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Departament d’Enginyeria Mecànica, Escola Tècnica Superior d’Enginyeria Quı́mica (ETSEQ), Universitat Rovira i Virgili,

Avda. Dels Paı̈sos Catalans 26, 43007 Tarragona, Spain

Josep Bonet Avalos*
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A reversible algorithm [enforced energy conservation (EEC)] that enforces total energy conservation for
microcanonical simulations is presented. The key point is the introduction of the discrete-gradient method to
define the forces from the conservative potentials, instead of the direct use of the force field at the actual position
of the particle. We have studied the performance and accuracy of the EEC in two cases, namely Lennard-Jones
fluid and a simple electrolyte model. Truncated potentials that usually induce inaccuracies in energy conservation
are used. In particular, the reaction field approach is used in the latter. The EEC is able to preserve energy
conservation for a long time, and, in addition, it performs better than the Verlet algorithm for these kinds of
simulations.
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I. INTRODUCTION

Molecular dynamics (MD) is a well-established simulation
tool to study the thermodynamic and dynamic properties of
many systems. The method is based on the solution of the equa-
tions of motion of the system at a given level of description.
One typically finds MD approaches based on the solution of
the classical Newton’s equation of motion with intermolecular
potentials, while others start from the quantum-mechanical
equations of motion with a given electronic description,
hybrid quantum-classical mechanical effects (QMM), among
others [1–3,5,6].

Classical MD simulations [1–3,7] with interparticle poten-
tials have been applied to many systems with interesting phys-
ical [8], chemical [9], and biochemical properties [10,11], and
they have also been applied in the field of in engineering [12].
The natural thermodynamic ensemble for these kinds of MD
simulations is the microcanonical ensemble (NVE) due to the
conservative nature of the dynamics of the system, which to
some extent complies with the requirement of constant total
(internal) energy E if no external forces are acting on the
system. An important point regarding the use of the MD
method to obtain meaningful proper averages in the NVE
ensemble is that the total energy E is kept under control
within a given energy conservation tolerance �E. This is
possible despite the fact that the numerical trajectories soon
exponentially deviate from the, say, physical trajectories, due
to truncation errors accumulated by the numerical procedure.
If the numerical trajectories are somehow plausible trajectories
for a physical system and the energy is kept reasonably
constant, the system will still sample the microcanonical
ensemble [1,3,4]. Nevertheless, the use of different thermostats
and barostats [13–17] to fix the temperature and or the pressure
of the system has become widespread under the implicit
hypothesis of the weak coupling of the system, with the
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thermostat (barostat) device representing the heat (volume)
reservoir [1,2,7]. In particular, the use of thermostats for canon-
ical (NVT) simulations permits long-time runs without the
stability problems due to the long-time breaking of the energy
conservation of NVE simulations. Actually, very long-time
simulations are more frequently found in biological systems
whose typical time scales are far above the nanosecond, such
as protein folding, where transitions of the ternary structure
are of the order of 1 μs at least. Nowadays, protein folding
simulations are being performed within this time range [18]
and up to 1 ms [19].

The energy fluctuations and eventually the energy diver-
gence at long time, in systems with only conservative forces
in the NVE ensemble, are due to the fact that, in a sequence of
M time steps,

M∑
i=1

N∑
α=1

�Fα
i · ��rα

i �= −�U. (1)

Here N is the number of particles, �Fα
i is the total force on

the α particle in the time step i, ��rα
i is the displacement of

this particle in this particular time step, and U is the potential
energy of the system. The use of Lennard-Jones forces, for
instance, obtained from the derivative of the Lennard-Jones po-
tential [1], makes the left-hand side of Eq. (1) different from the
variation of the total potential energy of the system, �U in an
NVE simulation. In other words, the variation of the potential
energy, as obtained from the past and actual coordinates of the
particles, is not exactly equal to the work done from the forces
in this time range along the simulated discrete trajectory. As
is well known, the use of symplectic reversible algorithms is
a great advantage, since the simulated trajectories lie close
to the physical, namely differential continuous trajectories
of the system in phase space [1,3,4]. In addition, this kind
of algorithm, for which the Verlet algorithm would be its
paramount representative, provides the system with a much
larger stability with regard to the energy catastrophe for
long-time simulations. Indeed, simulations of many-particle
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systems interacting under Lennard-Jones potentials show a
very good energy conservation [1,2,20–24], with low-energy
drift. However, when electrostatic interactions are present, nu-
merical truncation errors induce an energy drift that makes long
NVE simulations inviable for large systems with electrostatic
interactions typical of biomolecular calculations, for example.
Moreover, time reversibility plays a very important role in
statistical mechanics. The detailed balance (DB) condition
satisfied by the transition probabilities between states can be
demonstrated from the time reversibility of the trajectories
for Hamiltonian systems in the NVE ensemble [25]. If the
DB condition is satisfied, it can be further proven that the
system will naturally evolve toward the proper thermodynamic
equilibrium characterized by N , V , and E [25].

Thus, although NVT or NPT simulations are successfully
used in many fields, NVE simulations may still be interesting
for different purposes, such as the simple direct evaluation
of physicochemical properties of systems [26], in dynamic
histogram reweighting calculations [27], evaluation of the
density of states [28], replica exchange algorithms for config-
urational space sampling [29], as well as for nonequilibrium
simulations [30,31], for example. Therefore, the development
of algorithms for NVE simulations that could have control over
the energy divergence at long time is a matter of conceptual
interest but also of practical relevance.

