is the entire endowment.

Claim 3 For each $\left(E, c, P_{t}\right) \in \mathscr{B}_{P}$ with $P_{t} \in\left\{P_{1}, P_{2}, P_{3}\right\}, \sum_{i \in N}\left(\sum_{m=1}^{\infty}\left[R S^{m}\right.\right.$ $\left.\left.\left(E, c, P_{t}\right)\right]_{i}\right)=E$.

Proof Given that for each $P_{t} \in\left\{P_{1}, P_{2}, P_{3}\right\}$ the P-rights always provide a positive amount to certain agents in each step, efficiency of the recursive P-rights process straightforwardly comes from Theorem 1 in Dominguez (2012), that we have particularized within our context in Sect. 3.

Appendix 2: Proof of Theorem 1

We assume throughout this Appendix, without loss of generality, that $(E, c) \in \mathscr{B}_{0} .^{7}$
The proof is based on five lemmas. Before presenting them, we note the following two facts.

Fact 1 For each $(E, c) \in \mathscr{B}_{0}$ and each $i \in N, C E L_{i}(E, c)=\max \left\{0, c_{i}-\mu\right\}$, where μ is such that $\sum_{i \in N} \max \left\{0, c_{i}-\mu\right\}=E$.
Therefore, μ can be understood as the losses incurred by the agents who receive positive amounts by applying the $C E L$ rule. A straightforward way to compute this rule, which will be useful later on, is as follows.
For each $(E, c) \in \mathscr{B}_{0}$ and each $i \in N$, the loss imposed on agent i by $C E L$ is

$$
\gamma_{i}=\min \left\{c_{i}, \alpha_{i}\right\},
$$

where

$$
\alpha_{i}=\left(L-\sum_{j<i} \gamma_{j}\right) /(n-i+1) .
$$

Therefore, for each $i \in N$,

$$
C E L_{i}(E, c)=c_{i}-\gamma_{i}
$$

Hereinafter, for each $m \in \mathbb{N}, \mu^{m}, \alpha_{i}^{m}$ and γ_{i}^{m} will denote μ, α_{i} and γ_{i} solving $\sum_{i \in N} C E L_{i}\left(E^{m}, c^{m}\right)=E^{m}$, respectively.

Fact 2 By Fact 1 and Claim 1 we have:
(a) For each $(E, c) \in \mathscr{B}_{0}$ and each $i \in N$, if $\gamma_{i}=c_{i}$ then, for each $j<i, \gamma_{j}=c_{j}$.
(b) For each $(E, c) \in \mathscr{B}_{0}$ and each $i \in N$, if $\gamma_{i}=\alpha_{i}$ then, $\alpha_{i}=\mu$ and for each $j>i, \alpha_{j}=\alpha_{i}$. Therefore, $\gamma_{i}=\mu$.
(c) For each $m \in \mathbb{N}$ and each $i \in N, \alpha_{i}^{m}$ only depends on both the initial problem (E, c) and agent j 's claim for each $j<i$.

Next, we provide the five lemmas on which Theorem 1 is based.
The first lemma says that the losses incurred by the agents who receive positive amounts by applying the CEL rule is the same at all steps of the recursive P-rights process for P_{1}.

Lemma 1 For each $\left(E, c, P_{1}\right)$ with $(E, c) \in \mathscr{B}_{0}$ and each $m \in \mathbb{N}, \mu^{m+1}=\mu^{m}$.
Proof Let agent i be the first agent who receives a positive amount at step $m \in \mathbb{N}$ according to the $C E L$ rule. That is, if $i=1$, for each $k \in N, C E L_{k}\left(E^{m}, c^{m}\right)>0$. Otherwise, (i) $C E L_{i}\left(E^{m}, c^{m}\right)>0$ and (ii) for each $j<i, C E L_{j}\left(E^{m}, c^{m}\right)=0$.

[^6]By (i) and Fact 2, $c_{i}^{m}>\mu^{m}=\alpha_{i}^{m}$. Given (ii) and Definition 7 of the recursive P rights process for P_{1} at the m-th step, for each $j<i, c_{j}^{m+1}=c_{j}^{m}$. By Fact 2-(c), $\alpha_{i}^{m+1}=\alpha_{i}^{m}=\mu^{m}<c_{i}^{m}$. Furthermore,

$$
\begin{aligned}
c_{i}^{m+1} & =c_{i}^{m}-\min _{\varphi \in \Phi\left(P_{1}\right)}\left\{\varphi_{i}\left(E^{m}, c^{m}\right)\right\} \\
& \geq c_{i}^{m}-C E L_{i}\left(E^{m}, c^{m}\right)=c_{i}^{m}-\left(c_{i}^{m}-\mu^{m}\right) \\
& =\mu^{m}=\alpha_{i}^{m+1}
\end{aligned}
$$

Therefore, by Claim 2 and Fact 2-(b), $\gamma_{i}^{m+1}=\alpha_{i}^{m+1}=\mu^{m+1}$.
The second lemma states that if at some step $m \in \mathbb{N}$ the agent i 's P-right for P_{1} is $C E L_{i}\left(E^{m}, c^{m}\right)$, then at each subsequent step, her P-right for P_{1} is zero.
Lemma 2 For each $(E, c) \in \mathscr{B}_{0}$ and each $i \in N$, if there is $m \in \mathbb{N}$ such that

$$
s_{i}\left(E^{m}, c^{m}, P_{1}\right)=C E L_{i}\left(E^{m}, c^{m}\right)
$$

then, for each $h \in \mathbb{N}$

$$
s_{i}\left(E^{m+h}, c^{m+h}, P_{1}\right)=0
$$

Proof Let $(E, c) \in \mathscr{B}_{0}, i \in N$ and $m \in \mathbb{N}$ be such that

$$
s_{i}\left(E^{m}, c^{m}, P_{1}\right)=C E L_{i}\left(E^{m}, c^{m}\right)
$$

Since

$$
\begin{aligned}
C E L_{i}\left(E^{m}, c^{m}\right) & =c_{i}^{m}-\min \left\{c_{i}^{m}, \mu\right\}, \\
c_{i}^{m+1} & =c_{i}^{m}-C E L_{i}\left(E^{m}, c^{m}\right)=c_{i}^{m}-\left(c_{i}^{m}-\min \left\{c_{i}^{m}, \mu\right\}\right)=\min \left\{c_{i}^{m}, \mu\right.
\end{aligned}
$$

