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Linguistic variables are very useful to evaluate alternatives in decision making problems because they provide a vocabulary in
natural language rather than numbers. Some aggregation operators for linguistic variables force the use of a symmetric and
uniformly distributed set of terms. The need to relax these conditions has recently been posited. This paper presents the induced
unbalanced linguistic ordered weighted average (ITULOWA) operator. This operator can deal with a set of unbalanced linguistic
terms that are represented using fuzzy sets. We propose a new order-inducing criterion based on the specificity and fuzziness of the
linguistic terms. Different relevancies are given to the fuzzy values according to their uncertainty degree. To illustrate the behaviour
of the precision-based [IULOWA operator, we present an environmental assessment case study in which a multiperson multicriteria

decision making model is applied.

1. Introduction

Aggregation operators aim to reduce a set of values into a sin-
gle one that summarizes the inputs in a certain way [1, 2].
Aggregation is a key point in decision making and infor-
mation fusion. In this paper we propose a new aggregation
operator from the family of OWA operators for use with
linguistic data. The ordered weighted averaging (OWA) oper-
ator is characterised by ordering the values of the arguments
before they are aggregated according to a certain combination
policy [3] with which the decision maker can determine
the compensatory behaviour of the aggregation from high
simultaneity (andness) to complete replaceability (orness).

An interesting extension of the OWA operator is the
induced OWA (IOWA) operator [4]. Its main difference is
that it uses a reordering process that is based on order-induc-
ing variables. Thus, it is able to consider an additional reorder-
ing criterion that does not depend on the values of the argu-
ments. Since it appeared, it has been studied by many authors
that have developed several extensions [5-10] for group
decision making problems.

Although the OWA and IOWA operators have been tradi-
tionally applied to numerical data, we can find many applica-
tions where they have been used with linguistic variables [11].
Most of the studies in this area have assumed a uniform and
symmetrical distribution of the linguistic terms that define
the linguistic variable [12,13] (see Figure 1(a)). However, there
are some situations that cannot be modelled with symmetric
linguistic variables [14-16]. For example, some decision
making problems, such as personnel examination or project
investment selection, often require a linguistic scale that
assigns a different precision to each label. This issue is illus-
trated in the term set (b) in Figure 1, where the deviation
between the indices of two adjoining labels is much larger
between very low and medium than between medium and
high. Some unbalanced and linguistic aggregation operators
have recently appeared [2, 16-19].

This paper takes another step forward by suggesting
new unbalanced linguistic aggregation operators for decision
making; in particular, we define the induced unbalanced
linguistic ordered weighted averaging (IULOWA) operator. In
order to make the operator applicable in many situations,
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FIGURE 1: Examples of balanced (a) and unbalanced (b) linguistic term sets with five labels.

we allow the set of linguistic labels to be unbalanced. Labels
can be represented by asymmetric fuzzy sets, and they can be
nonuniformly distributed in the domain. Each label has an
associated fuzzy set on the variable’s reference scale of mea-
surement. The fuzzy sets of the labels define a fuzzy partition.
First, the ULOWA (unbalanced linguistic ordered weighting
averaging) operator is presented. Unlike its predecessor, the
LOWA operator [20], ULOWA is based on the extension
principle and so it carries out operations on the fuzzy sets
associated with the labels, thus defining a new procedure for
aggregating a pair of labels according to their membership
functions and the set of available linguistic terms. After this,
we propose a generalization, which we call IULOWA, which
enables us to work with inducing variables.

This paper shows that IULOWA fulfills the monotonic-
ity, identity, idempotency, and boundary conditions usually
required in aggregation operators. Like the other OWA oper-
ators, IULOWA provides a family of aggregation operators
that is parameterized between the linguistic minimum and
maximum and that includes a wide range of particular cases
such as the unbalanced linguistic average (ULA), the unbal-
anced linguistic OWA (ULOWA), the unbalanced linguistic
weighted average (ULWA), and many others. Note that, in
the literature, there are approaches that employ abbreviations
similar to the ones used in this paper, although they are con-
ceptually different. In particular, it is worth mentioning that
the work by Xu on uncertain linguistic variables produces the
induced uncertain linguistic OWA (IULOWA) operator [21].
However, that approach has important differences with
respect to the IULOWA operator presented in this paper. The
present study is focused on the use of unbalanced linguistic
information while Xu’s work [21] is based on uncertain lin-
guistic variables that deal with imprecise information when
representing the linguistic labels. Section 6 compares both
approaches and highlights their similarities and differences.

Another important contribution of this paper is the pro-
posal to use some of the information related to the definition
of the labels as an order-inducing criterion in the IULOWA
operator. Although the order of the arguments can be decided
by taking into account the domain requirements, it is some-
times desirable to take into consideration the amount of
information contained in the terms themselves. In this paper
we propose a method to calculate the set of weights of the
arguments taking into account the degree of uncertainty of
the labels. This permits us to order the arguments by giving
priority to more specific values because these represent
more precise information. The method uses two well-known
measures of fuzzy sets, namely, fuzziness and specificity.

We demonstrate the behaviour of the precision-based
TULOWA operator with a case study in a real application.
Specifically, we analyse the results obtained from the eval-
uation of the environmental impact produced when sewage

sludge coming from wastewater treatment plants is used as
fertilizer on agricultural soils. In this application, a two-stage
aggregation is needed because we have a set of experts that
evaluate a set of options using the same set of criteria (i.e.,
variables). For this reason, we further extend the IULOWA
operator by using multiperson techniques in the analysis [22]
and in doing so we define the multi-person-IULOWA (MP-
IULOWA) operator. By including the opinions of several
experts, we obtain more reliable results because we can base
the decision on the knowledge of a group of people rather
than on the opinion of a single individual. Moreover, the use
of unbalanced and induced information enables us to deal
with complex environments where some of the information
is more representative and therefore needs to be prioritised in
order to correctly assess the aggregation.