In this article, we present a time-reversible algorithm with
enforced energy conservation (EEC) in NVE simulations,
based on the discrete gradient theory. Instead of discretizing
Newton’s equation of motion, we propose to use the Hamilto-
nian (H ) as the fundamental quantity. This way of proceeding
implies abandoning the use of the intermolecular force as the
basic element for the MD simulation and replacing it by a
discrete derivative of H along the also discrete trajectory,
characterized by the positions and velocities of all particles
at a given sequence of discrete times 0 � iδt � Mδt , where
δt is the time step and M is the total number of time steps. The
prescription is made to recover the usual Newtonian form of
the force from such a discrete force used in the algorithm when
δt → 0. In exchange, Eq. (1) becomes an identity (to a given
controlled precision) independent of the size of the time step
δt . Of course, since physical time is continuous, the physical
meaning of the simulation depends on the size of the time
step, but the adequate size of the time step is not determined
by the stability related to energy conservation. Finally, we
have to mention that this approach has been used in problems
related to classical mechanics [32–36], which are rooted in an
old seminal paper by Courant [37]. Since classical MD with
interparticle potentials is formally identical, our method should
be considered as an approach within this general scheme
based on the so-called discrete gradients discussed in these
references.

The article is organized as follows. In Sec. II we describe
the basic equations underlying the integration scheme, and we
discuss its properties and structure in light of existing MD
algorithms and methods. In Sec. III we apply the method to
two relevant cases. First, we use the Lennard-Jones potential
as a benchmark for typical thermodynamic and transport
properties, comparing the results obtained with our method
and with data found in the literature. Second, we study the
properties of the model for electrolytes within the framework

of the reaction-field method, which represents a quite harsh
approximation to the electrostatic interactions prone to cause
important energy drifts in standard NVE simulations. Finally,
in Sec. IV we discuss the results found and the conclusions
that can be drawn from our work.

II. BASIC EQUATIONS

The model is based on the existence of a Hamiltonian,

H =
∑

α

1

2mα

�pα · �pα + 1

2

∑
α

∑
β �=α

V αβ, (2)

where �pα = mα �vα is the momentum of the particle α, mα is
its mass, �vα is its velocity, and V αβ is the pairwise potential
between particles α and β, depending on their positions �rα and
�rβ only through |�rβ − �rα|. Many-body and external potentials
are discussed later on in this section. In the following, greek
indices label particles while latin indices indicate time steps.
The proposed equations of motion read [2,38]

�rα
i+1 = �rα

i + 1

2

(�vα
i+1 + �vα

i

)
δt, (3)

�vα
i+1 = �vα

i + 1

mα

�Fαδt = �vα
i + 1

mα

∑
β �=α

�Fαβδt. (4)

The requirement that H is invariant under the transformations
introduced by Eqs. (3) and (4), if no external forces are applied
to the system, implies that the force in Eq. (4) cannot be simply
the force field �Fαβ = −r̂αβ∂V αβ/∂rαβ at a given point, where
r̂αβ ≡ �r αβ/|�r αβ |. Enforcing energy conservation implies that
the usual description of the force in classical MD simulations,
treated as a point property defined from the local gradient of
the potential at a given position, should be changed by an
expression that takes into account the variation of the potential
energy in a discrete displacement of the whole system in a δt .
We propose that the force is then given by

�Fαβ = −(�rαβ

i+1 + �rαβ

i

) V
αβ

i+1 − V
αβ

i(�rαβ 2
i+1 − �rαβ 2

i

)
= −(�rαβ

i+1 + �rαβ

i

) V
αβ

i+1 − V
αβ

i[(�rαβ

i+1 + �rαβ

i

) · (�rαβ

i+1 − �rαβ

i

)] ≡ �Fαβ

i+1,i ,

(5)

where �rαβ

i ≡ �rβ

i − �rα
i . Attention should be paid to this sign

convention used throughout the paper. These expressions for
the discrete gradient of two-body central forces were in fact
proposed already in 1974 by LaBudde and Greenspan [32].

This expression for the force is only valid for pairwise
additive central forces. Its actual form is dictated by the fact
that in the limit δt → 0, Eq. (5) yields the usual expression
for pairwise central forces, namely �Fαβ → −r̂αβ∂V αβ/∂rαβ .
Furthermore, its evaluation only depends on the positions of
the particles along the discrete trajectory. The expressions for
the force and the equations of motion are symmetric under
time reversal in the generalized sense that they are invariant
under the exchange of the initial and final points in a time
step, together with the change of sign of the velocities. In
the last equality of Eq. (5), we have stressed explicitly that
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the force pertains not to a point but to an interval i + 1,i.
Finally, from Eqs. (3) and (4) together with the definition
of the force, Eq. (5), it is straightforward to verify that
Hi+1 − Hi = 0 in a time step. Therefore, the time reversibility
and the energy-conservation properties ensure that the DB
condition will be formally satisfied between two states on
the H = E hypersurface in phase space. The question about
the shadow Hamiltonian [21] does not apply since H is, at
least formally, exactly conserved in our algorithm. Finally, we
have to stress that the presented algorithm is area-preserving
only up to O(δt2), unlike the Verlet algorithm, which is so
independently of δt . Symplecticity and energy conservation
cannot be simultaneously satisfied in numerical integrators in
general. For a more detailed discussion, see [23,24].

The pairwise additivity of the forces notably simplifies the
expression of the discrete gradient, since the Hamiltonian can
be effectively split into different independent contributions
that are individually used to calculate the discrete gradient.
Clearly, if many-body forces were present in the system,
such a splitting would be impossible and a different form
of the discrete gradient of the Hamiltonian should be used
instead. For a general analysis of a dynamical system with a
Hamiltonian in the framework of the discrete gradient method,
see Ref. [35].