Then,

$$
\begin{aligned}
C E L_{i}\left(E^{m+1}, c^{m+1}\right) & =c_{i}^{m+1}-\min \left\{c_{i}^{m+1}, \mu\right\} \\
& =\min \left\{c_{i}^{m}, \mu\right\}-\min \left\{\min \left\{c_{i}^{m}, \mu\right\}, \mu\right\} \\
& =\min \left\{c_{i}^{m}, \mu\right\}-\min \left\{c_{i}^{m}, \mu\right\}=0 .
\end{aligned}
$$

Therefore,

$$
s_{i}\left(E^{m+1}, c^{m+1}, P_{1}\right)=0
$$

By Fact 1 we have that if at some step $k \in \mathbb{N} C E L_{i}\left(E^{k}, c^{k}\right)=0$, then $C E L_{i}\left(E^{k+h}, c^{k+h}\right)=0$ for each $h \in \mathbb{N}$. Then, agent i 's P-right for P_{1} is, from step $m+1$ on, zero.

The next lemma establishes that, if agent i 's P-right for P_{1} is, at each step, a different amount from that provided by the $C E L$ rule then, the total amount received by this agent is at most her award as calculated by the CEL rule applied to the initial problem.

Lemma 3 For each $(E, c) \in \mathscr{B}_{0}$ and each $i \in N$, if for each $m \in \mathbb{N}$

$$
\begin{aligned}
s_{i}\left(E^{m}, c^{m}, P_{1}\right) & \neq C E L_{i}(E, c), \text { then } \\
\varphi_{i}^{R}\left(E, c, P_{1}\right) & =\sum_{k=1}^{\infty} s_{i}\left(E^{k}, c^{k}, P_{1}\right) \leq C E L_{i}(E, c) .
\end{aligned}
$$

Proof Let $(E, c) \in \mathscr{B}_{0}$ and $i \in N$. If for each $m \in \mathbb{N} s_{i}\left(E^{m}, c^{m}, P_{1}\right) \neq C E L_{i}(E, c)$, by Definition 5 ,

$$
s_{i}\left(E^{m}, c^{m}, P_{1}\right)<C E L_{i}\left(E^{m}, c^{m}\right)=c_{i}^{m}-\mu=c_{i}-\sum_{k=1}^{m-1} s_{i}\left(E^{k}, c^{k}, P_{1}\right)-\mu
$$

So that,

$$
s_{i}\left(E^{m}, c^{m}, P_{1}\right)+\sum_{k=1}^{m-1} s_{i}\left(E^{k}, c^{k}, P_{1}\right)<c_{i}-\mu,
$$

that is, for each $m \in \mathbb{N}$

$$
\sum_{k=1}^{m} s_{i}\left(E^{k}, c^{k}, P_{1}\right)<C E L_{i}(E, c)
$$

Therefore, the sequence $\left\{a_{m}\right\}_{m \in \mathbb{N}}$, where $a_{m}=\sum_{k=1}^{m} s_{i}\left(E^{k}, c^{k}, P_{1}\right)$ for each $m \in \mathbb{N}$, is bounded above. Since, by construction $\left\{a_{m}\right\}_{m \in \mathbb{N}}$ is monotonically increasing, by applying basic properties of sequences limit computation (see, for instance, Blume and Simon 1994) we have that $\lim _{m \rightarrow \infty} \sum_{k=1}^{m} s_{i}\left(E^{k}, c^{k}, P_{1}\right)$ exists and $\lim _{m \rightarrow \infty} \sum_{k=1}^{m} s_{i}\left(E^{k}, c^{k}, P_{1}\right) \leq C E L_{i}(E, c)$.

The fourth lemma says that if at some step $m \in \mathbb{N}$, an agent's P-right for P_{1} is the amount provided by the $C E L$ rule for the problem $\left(E^{m}, c^{m}\right)$, then the total amount received by this agent up to that step is given by the CEL rule applied to the initial problem.

Lemma 4 For each $(E, c) \in \mathscr{B}_{0}$ and each $i \in N$, if there is $m^{*} \in \mathbb{N}, m^{*}>1$, such that $s_{i}\left(E^{m^{*}}, c^{m^{*}}, P_{1}\right)=C E L_{i}\left(E^{m^{*}}, c^{m^{*}}\right)$ and $s_{i}\left(E^{m^{*}-1}, c^{m^{*}-1}, P_{1}\right) \neq C E L_{i}$ $\left(E^{m^{*}-1}, c^{m^{*}-1}\right)$ then,

$$
\sum_{k=1}^{m^{*}} s_{i}\left(E^{k}, c^{k}, P_{1}\right)=C E L_{i}(E, c)
$$

Proof Let $(E, c) \in \mathscr{B}_{0}, i \in N$ and $m^{*} \in \mathbb{N}, m^{*}>1$ be such that $s_{i}\left(E^{m^{*}}, c^{m^{*}}, P_{1}\right)=$ $C E L_{i}\left(E^{m^{*}}, c^{m^{*}}\right)$ and $s_{i}\left(E^{m^{*}-1}, c^{m^{*}-1}, P_{1}\right) \neq C E L_{i}\left(E^{m^{*}-1}, c^{m^{*}-1}\right)$. Since $\varphi_{i}\left(E^{m^{*}-1}\right.$, $\left.c^{m^{*}-1}\right)<C E L_{i}\left(E^{m^{*}-1}, c^{m^{*}-1}\right), C E L_{i}\left(E^{m^{*}-1}, c^{m^{*}-1}\right)>0$. Therefore, $c_{i}^{m^{*}-1}>\mu$
and by Lemma $1, c_{i}^{m^{*}} \geq \mu$. Then, at step m^{*}, agent i has received