The rest of the paper is organised as follows. Section 2 pro-
vides some preliminaries, introducing the OWA and IOWA
operators, the linguistic OWA operator, and the management
of unbalanced linguistic labels, which are the basis of the new
operator. Section 3 defines the new induced unbalanced
LOWA operator, studies its properties, and presents some
specific operators that can be derived from the general for-
mulation. Section 4 describes how the different degrees of
uncertainty in the unbalanced terms can be used to induce an
order among them. It also explains how the set of weights for
the operator can be determined using the uncertainty mea-
sures. Section 5 shows the application of the new IULOWA
operator to a multiperson multicriteria problem (MP-
TULOWA). Section 6 compares the operator defined in this
paper with the homonym IULOWA operator proposed by Xu
[21]. Finally, Section 7 gives the main conclusions of the paper
and suggests some lines for future research.

2. Preliminaries

This section describes the set of concepts required before the
introduction of the ITULOWA operator. First, we present
numerical aggregation with the ordered weighted average
(OWA), together with its order-induced extension, the
induced OWA operator. We then present the LOWA (lin-
guistic OWA) operator as the basis of the [IULOWA operator
proposed in this paper. Finally, we introduce recent studies on
the management of unbalanced sets of terms.

2.1. Induced Ordered Weighted Average (IOWA) Operator. The
OWA operator is formally defined as follows [3].

An OWA operator of dimension m is a mapping OWA :
R™ — R defined by an associated weighting vector W of
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dimension m so that Y w; = 1 and w; € [0, 1], according to
the following formula:

OWAy, (a,ay,...,a,,) =W -

}i
oo
I
g
&
=
S

where b is the jth largest a;.

One of the main problems of the OWA operator is its
dependency upon the form of the weighting vector. There are
two main approaches [23, 24] to define this vector: the orness-
based approach and the analytical-based approach. The first
family of methods tries to optimize certain features (e.g., the
variance, the maximum dispersion, and entropy) under a
given orness level. The second type of methods defines the
weighting method using natural language [25, 26]. These
methods permit the use of absolute quantifiers such as much
more than 10 and relative quantifiers such as half, all, and there
exists.

Yager [25] proposed a method to obtain the OWA weight-
ing vector by using regular increasing monotone (RIM) quan-
tifiers. A RIM quantifier defines a fuzzy subset Q of the real
line with (0) = 1,Q(1) = 1,and Q(x) > Q(y) if x > y. Witha
RIM quantifier Q, the OWA weighting vector can be obtained

as follows:
wal)e(3) o

For instance, the quantifier all is represented by the fuzzy
subsets Q(1) = 1 and Q(x) = 0 for x # 1.

Once the weights have been established, the aggregation
policy is fully determined because the order of vector B in the
OWA operator is based only on the value of the arguments a;.
However, as shown by Yager and Filev [4], by allowing other
orderings for the arguments we can obtain a more general
aggregation operator: the IOWA (induced OWA). This gen-
eralization takes into account the ordering that an additional
variable (1) induces in the set of values to be aggregated.

The IOWA operator is defined as follows [4]:

IOWAy, ((up,a1), (upay) 5oy (Uppr @)

" (3)
T
-w'.B, =Zl w;b;,
]:

where W = (wy,...,w,,) is the usual weighting vector that
defines the aggregation policy of the OWA operator, with w; €
[0,1], Y w; = 1. The ordered argument vector B,, is obtained
by taking b; as the a; value of the pair (u;, a;) which has the
jth largest u; value. Yager refers to u as the order-inducing
variable and a as the argument variable.

It is important to note that the only requirement for the u
variable is that it must be drawn from a space in which there is
some linear ordering. This allows different kinds of criteria to
be used for the order-inducing variables. An important aspect
of the IOWA operator is the fact that the order induced by the
variable u can produce ties in some arguments. In this case,
the relative order of two arguments ; and a; with u; = u; is
relevant because they may correspond to different values, that

is, a; #a;. Many papers adopt the solution of replacing ;
and a; with their arithmetic average (a; + aj) /2. Another
mechanism for solving ties consists of including a secondary
ordering criterion [27], as we will propose in this paper.

The IOWA operator has the properties of monotonicity,
idempotency, symmetry, homogeneity, shift-invariance, and
duality [28].

The semantics of the OWA operator is a generalization of
the idea of averaging or summarizing the arguments. How-
ever, IOWA permits other kinds of aggregation of the argu-
ment variables, which can be modelled by choosing the
appropriate order-inducing variable. Since the introduction
of the IOWA operator, several authors have proposed differ-
ent ways of inducing the order. For example, Pasi and Yager
[29] used IOWA to define the majority opinion in group
decision making, by inducing the order of the arguments on
the basis of the similarity among one value and its neighbours.
The combination of this ordering criterion with linguistic
quantifiers allows calculating the fulfillment of the proposi-
tion “the satisfaction value of most of the criteria” rather than
“most of the criteria have to be satisfied” (which would be the
result of classical OWA). So, IOWA can give different aggre-
gation semantics. Merig6 and Casanovas have developed sev-
eral applications of IOWA with uncertain information [30]
and with distance measures [22]. Wei et al. [31] and Xia and
Xu [32] have studied several extensions by using intuitionistic
fuzzy sets and fuzzy numbers.