To end this section, we briefly discuss a few additional
properties that can be of formal interest. First, Eqs. (3) and (4)
can be cast under the form of the usual Verlet algorithm, with
a redefined expression for the force. Effectively, considering
Eq. (3) for the step i + 1 and subtracting the same equation
for the step i, using Eq. (4) to eliminate the velocity difference
in the time step, one arrives at the expression

�r α
i+1 = 2�r α

i − �r α
i−1 + 1

2mα

∑
β �=α

( �F αβ

i+1,i + �F αβ

i,i−1

)
δt2. (6)

As compared with the usual Verlet algorithm, our formulation
replaces the evaluation of the force at i by the mean of the
forces in the intervals i + 1,i and i,i − 1, which implicitly
introduces information on the three points considered in the
algorithm, due to its implicit nature.

Secondly, if there are conservative external forces related to
the particle’s position, the discrete gradient can be constructed
along the same lines as for the pairwise additive forces. Let us
assume that a potential V ext(�r) exists and that we can calculate
the gradient of this potential, �g(�r) ≡ ∂V/∂�r . The proposed
discrete gradient then reads

�F ext α
i+1,1 = −[�g(�r α

i+1

) + �g(�r α
i

)] V ext
(�r α

i+1

) − V ext
(�r α

i

)
[�g(�r α

i+1

) + �g(�r α
i

)]·(�r α
i+1 − �r α

i

) .

(7)

With this prescription, �F ext α
i+1,1 · (�r α

i+1 − �r α
i ) = −[V ext(�r α

i+1) −
V ext(�r α

i )] is identically satisfied. Moreover, the limit δt → 0
reduces the expression to the usual form for the force derived
from a external potential V ext(�r), namely �F ext α = −�g(�r α).
This form for the discrete gradient [32] used throughout
the paper relies on the identification of the independent
coordinates for the given contribution of the potential.

Thirdly and finally, if many-body forces are present, an
additive consideration of the variation of the energy through

the independent discrete variation of the particle coordinate or
the interparticle coordinate, independently of the rest of the
system, is no longer possible. The linearity of the differential
variation of the coordinates that permits the evaluation of the
forces in the mechanics of differentiable trajectories does not
apply when discrete variations are to be considered. Therefore,
a different strategy has to be introduced to construct many-
body forces that would satisfy the exact energy conservation
in a time step. Following [35], let us assume that the system
evolves according to a many-body potential V ({�r α}), where
{�r α} stands for the complete set of particles’ coordinates
(�r 1,�r 2, . . . ,�r α, . . . ,�r N ), and that we can define a gradient
field in the usual way, �g β({�r α}) = ∂V ({�r α})/∂�r β . Then, one
can propose a force based on the so-called averaged vector
field [39],

�F β

i+1,i = −
∫ 1

0
dξ �g β

[{�r α
i+1ξ + �r α

i (1 − ξ )
}]

. (8)

Thus, the work done by the forces in a time step gives the
change in V , since for each coordinate it can be written that
d�r β = d[�r β

i+1ξ + �r β

i (1 − ξ )] = (�r β

i+1 − �r β

i )dξ . As we have
already mentioned, the choice of the discrete gradient is not
unique. We can find, for instance, the coordinate increment
method [40] among other possibilities described in the litera-
ture [39].

Hence, a reversible discrete algorithm with, at least,
formally exact conservation of the energy can be constructed
for a general many-body problem.

III. STUDY OF DIFFERENT CASES

In this section, we will address two cases of interest to
illustrate the capabilities of the proposed energy-conserving
algorithm. The selection includes the Lennard-Jones fluid
with a study of its more prominent equilibrium and dynamic
properties, as well as the electrolyte model with a reaction
field.

A. Computational details

The algorithm can be implemented into a molecular
dynamics code following the usual procedures. The implicit
integration requires that an outer loop performs the time
integration from t to t + δt , whereas an inner loop refines the
solution at time t + δt until convergence is achieved within
the desired tolerance. Here an ordinary iteration procedure
has been used and a tolerance has been defined that uses
the criterion |(Hi+1 − Hi)/Hi | < tol, with Hi , Hi+1 being
the total energy of the system of N particles at times t and
t + δt , respectively. For N = 500, tolerances in the range
of 10−8–10−6 have been used, depending on the system
density: the more dense systems require smaller time steps
and consequently smaller tolerances tuned to keep under
control smaller particle displacements. Together with this
control of the tolerance, we have introduced a global criterion
of convergence, |Hi+1 − H0| < |Hi − H0|, which takes into
account the initial value of the energy and acts as a restoring
mechanism that controls global energy deviations due to
truncation and roundoff errors. The combination of both
criteria succeeds in keeping the energy constant within the
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desired tolerance. A proper selection of the tolerance must
consider essentially the number of particles in the system and
the value of the time step δt , taking into account the machine
precision, which was double precision in our calculations.

The computer domain satisfies periodic boundary condi-
tions, and particle interactions are treated according to the
minimum image convention. In the present implementation of
the algorithm, positions are updated first following Eq. (3).
Then the force is computed using Eq. (5) and finally velocities
are updated by means of Eq. (4). The iterative procedure
makes intensive use of neighbor lists, which therefore become
compulsory even for small systems. Special care must be
taken during the iteration not to lose track of a particle being
reintroduced from any of the (periodic) boundaries, which
would otherwise give a wrong contribution to the force via
the incorrect calculation of �rαβ in Eq. (5). This means that in
practice both V

αβ

i and the estimate V
αβ

i+1 must be computed
at every iteration step, after the selection of the appropriate
particle images.

We have set to five the maximum number of iterations.
Occasionally the procedure may require more than five
iterations per time step, and in this case the policy is reducing
the time step by one-half, until convergence is achieved or a
minimum δtmin is reached. If the initial value of the time step
is set correctly, the procedure is robust and quickly converges.
With the above ingredients, the energy is conserved within the
selected tolerance.