$$
\begin{aligned}
\sum_{k=1}^{m^{*}} s_{i}\left(E^{k}, c^{k}, P_{1}\right)= & \sum_{k=1}^{m^{*}-1} s_{i}\left(E^{k}, c^{k}, P_{1}\right)+C E L_{i}\left(E^{m^{*}}, c^{m^{*}}\right) \\
= & \sum_{k=1}^{m^{*}-1} s_{i}\left(E^{k}, c^{k}, P_{1}\right)+\left[c_{i}^{m^{*}}-\min \left\{c_{i}^{m^{*}}, \mu\right\}\right] \\
= & \sum_{k=1}^{m^{*}-1} s_{i}\left(E^{k}, c^{k}, P_{1}\right) \\
& +\left[\left(c_{i}-\sum_{k=1}^{m^{*}-1} s_{i}\left(E^{k}, c^{k}, P_{1}\right)\right)-\min \left\{c_{i}^{m^{*}}, \mu\right\}\right] \\
= & c_{i}-\min \left\{c_{i}^{m^{*}}, \mu\right\}=c_{i}-\mu
\end{aligned}
$$

Therefore,

$$
\sum_{k=1}^{m^{*}} s_{i}\left(E^{k}, c^{k}, P_{1}\right)=C E L_{i}(E, c)
$$

The last lemma shows that the P-rights for agents 1 and n, when considering P_{1}, correspond to the CEL and CEA rules, respectively.

Lemma 5 For each $\left(E, c, P_{1}\right) \in \mathscr{B}_{P}$ with $(E, c) \in \mathscr{B}_{0}, s_{1}\left(E, c, P_{1}\right)=C E L_{1}(E, c)$ and $s_{n}\left(E, c, P_{1}\right)=C E A_{n}(E, c)$.

Proof Let $\left(E, c, P_{1}\right)$ with $(E, c) \in \mathscr{B}_{0}$. First, we show that $s_{1}\left(E, c, P_{1}\right)=$ $C E L_{1}(E, c)$. There are two cases.

- $C E L_{1}(E, c)=0$. By non-negativity, $s_{1}\left(E, c, P_{1}\right)=C E L_{1}(E, c)$.
- $C E L_{1}(E, c)>0$. By the definition of the $C E L$ rule, $c_{1}-C E L_{1}(E, c)=c_{j}-$ $C E L_{j}(E, c)$ for each $j \neq 1$. Let us suppose that there is $\varphi \in \Phi\left(P_{1}\right)$ such that $\varphi_{1}(E, c)<C E L_{1}(E, c)$. By efficiency, $\varphi_{j}(E, c)>C E L_{j}(E, c)$ for some $j \neq$ 1. Then, $c_{1}-\varphi_{1}(E, c)>c_{j}-\varphi_{j}(E, c)$, contradicting order preservation. Therefore, $s_{1}\left(E, c, P_{1}\right)=C E L_{1}(E, c)$.

Second, it can be similarly obtained that $s_{n}\left(E, c, P_{1}\right)=C E A_{n}(E, c)$.
Proof of Theorem 1 Let $(E, c) \in \mathscr{B}_{0}$. There are two cases.
Case a: All claims are equal. Then, by definition of P-rights for P_{1}, each agent receives the same amount and the entire endowment is distributed at the first step. Therefore, $\varphi^{R}\left(E, c, P_{1}\right)=C E L(E, c)$.

Case b: There are at least two agents whose claims differ. Let $S=\{r \in N \mid$ $s_{r}\left(E^{m}, c^{m}, P_{1}\right)=C E L_{r}\left(E^{m}, c^{m}\right)$ at some step $\left.m \in \mathbb{N}\right\}$ and $T=N \backslash S$. By Lemma 5,
$s_{1}\left(E, c, P_{1}\right)=C E L_{1}(E, c)$. Furthermore, by Lemmas 2 and 4, for each agent $r \in S$, we have that $\varphi_{r}^{R}\left(E, c, P_{1}\right)=C E L_{r}(E, c)$. Moreover, for each agent $l \in T$, by Lemma 3, $\varphi_{l}^{R}\left(E, c, P_{1}\right) \leq C E L_{l}(E, c)$. Then, since $\varphi^{R}\left(E, c, P_{1}\right)$ exhausts the endowment, by Claim $3, \varphi^{R}\left(E, c, P_{1}\right)=C E L(E, c)$.

Appendix 3: Proof of Theorem 2

We assume throughout this Appendix, without loss of generality, that $(E, c) \in \mathscr{B}_{0}$ (see Footnote 7). Next we present a lemma and a fact, which the proof of Theorem 2 is based on.

The lemma shows that the P-rights for agents 1 and n, when considering P_{2}, correspond to the $D C E$ and $C E$ rules, respectively.

Lemma 6 For each $\left(E, c, P_{2}\right) \in \mathscr{B}_{P}$ with $(E, c) \in \mathscr{B}_{0}, s_{1}\left(E, c, P_{2}\right)=D C E_{1}(E, c)$ and $s_{n}\left(E, c, P_{2}\right)=C E_{n}(E, c)$.

Proof First, we show that $s_{1}\left(E, c, P_{2}\right)=D C E_{1}(E, c)$. Let $\left(E, c, P_{2}\right)$ with $(E, c) \in$ \mathscr{B}_{0}. If $E=C / 2$, by the midpoint property, $s_{1}\left(E, c, P_{2}\right)=D C E_{1}(E, c)$. Next, we consider the rest of the possibilities.

Case a: $E<C / 2$. There are four subcases.