The main advantage of the IOWA operator over the OWA
operator is that it can deal with complex reordering processes
where the highest value is not the first one in the reordering.
Therefore, the induced variables solve an important drawback
of the OWA operator, which is exclusively based on a weight-
ing policy. For example, a journal may determine an optimal
average number of pages per paper. Thus, by using the
IOWA operator we can ensure that extremely long papers are
not the first in the reordering process because they are not
optimal in this analysis. Other interesting examples can be
found when analysing several key variables of the human
body including temperature, calories, and weight.

The main classes of models with induced aggregation
are classified [28] as standard auxiliary ordering, where the
inducing variable is an attribute associated with the input that
is not considered in the actual aggregation process but that is
informative about the object itself; nearest-neighbour rules,
where the order-inducing variable represents the similarity or
distance among the aggregating elements; best-yesterday
models, applied in models where it is necessary to predict the
order based on previous observations; aggregation of complex
objects, in which it is necessary to operate with compound
objects, such as aggregating matrices, where the order is not
directly defined and needs to be estimated with some addi-
tional measure; group decision making, an area in which it has
been proposed that the consensus can be better achieved with
inducing variables based on the support of each individual
score; and multiple inducing variables, where a priority order
is established among more than one inducing variable.

2.2. Linguistic OWA (LOWA) Operator. In this paper we will
study the aggregation of a set of linguistic terms. All the values



belong to the same linguistic scale of measurement: S = {s;},
i € {0,...,T}. This set S is defined as a finite and totally
ordered term set on a reference domain X = [0, 1], with an
odd cardinal, where one of the labels corresponds to the
neutral value and the remaining terms are placed around it [7,
15, 20]. The cardinality of the set must be small enough so as
not to impose useless precision and rich enough in order to
allow an appropriate discrimination level. The usual cardinal-
ity values are 7 or 9.

There are different approximations for working with lin-
guistic labels. Four paradigms are distinguished [13]: opera-
tors based on the linear ordering of the labels, operators based
on the extension principle, operators based on the 2-tuple
model, and operators defined directly on the symbols (i.e.,
computing with words). The aggregation operators that fol-
low the extension principle on linguistic data can be defined
as

s o Em) Y, (4)

where S” symbolizes the n Cartesian product of S, F* is an
aggregation operator based on the extension principle, F(R)
is the set of fuzzy sets over the set of real numbers R, and app :
F(R) — Sisalinguistic approximation function that returns
a label from S whose meaning is the closest to the obtained
unlabelled fuzzy number.

Following this principle, the LOWA operator [20] is the
basis of the operator that we will present in this paper. LOWA
is an adaptation of the OWA operator for dealing with linguis-
tic labels. It operates directly on the labels that are aggregated
in pairs by using a convex combination operation based only
on the position of the labels in the scale S. Because of its
simplicity, it has been used in many domains [33-35].

If A = {a,,...,a,} is the set of labels to aggregate, the
LOWA operator is defined as

LOWA (ay,...,a,) =W -B"
=C"{w, b, k=1,...,m}

®)
=w b e(l-w)

®C"  Bpbph=2,...,m},

where W = (w,,...,w,,) is an m-dimensional weighting
vector, so that w; € [0,1] and Y w; = 1; 8, = wy,/ Y5 wy, h =
2,...,m, and B is the associated ordered label vector (each
element b, € B is the ith largest label in A). C™ is the convex
combination operator of m labels; if m = 2 it is defined as

Cz{wi,bi,i:1,2}:w1®sjea(1—w1)®si:sk, ]
sips; €S(jzi), ©

so that
k = min{T,i + round (w, - (j —i))}, (7)

whereb; = s;and b, =s;. Ifw; =land w =0 forallk # j, then
C"w;,b,i = 1,...,m} = b;, and round is the common
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mathematical function which translates a real number to its
nearest integer value.

It is worth noting that the LOWA operator is commuta-
tive, monotonic, bounded, and idempotent. These properties
will be used later to analyse our proposed IULOWA operator.

2.3. Management of Unbalanced Linguistic Labels. The sema-
ntics of each linguistic label is usually given by a trapezoidal
or triangular membership function y : X — [0,1] that is
represented with a tuple P = (p;, p,, ps, p4), Wherep; <p, <
Ps < p, are the points in the reference domain X which define
the trapezoid. Some special cases can be defined. If p; = p,
and p; = p,, then P corresponds to a crisp interval. If p, = p;
the fuzzy set P is triangular; otherwise, it is a trapezoid. If p; =
P, = p3= pa, then P is called a crisp real number. In most of
the applications that use linguistic information, the fuzzy sets
associated with each label are equal, symmetric, and uni-
formly distributed throughout the domain (e.g., the term set
(a) in Figure 2). This kind of representation makes it easier to
manage and understand the meaning of each label and the
mathematical operations carried out over them. For instance,
the LOWA aggregation operator takes advantage of this
simplicity to consider only the order in which the labels
appear in the domain, which means that it can operate in a
symbolic way [20] (see Section 2.2).

However, many daily situations involve term sets in which
the fuzzy sets are not symmetric or are not distributed
uniformly across the domain [16, 36]. For instance, when a
student is evaluated, there is usually only one negative term
(failed) but several positive terms (pass, good, very good, and
excellent). If a control system is analysing the value of a sen-
sor, there is normally a range of terms that can be used within
the standard interval of values, but above a certain threshold
there is only one term (alarm). In general, the designers
of a fuzzy system may be more interested in defining a
certain interval of the domain more precisely than other
parts, leading to the use of more labels in that interval. The
development of unbalanced linguistic label sets and operators
to aggregate these kinds of labels has been highlighted as an
important area of research [13].