Finally, a comment should be made with respect to the
truncation of the different potentials that we will analyze along
the article, which is related to the problem of a collision with a
hard wall. This can be illustrated with an example. In the course
of a simulation, a particle with total energy E = E1 � 0,
bound to a truncated Lennard-Jones or reaction field potential,
will eventually find the steep barrier that prevents it from
accessing the region E � 0. At this moment, the particle
should be rebounded according to the conservation of energy
and momentum. The important fact is that the EEC algorithm
as presented above does not solve the instantaneous collision.
The converged solution found after iteration is the initial or
precollisional state, not the postcollisional state. Therefore,
one must solve this contingency either by regularizing the
potential at rc so that it is always a state with the suitable
potential energy to be found after iteration, or by detecting the
instantaneous collision and rebounding the particle accord-
ingly. Here we have chosen a regularization of the potential.
For the case of the truncated Lennard-Jones potential, the limit
VLJ(r−

c ) is regularized by applying an exponentially decaying
function of the form

VLJ(r) = VLJ(r)
(
1 − e− rc−r

d

)
for r � rc, (9)

where rc is the cutoff distance and d is the regularizing
width d � rc. In the case of the reaction field potential, the
regularizing function (RF) is given by

VRF(r) = VRF(r)
1

2

[
1 − tanh

(
rc − r

d

)]
(10)

for r smaller than the Verlet radius, in this case.

B. The Lennard-Jones fluid

The Lennard-Jones fluid is used here as a benchmark to
validate our code, which implements the enforcing EEC, and
is also useful to compare its predictions with those provided by
simulations with the classical Verlet algorithm. Let us consider
the Lennard-Jones potential [1,2],

VLJ(r) = 4ε[(σ/r)12 − (σ/r)6], (11)

with the values ε = 1 and σ = 1 in the usual dimensionless
units. In the following, the potential is truncated at a distance rc.
Data on the average potential energy per particle, the pressure,
and the diffusion coefficient for a reduced temperature T ∗ =
0.85 and densities ρ∗ between 0.776 and 0.9 of a system
consisting of N = 500 particles for a simply cut potential
in the NVEensemble are found in [41]. The cutoff distance is
set to rc = 3σ and the value of the time step is δt = 0.005 as
in this reference. The system was equilibrated at the required
temperature using the Verlet scheme. Here we are interested
in the results of the average potential energy per particle U ∗
and the pressure P ∗ of the system. The data obtained in our
simulations along with the benchmark values are collected in
Table I.

The values of Table I are estimates obtained after a linear
regression from simulation results pertaining to six runs at
temperatures in the close vicinity of the respective benchmark
temperature. Following [41], the usual long-range correction
was applied to the potential energy (per particle),

ULRC = 2πρ

∫ ∞

rc

dr r2VLJ(r), (12)

and the pressure was computed through the virial integral,

P = kBTρ − 2

3
πρ2

∫ rc

0
dr r3g(r)

dVLJ

dr
+ PLRC (13)

with

PLRC = −2

3
πρ

∫ ∞

rc

dr r3 dVLJ

dr
, (14)

where g(r) is the pair correlation function. The agreement
between benchmark and simulation results is good except
for the pressure at ρ∗ = 0.90. This value has been checked
through independent simulations using a different code that
implements the Verlet scheme, the result being P ∗ = 2.20 ±
0.01, which is much closer to the value of 2.26 obtained here

TABLE I. Results of the reduced potential energy per particle U ∗

and pressure P ∗ of the system, obtained from present simulations
(EEC) with respect to benchmark values (B) [41]. The standard error
affecting the last digit of the values shown is in parentheses. The
potential is simply cut at the cutoff radius rc = 3.

ρ∗ T ∗ U ∗ (EEC) U ∗ (B) P ∗ (EEC) P ∗ (B)

0.776 0.851 −5.510(1) −5.517(1) 0.018(8) 0.030(6)
0.780 0.853 −5.534(1) −5.533(1) 0.075(6) 0.072(5)
0.820 0.852 −5.793(2) −5.803(1) 0.566(8) 0.573(5)
0.840 0.851 −5.913(1) −5.909(1) 0.898(4) 0.910(6)
0.860 0.849 −6.030(1) −6.027(1) 1.27(1) 1.282(5)
0.900 0.851 −6.235(0) −6.234(1) 2.261(4) 2.544(6)
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FIG. 1. (Color online) Values of the pressure obtained from the
EEC and the standard Verlet algorithm using the virial equation (13)
for different simulation runs, in comparison with the NIST bench-
mark [41] for ρ∗ = 0.78 and the temperature T ∗ = 0.853. The
estimate of the pressure at the benchmark temperature is made via
linear regression on the simulated data.

than to the benchmark. In Fig. 1, we display the simulation
results obtained for the density ρ∗ = 0.78 and the temperature
T ∗ = 0.853, as typical results. In general, we observe that the
application of the classical Verlet algorithm produces slightly
but consistently lower values for the pressure than the EEC
algorithm. In Fig. 2, we compare the results for the pressure as
obtained with a standard Verlet algorithm, the EEC algorithm,
and the benchmark data.

Several remarks are in order regarding the pressure calcu-
lation. Most importantly, due to the fact that the expression
of the force Eq. (5) involves a discrete gradient, the EEC
algorithm effectively produces an impulsive force. There-
fore, the pressure computed from the time average of the
diagonal components of the stress tensor Eq. (A11) does
include this contribution originating from the jump of the
potential interaction energy at the truncation at rc. This
feature is relevant in some applications, but particularly in the
comparison between Monte Carlo simulations with truncated
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FIG. 2. (Color online) Values of the pressure as obtained from
the EEC and the Verlet algorithm in comparison with the NIST
benchmark [41].
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FIG. 3. (Color online) Values of the pressure obtained from the
EEC and the standard Verlet algorithm using the diagonal components
of the stress tensor, for ρ∗ = 0.78 and the temperature T ∗ = 0.853.
The green triangles correspond to the Verlet average values corrected
with the impulsive contribution given in Eq. (15).