- $D C E_{1}(E, c)=0$. By non-negativity, $s_{1}\left(E, c, P_{2}\right)=D C E_{1}(E, c)$.
- $D C E_{1}(E, c)>0$ and $D C E_{j}(E, c)=c_{j} / 2$ for each $j \neq 1$. Let us suppose that there is $\varphi \in \Phi\left(P_{2}\right)$ such that $\varphi_{1}(E, c)<D C E_{1}(E, c)$. By efficiency, $\varphi_{j}(E, c)>c_{j} / 2$ for some $j \neq 1$. By the midpoint property, $\varphi(C / 2, c)=c / 2$. Then, $\varphi_{j}(E, c)>\varphi_{j}(C / 2, c)$, contradicting resource monotonicity. Therefore, $s_{1}\left(E, c, P_{2}\right)=D C E_{1}(E, c)$.
- $D C E_{1}(E, c)>0$ and $D C E_{j}(E, c) \neq c_{j} / 2$ for each $j \neq 1$. By the definition of the $D C E$ rule, $c_{1}-D C E_{1}(E, c)=c_{j}-D C E_{j}(E, c)$ for each $j \neq 1$. Let us suppose that there is $\varphi \in \Phi\left(P_{2}\right)$ such that $\varphi_{1}(E, c)<D C E_{1}(E, c)$. By efficiency, $\varphi_{j}(E, c)>D C E_{j}(E, c)$ for some $j \neq 1$. Then, $c_{1}-\varphi_{1}(E, c)>c_{j}-\varphi_{j}(E, c)$, contradicting order preservation. Therefore, $s_{1}\left(E, c, P_{2}\right)=D C E_{1}(E, c)$.
- $D C E_{1}(E, c)>0$ and there are $S, T, \varnothing \neq S \subset N \backslash\{1\}$, and $\varnothing \neq T \subset N \backslash\{1\}$ such that for each $l \in S, D C E_{l}(E, c) \neq c_{l} / 2$, and for each $k \in T, D C E_{k}(E, c)=$ $c_{k} / 2$. By the definition of the $D C E$ rule, $c_{1}-D C E_{1}(E, c)=c_{j}-D C E_{j}(E, c)$ for each $j \in S$. Let us suppose that there is $\varphi \in \Phi\left(P_{2}\right)$ such that $\varphi_{1}(E, c)<$ $D C E_{1}(E, c)$. By efficiency, $\varphi_{j}(E, c)>D C E_{j}(E, c)$ for some $j \neq 1$. Then, if $j \in S, c_{1}-\varphi_{1}(E, c)>c_{j}-\varphi_{j}(E, c)$, contradicting order preservation. If $j \in T$, by the midpoint property, $\varphi(C / 2, c)=c / 2$. Then, $\varphi_{j}(E, c)>\varphi_{j}(C / 2, c)$, contradicting resource monotonicity. Therefore, $s_{1}\left(E, c, P_{2}\right)=D C E_{1}(E, c)$.

Case b: $E>C / 2$. There are two subcases.

- $D C E_{1}(E, c)=c_{1} / 2$. Let us suppose that there is $\varphi \in \Phi\left(P_{2}\right)$ such that $\varphi_{1}(E, c)<$ $c_{1} / 2$. By the midpoint property, $\varphi(C / 2, c)=c / 2$. Then, $\varphi_{1}(E, c)<\varphi_{1}(C / 2, c)$, contradicting resource monotonicity. Therefore, $s_{1}\left(E, c, P_{2}\right)=D C E_{1}(E, c)$.
- $D C E_{1}(E, c)>c_{1} / 2$. By the definition of the $D C E$ rule, $c_{1}-D C E_{1}(E, c)=c_{j}-$ $D C E_{j}(E, c)$, for each $j \in N \backslash\{1\}$. Let us suppose that there is $\varphi \in \Phi\left(P_{2}\right)$ such that $\varphi_{1}(E, c)<D C E_{1}(E, c)$. By efficiency, $\varphi_{j}(E, c)>D C E_{j}(E, c)$ for some $j \neq 1$. Then, $c_{1}-\varphi_{1}(E, c)>c_{j}-\varphi_{j}(E, c)$, contradicting order preservation. Therefore, $s_{1}\left(E, c, P_{2}\right)=D C E_{1}(E, c)$.

Second, it can be similarly obtained that $s_{n}\left(E, c, P_{2}\right)=C E_{n}(E, c)$.
The following fact provides two conditions that will be used in the proof of Theorem 2.

Fact 3 Let $(E, c) \in \mathscr{B}_{0}$ be a two-agent problem. By Lemma 6, at each step $m \in$ $\mathbb{N}, s_{1}\left(E^{m}, c^{m}, P_{2}\right)=D C E_{1}\left(E^{m}, c^{m}\right)$. Therefore, next inequality characterizes the fact that agent 1 is guaranteed nothing at each step $m \in \mathbb{N}$

$$
\begin{equation*}
s_{1}\left(E^{m}, c^{m}, P_{2}\right)=0 \Leftrightarrow E^{m} \leq \min \left\{c_{2}^{m}-c_{1}^{m}, c_{2}^{m} / 2\right\} . \tag{1}
\end{equation*}
$$

Now, applying (1) to $m=2$ and substituting, in terms of the problem at step $m-1$, the expressions of E^{m} and c_{i}^{m} for each $i \in N$, that is

$$
E^{m}=E^{m-1}-s_{1}\left(E^{m-1}, c^{m-1}, P_{2}\right)-s_{2}\left(E^{m-1}, c^{m-1}, P_{2}\right)
$$

and

$$
c_{i}^{m}=c_{i}^{m-1}-s_{i}\left(E^{m-1}, c^{m-1}, P_{2}\right),
$$

we have the next inequality,

$$
s_{1}\left(E^{2}, c^{2}, P_{2}\right)=0 \Leftrightarrow E \leq \min \left\{\begin{array}{l}
c_{2}-c_{1}+2 s_{1}\left(E, c, P_{2}\right) \tag{2}\\
c_{2} / 2+s_{2}\left(E, c, P_{2}\right) / 2+s_{1}\left(E, c, P_{2}\right)
\end{array}\right.
$$