There have been few studies proposing the use of unbal-
anced sets of terms. Herrera et al. proposed [14, 36] some
aggregation operators for linguistic data represented in fuzzy
unbalanced linguistic term sets defined using the 2-tuple
model [12]. Terms are represented by a pair (s, ), where s is
the linguistic label and « is a number that represents the
translation of symbols into a real scale. This model is able to
deal with unbalanced linguistic variables by means of hierar-
chical linguistic contexts. A linguistic hierarchy [37] is a set of
levels, where each level is a balanced linguistic term set with a
granularity different from that of the remaining levels in the
hierarchy. Each level belonging to a linguistic hierarchy is
denoted as I(t, n(t)), where t is the number that indicates the
level of the hierarchy and n(t) indicates the granularity of
the linguistic term set of that level. To build a linguistic
hierarchy, the authors propose the fact that the linguistic set of
terms for level ¢ + 1 is obtained from its predecessor using the
expression L(t,n(t)) — L(t+1,2-n(t) - 1).
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FIGURE 2: Unbalanced term set with 5 linguistic labels (b) obtained
from a linguistic hierarchy of 3 levels (a).

In order to work with terms from different levels of the
hierarchy it is necessary to use transformation functions to
translate linguistic terms from one level to another. Con-
sidering that LH=U,I(t, n(t)) is a linguistic hierarchy whose
linguistic term sets are denoted as $"O = {s(')‘(t), . 528_1}, a
transformation function from a linguistic label in level ¢ to a
label in level ¢’ is defined [37] as

TE (0,270 < ( A (510, @) - (n () - 1) )

n(t)-1

(8)

where A(f) = (Sround(p)> B-round(p)) and A"l(si, «) =i+a.

Herrera-Viedma et al. [36] define the LOWA,, and
ILOWA,,, operators on the basis of these transformation
functions to make an aggregation (and an induced aggrega-
tion) of unbalanced linguistic terms.

To give an illustrative example, Figure 2(a) shows a 3-level
linguistic hierarchy. The parts in red are used to construct the
unbalanced term set depicted in Figure 2(b).

As can be seen in this example, the set of labels used in
each of the levels of the hierarchy is balanced and uniformly
distributed but, by taking some pieces of each level and
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FIGURE 3: A set of nine linguistic labels (from [16]).

putting them together, it is possible to model an unbalanced
term set. The main drawbacks to this approach are that it
is quite complex to define an appropriate set of labels and
the number of levels (and labels) to consider can be quite
large. In the example shown above, there are 17 labels in the 3
levels of the hierarchy, whereas the unbalanced term set to
be modelled only has 5 labels. Moreover, the definition of the
fuzzy sets in each of the levels is very strict, so it is not easy
to model an arbitrary set of unbalanced terms. In contrast, as
will be mentioned in the rest of the paper, in our proposal the
labels can be represented either with trapezoidal or with
triangular fuzzy sets with the sole requirement that they
define a fuzzy partition.

Another prominent proposal for modelling unbalanced
term sets is given by Xu [16]. He argues that when defining an
unbalanced term set, the absolute value of the deviation
between the indices of two adjoining linguistic labels should
increase as the indices of the linguistic labels steadily increase
(the term in the centre has index 0, so there are terms with
positive and negative indices). Following this idea, he pro-
poses defining a term set with 2¢ — 1 labels in the following
way:

sfz{s;|/3=1—t,§(z—t),§(3—t),
2 2 ©)
..,0,...,Z(t—3),§(t—2),t—1}.

For example, Figure 3 shows an unbalanced term set with
nine labels.

It can be seen that this way of defining the unbalanced
term sets is very rigid. It is only possible to model those situ-
ations in which the labels in the middle are very precise and
the labels in the extremes have a wider range. Moreover, the
labels are symmetrically located with respect to the centre of
the domain, so it is not possible to have more positive labels
than negative labels. This strict definition of the term sets
allows Xu to define simple functions that permit terms in one
set to be transformed into terms in another set. These trans-
formations are meant to be used when different experts have
used different term sets to evaluate a set of alternatives. Each
label is basically represented by a point in the domain rather
than by a fuzzy set.

One of the main aims of our work was to devise a method
for working with any unbalanced set of terms, without any
restriction on the definition of the fuzzy set associated with
each term (as long as a fuzzy partition is obtained). Xu’s pro-
posal [16] does not provide this flexibility, since the term sets
are very precisely defined and they have to be symmetrically



located with respect to the centre of the domain. Moreover, it
only considers situations in which precise labels are required
in the centre and imprecise labels in the extremes. The study
by Herrera et al. [14, 36] allows some unbalanced sets to be
modelled provided that the labels are composed by taking
pieces from each level of the hierarchy. In contrast, our
approach permits the direct definition of the unbalanced
term set that fits better with the needs of the application,
choosing any fuzzy set for each label. The price to be paid for
this flexibility is that the aggregation operator must operate
on fuzzy sets.

A related proposal by Xu [21], with which our approach is
compared on Section 6, is based on the idea of representing
uncertainty by using intervals of values (e.g., an expert could
say that the quality of an attribute of an object is “between
good and very good”). Xu proposed to consider a fixed and
totally ordered discrete term set, for example, S = {s_,,s_3,

.+» 53,84}, An uncertain linguistic variable s is defined as an
interval [s,, s, ], where a is lower than or equal to b. The wider
interval is, the more uncertain is the evaluation it provides.