potentials and molecular dynamics simulations. The Verlet
algorithm instead uses the differential expression of the force,
which is effectively truncated at rc and thus does not produce
any impulsive force contribution reflecting the discontinuity
of the potential. The benchmark values shown in Table I
for the EEC do not contain this term either, due to the fact
that the pressure is calculated from the virial expression,
which only requires structural data. The spatial distribution
function g(r) is not significantly affected by the impulsive
force when compared to the equivalent obtained from the
Verlet algorithm. To understand this important difference, let
us consider the intermediate density 0.780 and the results
obtained for the average pressure from the diagonal elements
of the stress tensor, summarized in Fig. 3. The difference
between the EEC and Verlet values (open red and filled blue
squares, respectively) is significant. However, correcting the
Verlet values of the pressure (green triangles) using a virial
expression for the impulsive force [1] P ∗

av + P ∗ imp, where

P imp = 8
3πρ2r3

c [(σ/rc)12 − (σ/rc)6], (15)

shows that the agreement between the average pressure from
the EEC and the corrected pressure from the Verlet is indeed
excellent.

The previous analysis indicates that the thermodynamic
properties obtained from the EEC algorithm are consistent with
the properties derived from the Verlet algorithm. To determine
the correctness of the predictions of the EEC model with regard
to dynamic properties, we have calculated the viscosity η

as well as the diffusion coefficient D for 8 thermodynamic
conditions and compared the results with data in Ref. [42]
(see Table II). In this case, we have used a cut-and-shifted
Lennard-Jones potential with a cutoff distance r∗

c = 4, so that
the EEC algorithm produces no impulsive force, as well as
the Verlet algorithm. The results for the diffusion coefficient
and the viscosity have been obtained using the corresponding
Einstein relation (see Appendix B for details). Each EEC value
in Table II is the average of three slopes from the respective
linear regressions of the mean-square displacement, for D,
and the correlation of the off-diagonal components of the
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TABLE II. Comparison between the obtained diffusion coeffi-
cient D and viscosity η with the EEC algorithm and data from
Tables III and IV of Ref. [42]. The conditions are the same as in
this reference for each particular point.

ρ∗ T ∗ D∗ (EEC) D∗ (B) η∗ (EEC) η∗ (B)

0.4 1.3 0.3931(8) 0.392(2) 0.394(5) 0.39(4)
0.4 3 0.756(2) 0.752(6) 0.55(3) 0.54(6)
0.5 1 0.204(2) 0.216(3) 0.52(3) 0.53(7)
0.5 1.5 0.319(1) 0.318(3) 0.58(5) 0.56(4)
0.8 1 0.06501(4) 0.065(1) 2.0(2) 1.9(2)
0.8 2.1 0.1531(5) 0.148(1) 2.13(6) 1.9(5)
0.9 1 0.0365(1) 0.034(0) 4.0(1) 4.1(8)
1 1.8 0.050(2) 0.046(1) 5.1(4) 5.4(3)

stress tensor, for η, according to Appendix B. Again, we see
very good agreement between the simulated EEC data and the
reference data when similar parameters are used.

Finally, we analyze the different behavior of both algo-
rithms with respect to the total energy conservation. As is
discussed in the Introduction, the Verlet algorithm does not
exactly conserve the energy, although the symplectic property
introduces a global condition on the numerical trajectories.
Intuitively, the conservation of the size of the volume element
due to the symplecticity in the transformation means that
close trajectories remain also close in time, despite the fact
that numerical trajectories soon exponentially deviate from
the physical trajectory. For a more detailed analysis, see
Refs. [1,43]. The EEC algorithm suppresses these fluctuations
up to the chosen tolerance. In Fig. 4, we have plotted the
evolution of the total energy for both algorithms starting
at exactly the same initial conditions. The difference in the
average is due to the different way of calculating the kinetic

0 500 1000 1500
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-1129.25

-1129.2

-1129.15

-1129.1

-1129.05

-1129

E*

Verlet
EEC

FIG. 4. (Color online) Total energy fluctuations for the EEC and
Verlet algorithms for a Lennard-Jones fluid with 512 particles in
a system of density ρ∗ = 0.5 and temperature T ∗

av = 0.99. Both
simulations started from the same equilibrated configuration. The
average energy is 〈E∗〉 = −1129.2 for the Verlet algorithm, while the
EEC produces 〈E∗〉 = −1128.1. The difference is due to the different
ways of calculating the kinetic energy. In the graph, the EEC has been
shifted onto the Verlet result for ease of the comparison.
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FIG. 5. (Color online) Normalized histograms of the temperature
of the system of Fig. 4 for the EEC and Verlet algorithms. The
continuous line is a Gaussian fit. The double logarithmic plot stresses
the accuracy of the tails of the distribution.

energy in EEC with respect to Verlet. In the EEC case, the
fluctuations in the total energy can be arbitrarily reduced by
reducing the tolerance, given an adequate number of iterations.

The fluctuations in the total energy in the Verlet algorithm
approximately follow a Gaussian distribution, as indicated
in the inset of Fig. 4. Instead, the EEC energy fluctuations
are controlled by the chosen value of the tolerance. However,
and very remarkably, the temperature fluctuations follow the
same Gaussian statistics in both cases, as shown in Fig. 5.
Moreover, we have verified that the velocity distribution in the
EEC calculations is perfectly Maxwellian.