Proof of Theorem $2 \operatorname{Let}(E, c) \in \mathscr{B}_{0}$. By Lemma 6, at each step $m \in \mathbb{N}, s_{1}\left(E^{m}, c^{m}, P_{2}\right)$ $=D C E\left(E^{m}, c^{m}\right)$. Given this, we show that agent 1's P-right for P_{2} at each step $m \geq 2$, is zero, so agent 1 's Recursive P-rights rule for P_{2} is the Dual of Constrained Egalitarian rule. Then, since $\varphi^{R}\left(E, c, P_{2}\right)$ exhausts the endowment, given Claim 3, $\varphi^{R}\left(E, c, P_{2}\right)=\operatorname{DCE}(E, c)$.
If $c_{1}=c_{2}$, by the definition of the Recursive P-rights rule for P_{2}, each agent i receives the same amount at the initial step. If $c_{1} \neq c_{2}$ and $E=\left(c_{1}+c_{2}\right) / 2$ by the midpoint property, each agent i receives her half-claim, $c_{i} / 2$. Therefore, in both cases, at the initial step the endowment is exhausted and $\varphi^{R}\left(E, c, P_{2}\right)=D C E(E, c)$.
When $c_{1} \neq c_{2}$ there are three cases.
Case 1: $s_{1}\left(E, c, P_{2}\right)=0$.
By (1) for $m=1, E \leq \min \left\{c_{2}-c_{1}, c_{2} / 2\right\}$. Now, in the following step (2) states that

$$
s_{1}\left(E^{2}, c^{2}, P_{2}\right)=0 \Leftrightarrow E \leq \min \left\{c_{2}-c_{1}, c_{2} / 2+s_{2}\left(E, c, P_{2}\right) / 2\right\}
$$

which follows from

$$
E \leq \min \left\{c_{2}-c_{1}, c_{2} / 2\right\}
$$

Given that $s_{1}\left(E^{2}, c^{2}, P_{2}\right)=0$, if the previous reasoning is applied to $\left(E^{2}, c^{2}, P_{2}\right)$, we obtain that $s_{1}\left(E^{3}, c^{3}, P_{2}\right)=0$. Then, extending this argument henceforth we can conclude that $s_{1}\left(E^{m}, c^{m}, P_{2}\right)=0$ at each step $m>2$. So $\varphi_{1}^{R}\left(E, c, P_{2}\right)=0$. Therefore, by Claim 3, $\varphi^{R}\left(E, c, P_{2}\right)=(0, E)=\operatorname{DCE}(E, c)$.
In Cases 2 and 3, we show that at $m=2$ agent 1's P-right for P_{2} is zero. Case 1 can then be applied to the residual problem with legitimate principles, so from $m=2$ on, $s_{1}\left(E^{m+h}, c^{m+h}, P_{2}\right)=0$, for each $h \in \mathbb{N}$, and $\varphi_{1}^{R}\left(E, c, P_{2}\right)=s_{1}\left(E, c, P_{2}\right)$.

Case 2: $s_{1}\left(E, c, P_{2}\right)>0$ and $c_{2} / 2 \geq c_{2}-c_{1}$. There are five subcases.
Subcase 2.1: $c_{2}-c_{1} \leq E \leq c_{1}$. Then, $s_{1}\left(E, c, P_{2}\right)=\left(E+c_{1}-c_{2}\right) / 2$ and $s_{2}\left(E, c, P_{2}\right)=E / 2$. Now, substituting these expressions in (2),

$$
s_{1}\left(E^{2}, c^{2}, P_{2}\right)=0 \Leftrightarrow E \leq \min \left\{E, c_{1} / 2+3 E / 4\right\} \Leftrightarrow E \leq 2 c_{1},
$$

which is true, as in this region, $E \leq c_{1}$. Therefore,

$$
\varphi^{R}\left(E, c, P_{2}\right)=\left(\left(E+c_{1}-c_{2}\right) / 2,\left(E-c_{1}+c_{2}\right) / 2\right)=D C E(E, c) .
$$

Subcase 2.2: $c_{1} \leq E \leq\left(c_{1}+c_{2}\right) / 2$. Then, $s_{1}\left(E, c, P_{2}\right)=E-c_{2} / 2$ and $s_{2}\left(E, c, P_{2}\right)=E-c_{1} / 2$. Now, substituting these expressions in (2),

$$
s_{1}\left(E^{2}, c^{2}, P_{2}\right)=0 \Leftrightarrow E \leq \min \left\{2 E-c_{1},+3 E / 2-c_{1} / 4\right\} \Leftrightarrow E \geq c_{1},
$$

which is obviously fulfilled in this region. Therefore,

$$
\varphi^{R}\left(E, c, P_{2}\right)=\left(E-c_{2} / 2, c_{2} / 2\right)=D C E(E, c)
$$

Subcase 2.3: $\left(c_{1}+c_{2}\right) / 2 \leq E \leq\left(c_{1}+c_{2}\right) / 2+\left(c_{2}-c_{1}\right) / 2=c_{2}$. Then, $s_{1}\left(E, c, P_{2}\right)=$ $c_{1} / 2$ and $s_{2}\left(E, c, P_{2}\right)=c_{2} / 2$. Again, by substituting these expressions in (2),

$$
s_{1}\left(E^{2}, c^{2}, P_{2}\right)=0 \Leftrightarrow E \leq \min \left\{c_{2}, 3 c_{2} / 4+c_{1} / 2\right\}
$$

On the one hand, $E \leq c_{2}$ is fulfilled since c_{2} is the endowment-upper bound of this region. On the other hand, in Case $2 c_{2} / 2 \geq c_{2}-c_{1}$ which implies $c_{1} / 2 \geq c_{2} / 4$ and $3 c_{2} / 4+c_{1} / 2 \geq c_{2}$ then, again by the endowment-upper bound of this region, $E \leq 3 c_{2} / 4+c_{1} / 2$ is true. Therefore,

$$
\varphi^{R}\left(E, c, P_{2}\right)=\left(c_{1} / 2, E-c_{1} / 2\right)=D C E(E, c)
$$