He defines two basic operations on these intervals:

D s + s = [sgos] + [s5,8,] = [max{s_,
mm{salﬂh, s4}}, max{s_y,, mln{sbﬁbz, sattl

(ii) ks =k [, sp] =[Sk Skp)> With k between 0 and 1.

Note that all the operations are performed on the indexes
of thelabels, so it is assumed that all terms are homogeneously
distributed through the domain. With these two operations,
Xu defines the induced uncertain linguistic OWA aggregator
(TULOWA) as follows:

Xu-TULOWA,, = ({uy,81) , (U, 83) 55 (U S,))
(10)

= wlsbl + w25b2 + e+ wnsbn,

where W = (w;, w,, ..., w,) is the usual weighting vector, u is
the order-inducing variable, and Sp, is the s value of the (u, s)
pair with the jth largest u. If two pairs have the same u value,
their two s values are replaced by their average.

As will be shown in the comparison in Section 6, the
flexibility of our approach allows it to be used to simulate
the uncertainty represented by the intervals in Xu’s proposal,
by replacing these intervals with appropriately defined unbal-
anced fuzzy sets.

3. The Induced ULOWA Operator

The first part of this section focuses on defining the
unbalanced linguistic ordered weight averaging operator
(ULOWA) which is later extended to create its order-induced
version [ULOWA.

3.1. Unbalanced LOWA (ULOWA) Operator. The ULOWA
operator was defined [17] as an extension of the LOWA oper-
ator [20] designed to deal with unbalanced linguistic terms.
The ULOWA operator takes the same form as the LOWA,
which is as follows.

The Scientific World Journal

If A = {a,,...,a,} is the set of labels to aggregate, the
ULOWA operator is defined as
ULOWA (ay,...,a,) =W - B"
=C"{w,b.k=1,...,m}

(11)
=w b e(l-w)

®C"  Bpby,h=2,...,m}.

The difference with LOWA lies in the convex combination
of two linguistic terms. Whereas LOWA uses a symbol-based
approach, ULOWA operates on fuzzy sets; that is, it takes into
account the membership functions of the terms. In this way,
we are able to take into account the information given by the
fuzzy sets during the aggregation process, obtaining a more
precise result. So, when m = 2, the convex combination of the
two terms, b; =s;and b, =s;, withs;,s; €S (j>1), is calculated
taking into account the membership functions of the labels s;
and s;:

C* {w;, byi = 1,2} =w ®s;®(l-w)®s; =5,

where s, € S with  k = arg max {Sim (Sp,é‘)}. 12)

i<p<j
In this expression, § is a crisp number defined as § =
(X X X ) With x; = X[+ wy (x:j — x;), where x_ is the
x-component of the centre of gravity (COG) of the fuzzy set
associated with the label s; = (py, p,, p3» Pu):

1<P3—P2+2>, if py# Py
Vi = ? Ps— P
COG (s,) = 1 2’ if py = py

X = ya(ps+pa) +(patpr) (1-y4)
W= .
2
(13)

In this way, the aggregation result s is the linguistic term
consisting of s; and s; with the greatest similarity to the inter-
mediate point §. It is worth noting that the result is one of the
terms available in the scale of reference S. The similarity
between two fuzzy sets, proposed after a thorough study of
the literature [17], is calculated as follows:

4

Sim(P,Q) = {[[[ @~ Ipi-al) -1 (14)

i=1

Figure 4 depicts the aggregation procedure of the two
extreme labels of an unbalanced 7-term set (VL and P) for
different policies. The figure shows the COGs of both labels
and their intermediate crisp number § that is used to find the
result of the aggregation when varying the vector W. Three
usual aggregation policies have been used. After the similarity
function is applied using (14), ULOWA obtains the neutral
term M in the case of mean, H in the case of at least half, and
L in the case of as many as possible.
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XyL S xp
(a) Policy: mean (w = (0.5,0.5))

VL L

VH P

(c) Policy: as many as possible (w = (0.3,0.7))

FIGURE 4: Examples of ULOWA aggregation of two labels (VL and P).

3.2. Definition of IULOWA. The induced unbalanced LOWA
(IULOWA) is an aggregation operator for linguistic values
that are defined on an unbalanced vocabulary S. As it is based
on IOWA, the operator is able to manage complex decision
problems by using order-inducing variables.

Definition 1. The induced unbalanced linguistic ordered

weighted average, based on the ordering criterion u, is
calculated as

TULOWA,, ((u1sa1) > (5, @3) 5 -5 (ths @)

=C"{wp. b, k=1,...,m} (15)

—webe(1-w)eC"  {B.b,h=2,...,m},

=w.B'

where B is the induced ordered vector, that is, B = (al',(l)
a(',(z), cal (j))» Where %( ;) corresponds to the value g; having
the jth largest u. W = (wy,...,w,,) is the usual weighting
vector that deﬁnes the aggregation policy of the OWA opera-
tor, with w; € [0, 1], Y w; = 1. The final convex combination

of two linguistic terms is the same as in the ULOWA operator
defined in (11).

3.3. Properties of the IULOWA. As stated in [3], an aggre-
gation operator should have the following properties: mono-
tonicity, commutativity, idempotency, and boundedness.

Property 1. The IULOWA operator is increasingly mono-
tonous with respect to the argument values if the associated
order-inducing values remain unchanged.
Let us consider two order-induced vectors P = {{u;, p;),
Uy, P} and Q = {(u;,ql),..., (u:n,qm)}, so that
Viu; = u} and Vj,p; > g;; then IULOWA,(P) >
IULOWA,,(Q).

That means, as will be detailed in Section 4, if we replace
each term with another one that has the same specificity and
fuzziness but a greater preference in the scale S, the result
will also be an equal or better term in the preference scale. In
fact, this case reduces the proof to the ULOWA operator [17],
because the inducing variable does not change the order.