C. Electrolyte model with a reaction field

As a second example to be studied, we have selected
a simple system with electrostatic interactions. These long-
range interactions are treated here through the reaction-field
methodology, known to introduce harsh numerical errors in
the total energy conservation. The methodology is widely
described in the literature (see, for example, Refs. [44–46]).
The electrostatic energy between charges in the system is
pairwise additive and is given by

V RF αβ = 1

4πε0

qαqβ

rαβ

[
1 + εRF − 1

2εRF + 1

rαβ 3

rRF 3
c

]
for rαβ � rRF

c

(16)

and V RF αβ = 0 otherwise. Here, rRF
c is the reaction-field cutoff

radius, and εRF is the reaction-field dielectric permittivity.
We have set εRF = ∞, which would correspond to a metallic
material, which is suitable for a system with free charges. The
force is then calculated using the prescription of Eq. (5) for
central forces.

In the simulations, we have considered 1029 identical
Lennard-Jones particles, from which 343 are neutral, sim-
ulating the solvent, 343 bear a net positive charge q∗, and
the remaining 343 have an equal negative charge to make
the overall system neutral. The reduced charge is defined
according to

q∗ 2 ≡ 1

4πε0

q2

σε
. (17)

053314-6



MOLECULAR DYNAMICS ALGORITHM ENFORCING ENERGY . . . PHYSICAL REVIEW E 89, 053314 (2014)

0 100 200 300 400 500
t*

0.98

0.99

1

1.01

1.02

E/
E 0

0 100 200 300 400 500
0.98

0.99

1

1.01

1.02

Verlet (a)
Verlet (b)
Verlet (c)
EEC  

FIG. 6. (Color online) Comparison of the energy drift in EEC
and Verlet algorithms, for the electrolyte model with a reaction field.
The Verlet (a) line corresponds to the simulation with a simple step
function at r = rc and δt∗ = 1.5 × 10−3. Verlet (b) and (c) use a
regularizing width of d = 10−3rc. They show that under the same
regularization parameters, the drift is strongly sensitive to the value
of the time step: (b) soon deviates with δt∗ = 1.5 × 10−3 as compared
with (c), for which δt∗ = 1 × 10−3.

The thermodynamic conditions chosen are T ∗ = 1.0 and ρ∗ =
0.8. The value of the reduced charge has been selected to
avoid ion pairing in the system, i.e., for the Bjerum length
to be smaller than the repulsive core of the particles, here
estimated of the order of r � σ (r∗ � 1). Such a condition then
reads T ∗ � q∗ 2, which is satisfied with a charge q∗ = 1. The
regularization chosen for the simulation is given in Eq. (10)

Figure 6 summarizes the different simulations regarding
the electrolyte model. First, the use of Verlet algorithm
with a nonregularized reaction-field potential produces not
only large fluctuations but also a noticeable drift in the
energy, independently of the size of the time step (light
gray line). This result is an extreme situation that illustrates
the great underlying difficulty of conducting microcanonical
simulations with electrostatic potentials even for a relatively
short time. The energy drift for this case is of the order of
0.5% per unit of time t∗. With the same time step dt∗ =
1.5 × 10−3 as in the previous case, the introduction of a
steep regularization (d∗ = 0.001 r∗

c ), according to Eq. (10),
causes the fluctuations to strongly decrease. The energy drift
is also reduced (blue thick solid line), being for this case
0.2% per unit of time, which is still very high. In the third
case, in addition to the regularization we have decreased the
time step to dt∗ = 1.0 × 10−3. Then, a relatively well-behaved
dynamics is produced (black dotted line) within the shown time
span. These results are compared to an EEC simulation with
the same regularization width and time step dt∗ = 7.5 × 10−3

(red dashed line). As it could not be otherwise, EEC keeps the
total energy under the prescribed tolerance.

In general, the condition to be satisfied in order to have some
control on the energy conservation using the Verlet algorithm
is that v̄δt � d with v̄2 ∼ kBT /m, when regularization func-
tions are introduced. Such a condition reduces the number of
very energetic molecules at the tail of the velocity distribution
that would overlook the steep change in the potential. The
results obtained with regard to the energy conservation for the
Verlet algorithm are therefore strongly dependent on the width
of the regularization function and not on physical reasons for
a given time step and temperature.

The following natural question to be asked is the relative
performance of the EEC and the Verlet algorithms for the case
in which the energy is conserved under comparable conditions,
namely the systems represented by the black dotted [Verlet (c)]
and red dashed lines in Fig. 6. Notice that we have chosen a
relatively large time step for the EEC integration to stress
the robustness of the procedure. Table III summarizes the
results, obtained with a MATLAB code available to the reader
as supplemental material [47].

We can see from the data collected in the table that the
EEC algorithm performs better than the Verlet algorithm, with
a total number of steps 60 867 < 100 000 for the former with
respect to the latter. It is also worth noticing the consistency
in the thermodynamic properties evaluated in the runs, which
indicates a correct sampling of the microcanonical ensemble.
Therefore, despite its higher complexity, the EEC algorithm is
competitive for constant energy simulations in systems with
long-range potentials. However, the difference in performance
is not significantly larger for these relatively short-time runs.
The key point in favor of the EEC algorithm comes from
the long-time analysis of the Verlet integration. Effectively, a
closer view of the black dotted [Verlet (c)] line over about 1000
reduced-time units indicates that there is a constant negative
energy drift of the order of 1.0 × 10−5% per unit of time,
which would ruin a long-time microcanonical simulation of
about 106 time units, for instance.