Subcase 2.4: $c_{2} \leq E \leq 2 c_{1}$. Then, $s_{1}\left(E, c, P_{2}\right)=\left(E+c_{1}-c_{2}\right) / 2$ and $s_{2}\left(E, c, P_{2}\right)=$ $E / 2$. Now, substituting these expressions in (2),

$$
s_{1}\left(E^{2}, c^{2}, P_{2}\right)=0 \Leftrightarrow E \leq \min \left\{E, c_{1} / 2+3 E / 4\right\} \Leftrightarrow E \leq 2 c_{1},
$$

which is obviously fulfilled in this region. Therefore,

$$
\varphi^{R}\left(E, c, P_{2}\right)=\left(\left(E+c_{1}-c_{2}\right) / 2,\left(E-c_{1}+c_{2}\right) / 2\right)=D C E(E, c)
$$

Subcase 2.5: $2 c_{1} \leq E$. Then, $s_{1}\left(E, c, P_{2}\right)=\left(E+c_{1}-c_{2}\right) / 2$ and $s_{2}\left(E, c, P_{2}\right)=$ $E-c_{1}$. Here, the substitution of these expressions in (2) does not imply any restriction, so that,

$$
\varphi^{R}\left(E, c, P_{2}\right)=\left(\left(E+c_{1}-c_{2}\right) / 2,\left(E-c_{1}+c_{2}\right) / 2\right)=D C E(E, c)
$$

Case 3: $s_{1}\left(E, c, P_{2}\right)>0$ and $c_{2} / 2 \leq c_{2}-c_{1}$. There are four subcases.
Subcase 3.1: $c_{2} / 2 \leq E \leq\left(c_{1}+c_{2}\right) / 2$. Then, $s_{1}\left(E, c, P_{2}\right)=E-c_{2} / 2$ and $s_{2}\left(E, c, P_{2}\right)=E-c_{1} / 2$. Now, substituting these expressions in (2),

$$
s_{1}\left(E^{2}, c^{2}, P_{2}\right)=0 \Leftrightarrow E \leq \min \left\{2 E-c_{1},+3 E / 2-c_{1} / 4\right\} \Leftrightarrow E \geq c_{1},
$$

inequality fulfilled as in this region $c_{2} / 2 \leq c_{2}-c_{1}$, implying $c_{1} \leq c_{2} / 2$. Therefore,

$$
\varphi^{R}\left(E, c, P_{2}\right)=\left(E-c_{2} / 2, c_{2} / 2\right)=D C E(E, c)
$$

Subcase 3.2: $\left(c_{1}+c_{2}\right) / 2 \leq E \leq c_{1}+c_{2} / 2$. Then $s_{1}\left(E, c, P_{2}\right)=c_{1} / 2$ and $s_{2}\left(E, c, P_{2}\right)=c_{2} / 2$. Now, substituting these expressions in (2),

$$
s_{1}\left(E^{2}, c^{2}, P_{2}\right)=0 \Leftrightarrow E \leq \min \left\{c_{2}, 3 c_{2} / 4+c_{1} / 2\right\}
$$

Both inequalities $E \leq c_{2}$ and $E \leq 3 c_{2} / 4+c_{1} / 2$ are satisfied as in this region $c_{2} / 2 \leq c_{2}-c_{1}$, which implies $c_{1} \leq c_{2} / 2$. Therefore,

$$
\varphi^{R}\left(E, c, P_{2}\right)=\left(c_{1} / 2, E-c_{1} / 2\right)=D C E(E, c)
$$

Subcase 3.3: $c_{1}+c_{2} / 2 \leq E \leq c_{2}$. Then, $s_{1}\left(E, c, P_{2}\right)=c_{1} / 2$ and $s_{2}\left(E, c, P_{2}\right)=$ $E-c_{1}$. Now, substituting these expressions in (2),

$$
s_{1}\left(E^{2}, c^{2}, P_{2}\right)=0 \Leftrightarrow E \leq \min \left\{c_{2}, c_{2} / 2+E / 2\right\} \Leftrightarrow E \leq c_{2},
$$

which is the endowment-upper bound in this region. Therefore,

$$
\varphi^{R}\left(E, c, P_{2}\right)=\left(c_{1} / 2, E-c_{1} / 2\right)=D C E(E, c)
$$

Subcase 3.4: $c_{2} \leq E$. Then, $s_{1}\left(E, c, P_{2}\right)=\left(E+c_{1}-c_{2}\right) / 2$ and $s_{2}\left(E, c, P_{2}\right)=E-c_{1}$. Here, the substitution of these expressions in (2) does not imply any restriction, so that,

$$
\varphi^{R}\left(E, c, P_{2}\right)=\left(\left(E+c_{1}-c_{2}\right) / 2,\left(E-c_{1}+c_{2}\right) / 2\right)=D C E(E, c)
$$

Appendix 4: Proof of Proposition 1

Let us consider the rule $\varphi^{*}: \mathscr{B} \rightarrow \mathbb{R}_{+}^{n}$ which, without loss of generality, is defined for each $(E, c) \in \mathscr{B}_{0}$ as follows (see footnote 7).