Proof. Let TULOWA,(P) = IULOWA,({u, p1)>---»
(U, P))» and TULOWA,,(Q) = TULOWA,((u],q1),---»
W, qm)- I Vj, u; = u} and Vj, p; > q;, any induced per-
mutation of the elements satisfies the condition Vj, p(',( Mz
dy(;> and TULOWA,(p) s+ -5 Phiy) = TULOWA, (g,

e q;(m)), due to the monotonicity of the ULOWA operator.
Then IULOWA,,(P) > IULOWA,,(Q). O

Property 2. The TULOWA operator is commutative.
A,(up,ay), ..., (U, a,,)) =IULOWA ((ul,al)
. (um, am)), where ((ul, al), ... (um,am)) is  any
permutation of the elements in ({u,, al), oo (U a0

Proof. The IULOWA operator reorders the arguments acco-
rding to the order-inducing variable. Thus, if A = ({(u;,4,),

.»{U,,a,,)) is any permutation of Al = ((u;, a{), s
(u:n, a,'n)), the order induced for A and A’ will be the same.
Therefore, [IULOWA ,(A) = IULOWA,,(A"). O

Property 3. The IULOWA operator is idempotent in the sense
that IULOWA,,((uy, a4, ), ..., (U, 4,,)) = 4, if Vj, a5 = a.

Proof. The proof does not depend on the inducing variable,
because in this case the values to be aggregated are the same
for all the arguments. Then, in line with the definition of the
IULOWA operator, we have a final step (12) that consists of

IULOWA,,(a,,_1,Gy,) = Sy, where k = w; ®s;& (1 -w,) ®s; =
argmaxl<P<]{Slm(s ,0)}. In this case,i = j,so s, =5, = $j =
a. Recursively, we obtain IULOWA (a,,...,a,,) = a. O



Property 4. The IULOWA operator is bounded. That is, for
any weighting vector W,

,a,,) < TULOWA,, (u;,4ay,...

Gy,)

Proof. Giventhats;,s; € S(j > i), we have defined the convex

min (a;,... » Upps By )
(16)

< max(ay,...

combination of these two terms as C*{w;, b,i = 1,2} =
w; ®s;® (1 -—w;) ®s; = ;. According to (12), we have k =
argmax;_,. ].{Sim(sp, 0)}. That is, the resulting label from the

combination of two labels is C*(s;, s;) = s, withi < k < j. This
means that we cannot obtain a result out of the limits given
by the labels that are aggregated at each step. O

3.4. Families of IULOWA Operators. 'The IULOWA operator
permits the definition of a wide range of families of unbal-
anced linguistic aggregation operators following the method-
ology used in the OWA literature [6, 21]. Note that each
specific case is useful in certain situations depending on the
objectives of the analysis. For example, when aggregating m
labels, we can study the following cases.

(i) If w; =1 /m, for all j, we get the unbalanced linguistic
average (ULA).

(ii) The induced unbalanced linguistic maximum is
obtained if w; = 1 and w; = 0, for all j # I, which
gives as result the value a; with maximum u;, because
u, =max{u;}, after the reordering stage.

(iii) The induced unbalanced linguistic minimum is
obtained if w,, = 1 and w; = 0, for all j # m, which
gives as result the value a; with minimum u;, because

u,, =min{u;}, after the reordering stage.

(iv) The unbalanced linguistic weighted average (ULWA)
appears if u; > u,,,, forall i.

(v) The unbalanced LOWA operator is obtained if the jth
largest label, s;, according to the scale S, is also ordered
at position j according to the inducing variable U, for
allj.

(vi) Step-IULOWA: it occurs if there is a position 1< k <
mso thatwy = land w; = 0, forall j # k.

(vii) Median-IULOWA: if m is odd, we assign w, =1 and
w; = 0 for all others, with p the position of the [(m +
1)/2]th largest u;. If m is even, we assign, for example,
w, = w, = 0.5and w; = 0 for all others, with p and q
being the positions of the (m/2)th and [(m/2) + 1]th
largest u;.

(viii) Olympic-IULOWA: it occurs if w, = w, =0, with
u, = max{y;} and u; — min{y;}, and for all others
w; =1 /(m = 2).

(ix) Window-IULOWAL: it occurs if w; =1 /dfork < j<
k+d-1andw; = 0for j > k+dand j < k. Note that
k and d must be positive integers so that k+d -1 < m.
(x) Centred-TULOWA: it occurs if the aggregation is
symmetric, strongly decaying, and inclusive. It is

symmetric if w; = w,,_;,;. It is strongly decaying
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wheni < j < (m+ 1)/2; then w; < w; and when i >
j= (m+1)/2; then w; < w;. Itis inclusive if w; > 0 for
all j.

(xi) Slide-IULOWA: three versions of this operator can be
defined on the basis of the degrees of andness («) and
orness (f3), where o, f € [0,1] and @ + < 1, as
follows.

(1) Generalised slide-TULOWA occurs when w; =
1-(a+P))/m+Bw, =(10-(a+p)/m+a
when and w; = (I-(ax+p))/m.

(2) Orlike slide-TULOWA occurs if & = 0.

(3) Andlike slide-TULOWA occurs if 3 = 0.

4. Order-Inducing Variables

In this section we analyse the feature of the [IULOWA oper-
ator that distinguishes it from the ULOWA operator, which
is the order-inducing variable used in the reordering process
of the linguistic labels. With this type of operator, we are able
to deal with complex reordering processes in which the
highest linguistic value in S is not the optimal value for the
decision maker.