IV. DISCUSSION AND CONCLUSIONS

In this article, we have applied the concepts of the discrete
gradient method to construct a time-reversible algorithm for
its application to classical molecular dynamics simulations in
the microcanonical ensemble. Enforcing energy conservation
requires an implicit algorithm that introduces an inner iterative
loop linked to a given precision in the energy conservation.
The main idea of the method is to consider the energy as the
central point, and to introduce a particular definition of the
force from a discrete gradient instead of the straightforward
gradient of the continuous potential. The concept of the

TABLE III. Comparison of the performance of Verlet and EEC algorithms under similar conditions. Both Verlet and EEC algorithms are
written in MATLAB code [47], which makes runs last longer than with optimized codes written in a lower-level language. Here δE/E0 stands
for either the tolerance of the EEC or the range of the total energy fluctuations in the Verlet simulation.

t∗ δt∗ O(δE/E0) Time steps Iterations Run time (s) U ∗
av T ∗

av P ∗
av

Verlet 100 1.0 × 10−3 1.0 × 10−4 100 000 20 568 −6.61 1.03 0.46
EEC 100 7.5 × 10−3 1.0 × 10−4 13 334 60 867 18 423 −6.61 1.03 0.41
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discrete gradient has been previously used in simulations
of celestial dynamics, among others. We have here used a
particularly suitable explicit form for central pairwise additive
forces and external forces that are typically used in molecular
dynamics simulations, which greatly simplifies the application
of the discrete gradient method.

The EEC algorithm implements this idea for applications
in molecular dynamics simulations, producing precise and
reliable values of the thermodynamic and dynamic properties
while keeping the total energy of the system constant except for
small numerical fluctuations below the prescribed tolerance.
These fluctuations are several orders of magnitude smaller
than the natural total energy fluctuations produced by the Verlet
algorithm with a comparable time step, although the long-time
overall energy control of the latter is remarkable. However,
in particularly steep potentials with long-range forces, we
have shown that a small but persistent energy drift exists that
cannot be neglected in long-time simulations. For these cases,
the EEC algorithm is competitive and permits very long-time
simulations with perfect control of the energy conservation.

With regard to the accuracy of the results, we have checked
that the fluctuations in the total energy of the Verlet algorithm
do not significantly affect either the thermodynamic properties
or the dynamic quantities such as diffusion and viscosity
coefficients. The EEC algorithm produces remarkably accurate
results, including a correct accounting for the impulsive forces
originating in steep potentials. The analysis of the electrolyte
model, however, presented a challenge for the performance
of the Verlet algorithm, which has traditionally been used
in combination with different kinds of thermostats to avoid
large energy fluctuations and energy drifts. These types of
simulations require stability at long times, which is guaranteed
by the EEC algorithm so that microcanonical simulations can
be carried out for as long a time as desired. Furthermore, even
at short times and compared to a similarly performing Verlet
algorithm, the EEC is a competitive alternative. The applica-
tion of the EEC to electrodynamic classical systems may open
the possibility of an accurate study of the physical properties
of these systems within the microcanonical ensemble.
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APPENDIX A: DERIVATION OF THE STRESS TENSOR
FOR THE EEC

The theory is formulated as discrete, with the only condition
that H is a constant of motion, together with the time-reversal
invariance of the properties of the system. Thus, it is necessary
to derive the observables related to dynamic properties in order
to take into account the particular properties of the model.

The stress tensor is derived from the momentum transport
in the long-wavelength limit k → 0. The microscopic variable
is the momentum density in Fourier space, i.e.,

�jk =
∑

α

mα �vα e−i�k·�rα

. (A1)

We then calculate the variation of the momentum density in a
δt . One has

� �jk =
∑

α

[
mα �vα

i+1 e−i�k·�rα
i+1 − mα �vα

i e−i�k·�rα
i

]
. (A2)

We then introduce new spatial variables that will allow us to
gather terms of the same character. These are

�rα
i+1 = �Rα + ��rα, (A3)

�rα
i = �Rα − ��rα. (A4)

Hence, �Rα = (�rα
i+1 + �rα

i )/2 and ��rα = (�rα
i+1 − �rα

i )/2. Then,
expanding Eq. (A2) for kδr → 0, one finds

� �jk =
∑

α

[
mα �vα

i+1(1 − i�k · ��rα) − mα �vα
i (1 + i�k · ��rα)

]
× e−i�k· �Rα

. (A5)

Gathering terms on the right-hand side by its power of k, we
find a first term that reads∑

α

[
mα �vα

i+1 − mα �vα
i

]
e−i�k· �Rα =

∑
α

�Fα e−i�k· �Rα

δt, (A6)

where use has been made of Eq. (4). This term accounts for
the force density. If we separate the external forces from the
internal forces, the term will have a further natural expansion
of the form∑

α

�Fα e−i�k· �Rα

δt =
∑

α

�Fα
ext e

−i�k· �Rα

δt +
∑

α

∑
β �=α

�Fαβ e−i�k· �Rα

δt.

(A7)

The first term of the right-hand side of the preceding equation
stands for the external body force density, which does not
contribute to the stress. The second term, however, carries the
so-called configurational contribution. Effectively, using the
action reaction principle,

∑
α

∑
β �=α

�Fαβ e−i�k· �Rα

δt =
∑

α

∑
β<α

�Fαβ
(
e−i�k· �Rα − e−i�k· �Rβ )

δt.

(A8)

Since these forces will be relatively short-range (smaller than
the box size), we can write �Rβ = �Rα + �Rαβ with kRαβ → 0.
Then,

∑
α

∑
β<α

�Fαβ
(
e−i�k· �Rα − e−i�k· �Rβ )

δt

= i�k ·
∑

α

∑
β<α

�Rαβ �Fαβ e−i�k· �Rα

δt. (A9)

The second contribution reads

−i�k ·
∑

α

��rα
[
mα �vα

i+1 + mα �vα
i

]
e−i�k· �Rα

. (A10)
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Using Eq. (3), we can write ��rα = (�vα
i+1 + �vα

i )δt/4. Then, the
stress tensor is written as

��� ≡
∑

α

(
mα

(�vα
i+1 + �vα

i

)
2

(�vα
i+1 + �vα

i

)
2

−
∑
β<α

(�rαβ

i+1 + �rαβ

i

)
2

�Fαβ

⎞
⎠ . (A11)