Case a: If $c_{3}-c_{2} \leq \frac{3}{16} c_{1}$ and $c_{3}-c_{2} \leq c_{2}-c_{1}$,
$\varphi^{*}(E, c)= \begin{cases}(0,0, E) & \text { if } 0 \leq E \leq c_{3}-c_{2} \\ \left(\frac{E-\left(c_{3}-c_{2}\right)}{3}, \frac{E-\left(c_{3}-c_{2}\right)}{3}, \frac{E+2\left(c_{3}-c_{2}\right)}{3}\right) & \text { if } c_{3}-c_{2} \leq E \leq 6\left(c_{3}-c_{2}\right) \\ \left(\frac{E}{2}-\frac{4}{3}\left(c_{3}-c_{2}\right), \frac{E}{2}-\frac{4}{3}\left(c_{3}-c_{2}\right), \frac{8}{3}\left(c_{3}-c_{2}\right)\right) & \text { if } 6\left(c_{3}-c_{2}\right) \leq E \leq 8\left(c_{3}-c_{2}\right) \\ \left(\frac{E}{3}, \frac{E}{3}, \frac{E}{3}\right) & \text { if } 8\left(c_{3}-c_{2}\right) \leq E \leq \frac{3}{2} c_{1} \\ \left(\frac{c_{1}}{2}, \frac{c_{1}}{2}, E-c_{1}\right) & \text { if } \frac{3}{2} c_{1} \leq E \leq \frac{3}{2} c_{1}+c_{3}-c_{2} \\ \left(\frac{c_{1}}{2}, \frac{E-\left(c_{3}-c_{2}\right)}{2}-\frac{c_{1}}{4}, \frac{E+\left(c_{3}-c_{2}\right)}{2}-\frac{c_{1}}{4}\right) & \text { if } \frac{c_{1}}{2} c_{1}+c_{3}-c_{2} \leq E \leq \frac{c_{1}}{2}+c_{2} \\ \left(\frac{c_{1}}{2}, E-\frac{c_{1}+c_{3}}{2}, \frac{c_{3}}{2}\right) & \text { if } E \geq \frac{C}{2} \\ C E(E, c) & \end{cases}$

Case b: Otherwise, $\varphi^{*}(E, c) \equiv C E(E, c)$
Note that, it is easy to check that φ^{*} is an admissible rule for P_{2} satisfying other standard properties such as continuity, claims monotonicity and homogeneity (see Footnote 6). Moreover, for each of the following problems in which we apply it, φ^{*} recommends the smallest amount for agent 2 among all the admissible rules for P_{2}. By Lemma 6, we know that for each $\left(E, c, P_{2}\right) \in B_{P}, s_{1}\left(E, c, P_{2}\right)=D C E_{1}(E, c)$ and $s_{3}\left(E, c, P_{2}\right)=C E_{3}(E, c)$. Taking into account these facts, next we compute some steps of the recursive P_{2}-rights process for the problem $(E, c)=\left(21,\left(5,19 \frac{1}{2}, 20\right)\right) \in$ \mathscr{B}.
Step $\mathbf{m}=1:\left(E^{1}, c^{1}\right)=\left(21,\left(5,19 \frac{1}{2}, 20\right)\right), C E\left(E^{1}, c^{1}\right)=\left(2 \frac{1}{2}, 9 \frac{1}{4}, 9 \frac{1}{4}\right), D C E$ $\left(E^{1}, c^{1}\right)=\left(1 \frac{1}{4}, 9 \frac{3}{4}, 10\right)$ and $\varphi^{*}\left(E^{1}, c^{1}\right)=\left(2 \frac{1}{2}, 9,9 \frac{1}{2}\right)$. Then,

$$
s\left(E^{1}, c^{1}, P_{2}\right)=\left(1 \frac{1}{4}, 9,9 \frac{1}{4}\right)
$$

Step $\mathbf{m}=\mathbf{2}:\left(E^{2}, c^{2}\right)=\left(1 \frac{1}{2},\left(3 \frac{3}{4}, 10 \frac{1}{2}, 10 \frac{3}{4}\right)\right), C E\left(E^{2}, c^{2}\right)=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), D C E$
$\left(E^{2}, c^{2}\right)=\left(0, \frac{1}{8}, \frac{7}{8}\right)$ and $\varphi^{*}\left(E^{2}, c^{2}\right)=\left(\frac{5}{12}, \frac{5}{12}, \frac{2}{3}\right)$. Then,

$$
s\left(E^{2}, c^{2}, P_{2}\right)=\left(0, \frac{5}{12}, \frac{1}{2}\right) .
$$

Step $\mathbf{m}=3:\left(E^{3}, c^{3}\right)=\left(\frac{7}{12},\left(3 \frac{3}{4}, 10 \frac{1}{12}, 10 \frac{1}{4}\right)\right), C E\left(E^{3}, c^{3}\right)=\left(\frac{7}{36}, \frac{7}{36}, \frac{7}{36}\right), D C E \Omega$ $\left(E^{3}, c^{3}\right)=\left(0, \frac{5}{24}, \frac{3}{8}\right)$ and $\varphi^{*}\left(E^{3}, c^{3}\right)=\left(\frac{5}{36}, \frac{5}{36}, \frac{11}{36}\right)$. Then,

$$
s\left(E^{3}, c^{3}, P_{2}\right)=\left(0, \frac{5}{36}, \frac{7}{36}\right)
$$

Step $\mathbf{m}=4:\left(E^{4}, c^{4}\right)=\left(\frac{1}{4},\left(3 \frac{3}{4}, 9 \frac{17}{18}, 10 \frac{1}{18}\right)\right), C E\left(E^{4}, c^{4}\right)=\left(\frac{1}{12}, \frac{1}{12}, \frac{1}{12}\right), D C E \Omega$
$\left(E^{4}, c^{4}\right)=\left(0, \frac{5}{72}, \frac{13}{72}\right)$ and $\varphi^{*}\left(E^{4}, c^{4}\right)=\left(\frac{5}{108}, \frac{5}{108}, \frac{17}{108}\right)$. Then,

$$
s\left(E^{4}, c^{4}, P_{2}\right)=\left(0, \frac{5}{108}, \frac{1}{12}\right)
$$

Therefore,

$$
\begin{aligned}
\varphi^{R}\left(21,\left(5,19 \frac{1}{2}, 20\right), P_{2}\right) & =\sum_{k=1}^{4} s\left(E^{k}, c^{k}, P_{2}\right)+\sum_{k=5}^{\infty} s\left(E^{k}, c^{k}, P_{2}\right) \\
& =\left(\frac{5}{4}, 9 \frac{65}{108}, 10 \frac{1}{36}\right)+\sum_{k=5}^{\infty} s\left(E^{k}, c^{k}, P_{2}\right)
\end{aligned}
$$

Now, let us consider the problem $\left(E^{\prime}, c\right)=\left(22 \frac{1}{4},\left(5,19 \frac{1}{2}, 20\right)\right)$. By the midpoint property,

$$
\varphi^{R}\left(22 \frac{1}{4},\left(5,19 \frac{1}{2}, 20\right), P_{2}\right)=\left(2 \frac{1}{2}, 9 \frac{3}{4}, 10\right)
$$

By Definition 5 we have that for each $m \in \mathbb{N}$ and each $i \in N s_{i}\left(E^{m}, c^{m}, P_{2}\right) \geq$ 0 . Therefore, the two previous distributions contradict resource monotonicity as the highest agent receives less when the endowment increases.