4.1. Order Induction. As pointed out in Section 2.1, the order-
inducing variable can be obtained using different procedures.
The decision maker can express his/her personal ordering
directly on the values of the domain of reference, but it is also
interesting to have automatic processes to generate the order-
inducing criterion. In this latter case the order is linked to
certain features of the set of arguments, such as the distance
among the values, the past history of values, or the confidence
in the values.

In this paper we propose a new way of inducing the order
that is related to the additional information given by the shape
of unbalanced terms. As mentioned in the introduction,
unbalanced terms permit the definition of linguistic variables
with different granularity and distribution for the positive and
the negative values.

Considering the distribution of the terms {VL, L, M, AH,
H, VH, P} in Figure 4, let us assume that we are going to use
them to evaluate the performance of a certain object. People
usually do not assign extreme values unless they are really
sure about the performance of the object; thus, we have
defined two very precise fuzzy sets for VL and P (the most
negative and most positive terms). Being interested in finding
objects with a good performance, there are three terms to
indicate different degrees of positivity, while only one indi-
cates a low performance (L). Therefore, L is much more
uncertain than the others. Similarly, one can consider that the
labels AH (almost high) and VH (very high) are qualifying
the term H (high), indicating “a little more than high” or “a
bit less than high,” respectively. Thus, they are more precise
than high. These specific semantics of the different labels can
only be captured using an unbalanced set of terms.

The difference on the certainty of the terms should be
taken into account during the aggregation process, as each
label is providing a different amount of information about
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the evaluated alternative. In fact, if we consider that both
triangular and trapezoidal fuzzy sets can be associated with
the labels (as in Figure 4), then the uncertainty of the labels is
not only related to their support intervals in the reference
domain but also related to their kernel (i.e., the set of points
with value 1).

Taking into account the different features of the definition
of the linguistic variables pointed out before, we propose
using a measure of the uncertainty of the linguistic labels as
the order-inducing criterion for the aggregation. Thus, the
arguments will be ordered by decreasing uncertainty. In this
way, the contribution of precise labels is prioritized while the
effect of uncertain labels is reduced.

In the literature [7, 38-40], two types of uncertainty in
fuzzy sets are recognized: (1) specificity, related to the mea-
surement of imprecision, which is based on the cardinality of
the set, and (2) fuzziness or entropy, which measures the
vagueness of the set as a result of having imprecise bound-
aries.

With regard to the measure of specificity [8], let X be a set
and let [0, 1] be the class of fuzzy sets on X. A measure of
specificity is a function Sp: [0, 11¥ = [0, 1] so that

1) Sp(@) = 0;
(2) Sp(u) = 1ifand only if y is a singleton;

(3) if u and y are normal fuzzy sets in X and p C 7, then
Sp(p) = Sp(y)-

The following specificity measure, for a fuzzy set A
defined on X, is defined as a generalization of other previous
formulations [8]:

®Q®=T<%WN<£WAMAJm0>. 17)

In this expression T is a T-norm, '[O“S“p is a Choquet inte-
gral, ag,, is the superior a-cut, N is a negation operator, and
M is a fuzzy measure.

A special case of (17) is given in (18), by considering the
T-norm min, the standard negation N(x) = 1 — x, and the
Lebesgue-Stieltjes fuzzy measure M([a,b]) = b — a. Taking
these parameters and a normalized fuzzy set (with o, = 1),
the specificity of a fuzzy set defined in the [a, b] interval can
be calculated as

Sp(A) = 1 - Areaunder 4 (18)
b-a

With respect to the measure of fuzziness [41], let X be a
set and let [0, 1]* be the class of fuzzy sets on X. A measure of
fuzziness is a function Fz : [0, 1] — [0, 1] such that

(1) Fz(A) = 0 if A is a crisp set;

(2) Fz(A) = 1ifVx € X, A(x) = 1/2;

(3) Fz(A) < Fz(B) if A is less fuzzy than B; that is, A(x) <

B(x) < 1/2 or A(x) > B(x) > 1/2 for every x € X.

Fuzziness may be seen as the lack of distinction between
the fuzzy set A and its complement A. A general definition

0.1 0.2 0.3

A=(0.1,02,02,0.3)
B =(0.125,0.175, 0.225,0.275)

FIGURE 5: Two fuzzy sets with the same specificity and different
fuzziness.

of this type of fuzziness measure is based on an aggregation
operator h and a distance function d, as follows:

Fz(A) = hyep (d (A (X), A (1))). (19)

For the case of continuous domains using the standard
negation operation and the Hamming distance, (19) corre-
sponds to

L 20

a

Specificity and fuzziness refer to two different characteris-
tics of fuzzy sets. Specificity (or its counterpart, nonspecificity
[42]) measures the degree of truth of the sentence “containing
just one element” Fuzziness measures the difference from a
crisp set. For decision making purposes, it seems desirable to
have labels that correspond to single elements rather than to
large sets of values, which may hamper the selection of the
appropriate alternative. For this reason, we propose using
specificity as the order-inducing variable in the aggregation of
linguistic terms that qualify a set of alternatives in a decision
making process.

If there are ties between terms with the same specificity, a
second ordering criterion may be their fuzziness. An increas-
ing ordering of fuzziness will be used, as we prefer those terms
with less uncertainty. If this second criterion also leads to
some ties, a decreasing ordering on the preference scale S
associated with the terms can be used. In Figure 5 we show
two fuzzy sets with the same specificity (Sp(A) = Sp(B) =
0.9), according to (18),

area of A _1_ (02%1)/2

b-a 1-0
area of B 1— 2(0.05/2) +0.05
b-a 1-0 -

Sp(A)=1-

0.9,

Sp(B)=1- 0.9,
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TABLE 1: Uncertainty measures for the terms in Figure 6.