APPENDIX B: EINSTEIN’S RELATION FOR THE
SHEAR VISCOSITY η

Due to the long-time decay of the pressure tensor time
correlation function, the computation of the viscosity through
a Green-Kubo expression is very inefficient. However, the
use of the Einstein relation [48] overcomes the effect of
these long temporal tails in the Green-Kubo calculations, and
we can obtain precise values of the viscosity with a reasonable
computational effort. Consequently, the Einstein relation was
employed as described by Smith et al. [48], but contrary to

the original work, we use all the off-diagonal elements of the
stress tensor (according to Ref. [49]) to improve convergence
and statistics. Thus, the viscosity coefficient is given by the
expression

η = 1

12

1

V kBT
lim
t→∞

d

dt

⎡
⎣ ∑

xi ,xj �=xi

〈
��xixj

(t)
〉2⎤⎦ , (B1)

where xi = x,y,z for i = 1,2,3 are the Cartesian coordinates,
V is the volume, T is the temperature, and ��xi,xj

(t) denotes
the displacement of the elements of the stress tensor �xi,xj

,
according to

��xi,xj
(t) =

∫ t

0
�xi,xj

(τ )dτ. (B2)

The microscopic expression for the elements of the pressure
tensor �αβ appearing in the integrand of Eq. (B2) is given by
Eq. (A11). Therefore, due to the discreteness of the derivation
of the stress tensor, the integral in Eq. (B2) can be replaced
by the Riemann sum with δt instead of dτ . The viscosity is
obtained from the slope of Eq. (B1), always after some initial
time, where the displacement is not a linear function of time.
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[14] S. Nosé, Prog. Theor. Phys. Suppl. 103, 1 (1991).
[15] W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
[16] W. G. Hoover, Phys. Rev. A 34, 2499 (1986).
[17] H. C. Andersen, J. Chem. Phys. 72, 2384 (1980).
[18] P. L. Freddolino, F. Liu, M. Gruebele, and K. Schulten, Biophys.

J. 94, L75 (2008).
[19] D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana,

R. O. Dror, M. P. Eastwood, J. A. Bank, J. M. Jumper,
J. K. Salmon, Y. Shan, and W. Wriggers, Science 330, 341
(2010).

[20] L. Verlet, Phys. Rev. 159, 98 (1967).
[21] J. Gans and D. Shalloway, Phys. Rev. E 61, 4587 (2000).

[22] R. D. Engle, R. D. Skeel, and M. Drees, J. Comput. Phys. 206,
432 (2005).

[23] J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian
Problems (Chapman & Hall, London, 1994).

[24] E. Celledoni, V. Grimm, R. I. Mclachlan, D. I. Mclaren,
D. O’neale, B. Owren, and G. R. W. Quispel, J. Comput. Phys.
231, 6770 (2012).

[25] N. G. van Kampen, Stochastic Processes in Physics and
Chemistry (North-Holland, Amsterdam, 1990), Chap. V,
Sec. 6.

[26] P. Mark and L. Nilsson, J. Phys. Chem. A 105, 9954 (2001).
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CLARA SALUEÑA AND JOSEP BONET AVALOS PHYSICAL REVIEW E 89, 053314 (2014)

[41] http://www.cstl.nist.gov/srs/LJ_PURE/md.htm.
[42] R. L. Rowley and M. M. Painter, Int. J. Thermophys. 18, 1109

(1997).
[43] S. Reich, SIAM J. Numer. Anal. 36, 1549 (1999).
[44] W. F. van Gunsteren, H. J. C. Berendsen, and J. A. C. Rullmann,

Faraday Discuss. 66, 58 (1978).
[45] M. Neumann, O. Steinhauser, and G. S. Pawley, Mol. Phys. 52,

97 (1984).

[46] M. Neumann, Mol. Phys. 57, 97 (1986).
[47] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.89.053314 for the implementation of the
EEC algorithm in MATLAB.

[48] P. E. Smith and W. F. van Gunsteren, Chem. Phys. Lett. 215,
315 (1993).

[49] D. K. Dysthe, A. H. Fuchs, and B. Rousseau, J. Chem. Phys.
110, 4047 (1999).

053314-10

http://www.cstl.nist.gov/srs/LJ_PURE/md.htm
http://dx.doi.org/10.1007/BF02575252
http://dx.doi.org/10.1007/BF02575252
http://dx.doi.org/10.1007/BF02575252
http://dx.doi.org/10.1007/BF02575252
http://dx.doi.org/10.1137/S0036142997329797
http://dx.doi.org/10.1137/S0036142997329797
http://dx.doi.org/10.1137/S0036142997329797
http://dx.doi.org/10.1137/S0036142997329797
http://dx.doi.org/10.1039/dc9786600058
http://dx.doi.org/10.1039/dc9786600058
http://dx.doi.org/10.1039/dc9786600058
http://dx.doi.org/10.1039/dc9786600058
http://dx.doi.org/10.1080/00268978400101081
http://dx.doi.org/10.1080/00268978400101081
http://dx.doi.org/10.1080/00268978400101081
http://dx.doi.org/10.1080/00268978400101081
http://dx.doi.org/10.1080/00268978600100081
http://dx.doi.org/10.1080/00268978600100081
http://dx.doi.org/10.1080/00268978600100081
http://dx.doi.org/10.1080/00268978600100081
http://link.aps.org/supplemental/10.1103/PhysRevE.89.053314
http://dx.doi.org/10.1016/0009-2614(93)85720-9
http://dx.doi.org/10.1016/0009-2614(93)85720-9
http://dx.doi.org/10.1016/0009-2614(93)85720-9
http://dx.doi.org/10.1016/0009-2614(93)85720-9
http://dx.doi.org/10.1063/1.478286
http://dx.doi.org/10.1063/1.478286
http://dx.doi.org/10.1063/1.478286
http://dx.doi.org/10.1063/1.478286