References

Alcalde J, Marco MC, Silva JA (2005) Bankruptcy games and the Ibn Ezra's proposal. Econ Theory 26:103114
Aumann R, Maschler M (1985) Game theoretic analysis of a bankruptcy problem from the Talmud. J Econ Theory 36:195-213
Blume L, Simon CP (1994) Mathematics for economics. Norton and Company Inc., London
Chun Y (1984) Note on "The Nash bargaining solution is optimal". University of Rochester, Mimeo, Rochester
Chun Y (1989) A non-cooperative justification for egalitarian surplus sharing. Math Soc Sci 17:245-261
Chun Y, Schummer J, Thomson W (2001) Constrained Egalitarianism: a new solution to bankruptcy problems. Seoul J Econ 14:269-297
Curiel I, Maschler M, Tijs SH (1987) Bankruptcy games. Z Oper Res 31:A143-A159
Dagan N, Serrano R, Volij O (1997) A non-cooperative view of consistent rules. Games Econ Behav 18:55-72
Dominguez D (2012) Lower bounds and recursive methods for the problem of adjudicating conflicting claim. Soc Choice Welf (forthcoming)

Springer

Dominguez D, Thomson W (2006) A new solution to the problem of adjudicating conflicting claims. Econ Theory 28:283-307
Herrero C (2003) Equal awards versus equal losses: duality in bankruptcy. In: Sertel MR, Koray S (eds) Advances in economic design. Springer, Berlin, pp 413-426
Herrero C, Villar A (2001) The three musketeers: four classical solutions to bankruptcy problems. Math Soc Sci 39:307-328
Herrero C, Villar A (2002) Sustainability in bankruptcy problems. TOP 10:261-273
Marco MC, Peris J, Subiza B (1995) A mechanism for meta-bargaining problems. A discussion WP-AD 98-17
Moreno-Ternero J, Villar A (2004) The Talmud rule and the securement of agents' awards. Math Soc Sci 47:245-257
Moulin H (2002) Axiomatic cost and surplus-sharing. In: Arrow K, Sen A, Suzumura K (eds) The handbook of social choice and welfare, vol 1. Elsevier, Amsterdam, pp 289-357
O'Neill B (1982) A problem of rights arbitration from the Talmud. Math Soc Sci 2:345-371
Piniles HM (1861) Drkah shel Torah. Forester, Viena
Sprumont Y (1991) The division problem with single-peaked preferences: a characterization of the uniform allocation rule. Econometrica 49:509-519
Thomson W (2003) Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey. Math Soc Sci 45:249-297
Thomson W (2012) Bargaining theory: the axiomatic approach. Academic Press, New York
van Damme E (1986) The Nash bargaining solution is optimal. J Econ Theory 38:78-100
Young P (1988) Distributive justice in taxation. J Econ Theory 43:321-335

[^0]: M. C. Marco-Gil (\boxtimes)

 Department of Economics, Universidad Politécnica de Cartagena, C/ Real, 3, 30201 Cartagena, Spair
 e-mail: carmen.marco@upct.es

[^1]: 1 For each $i \in N$, if $m_{i}(E, c)>0$ and $\varphi_{i}(E, c)<m_{i}(E, c)$ either $\sum_{i \in N} \varphi_{i}(E, c)<E$, contradicting efficiency, or there is $j \neq i$ such that $\varphi_{j}(E, c)>c_{j}$, contradicting claim-boundedness. Otherwise, that is, if $m_{i}(E, c)=0$, by non-negativity $\varphi_{i}(E, c) \geq m_{i}(E, c)$.

[^2]: ${ }^{2}$ In this sense, the recursive application of the minimal rights does not satisfy efficiency, since from the second step on, each agent receives nothing.

[^3]: 3 The Talmud rule (Aumann and Maschler 1985) assigns the awards that the Constrained Equal Awards rule recommends for $(E, c / 2)$, when the endowment is less than the half-sum of the claims. Otherwise, each agent receives her half-claim plus the amount provided by the Constrained Equal Losses rule when it is applied to the residual problem ($\mathrm{E}-\mathrm{C} / 2, \mathrm{c} / 2$).

[^4]: 4 The proofs of Remarks 1 and 2 are available from the authors under request.
 ${ }^{5}$ Self-duality requires invariance regarding the perspective from which the problem is derived, that is, dividing 'what is available' or 'what is missing'. Formally, two properties, \mathcal{P} and \mathcal{P}^{\prime}, are dual if whenever a rule, φ, satisfies \mathcal{P}, its dual, φ^{d}, satisfies \mathcal{P}^{\prime}. A property, \mathcal{P}, is self-dual when it coincides with its dual.

[^5]: ${ }^{6}$ Formal definitions of these properties can be found in Thomson (2003).

[^6]: 7 If $(E, c) \in \mathscr{B} \backslash \mathscr{B}_{0}$, there is a permutation π such that $\pi(c)$ is increasingly ordered and we can compute $\varphi(E, c)=\pi^{-1}[\varphi(E, \pi(c))]$. Where a permutation is a bijection applying \mathcal{N} to itself and, abusing notation, $\pi(c)$ will denote the claim vector obtained by applying permutation π to its components, i.e. the i-th component of $\pi(c)$ is c_{j} whenever $j=\pi(i)$. Similar considerations apply for $\pi[\varphi(E, c)]$.