Term Definition Specificity =~ Fuzziness  Index
A (0.0, 0.0, 0.0,0.1) 0.95 0.05 0

B (0.0,0.1,0.2,0.3) 0.80 0.10 1

C (0.2,0.3,0.3,0.4) 0.90 0.10 2
D (0.3,0.4,0.4, 0.6) 0.85 0.15 3

E (0.4, 0.6, 0.6, 0.8) 0.80 0.20 4

F (0.6,0.8,0.8,0.9) 0.85 0.15 5
G (0.8,0.9,1.0, 1.0) 0.85 0.05 6

03 04 05 06 0.7

08 09 1.0

FIGURE 6: Linguistic variable with 7 terms (test 1).

but different fuzziness (Fz(A) = 0.1 and Fz(B) = 0.05), accord-
ing to (20),

b 1

|2-A(x)—1|:1—J [2-Ax) -1

1
FZ(A):I_EJ .

a
=1-09=0.1,

b 1

|2-B(x)—1|:1—J0 [2-B(x) -1

1
Fz(B)=1- ——
2 (B) b_aL
=1-0.95=0.05.
(22)

In this example, the set A is fuzzier than B, so B is
preferred.

Definition 2. Precision-based IULOWA: given a set of unbal-
anced linguistic arguments {a,,...,qa,,} we calculate their
induced aggregation according to their uncertainty by using
the IULOWA equation (15), where B is the induced ordering
vector, so that B = (b;, b, ..., b,,) satisfies these conditions:

(i) Vk1 < k < mSp(b,) = Sp(b, + 1);

(ii) Vk1 < k < m if Sp(b,) = Sp(b, + 1), then Fz(b,)
Fz(b, + 1);

(iii) Vk1 < k < m if Sp(b,) = Sp(b, + 1) and Fz(b,) =
Fz(b, + 1), then b, > b, + 1 according to the linguistic
scale S.

IN

Notice that if the terms correspond to crisp numbers,
TULOWA is reduced to the OWA operator.

The following example will show how the terms depicted
in Figure 6 would be sorted according to the previous order-
ing rules. Table 1 shows the information regarding each of the
terms needed to conduct the sorting procedure. Specificity is
calculated with (18), whereas fuzziness is obtained with (20).
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Taking into account the specificity, the labels are ordered
as A > C > (D, E G) > (B,E). Note that there are two ties:
the first one between D, F and G (with Sp=0.85) and the
second one between B and E (Sp =0.8). Using the fuzziness
measure to solve the ties, we put G (Fz=0.05) before D and F
(Fz=0.15) in the first tie, because we give priority to less fuzzy
terms. In the second tie, B (Fz=0.10) precedes E (Fz=0.20).
As we can see, by measuring fuzziness we are still unable to
decide the order between D and F, so we use the index of
the terms to decide their position, putting F (index = 5) before
D (index=3). Thus, the induced order according to the
procedure proposed in this paper (Definition 2) is A > C >
G>F>D>B>E.

4.2. Weight Generation. As mentioned above, the OWA wei-
ghts w; are used to define different conjunction/disjunction
aggregation models [43, 44]. As proposed in the literature
[1, 5, 45], the inclusion of an additional variable in the OWA
aggregator may also involve the transformation of the set of
weights.

In this section we propose modifying the set of weights
associated with the arguments by taking into consideration
the uncertainty of the values that are aggregated. The ratio-
nale is that the more specific values should have a higher
weight, whereas the less specific terms (that are less reliable)
should have a lower weight.

Using the family of fuzzy quantifiers proposed by Yager
[3], the set of weights is obtained with the expression

wso(s) o5 ) @

where S(k) = Zle U,y and o is the permutation according to
the order-inducing procedure established before. Q(p) indi-
cates the degree of compatibility of p with the concept
denoted by Q. For example, if Q represents a linguistic
quantifier such as “most of” and Q(0.95) = 1, then it can be
said that a value of 95% is completely compatible with the idea
conveyed by this linguistic quantifier.

The properties of the quantifier function must be taken
into account in order to generate a coherent set of weights for
the OWA operator. Taking the usual quantifier Q(r) = r* [3],if
a € [0,1], then the weighting function is concave, which
ensures that the larger the specificity, the higher the weight w,
of the corresponding argument [45]. It is worth noting that
with a € [0, 1] the aggregation policy is disjunctive, which
means that uncertain evaluations can be replaced with the
most specific available values.

Table 2 shows an example of weights obtained without
taking into account the specificities. We have made several
tests with different values of the parameter g, ranging from
0.1 (where we mostly base the result on the first argument) to
1 (which corresponds to an arithmetic average of the argu-
ments, as the weights are equal for all the values).

To evaluate the impact of the specificity measure in the
set of weights, two tests have been performed. The first one
is based on the linguistic variable with 7 terms represented in
Figure 6. We generate the weights for the values (A, C, E B,
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TABLE 2: Weights obtained without specificity.

a Weights

0.1 (0.851, 0.061, 0.038, 0.028, 0.022)
0.25 (0.668, 0.127, 0.085, 0.066, 0.054)
0.5 (0.447, 0.185, 0.142, 0.120, 0.106)

0.75 (0.299, 0.204, 0.179, 0.164, 0.154)

1 (0.200, 0.200, 0.200, 0.200, 0.200)

TaBLE 3: Weights obtained in test 1.

a Weights

0.1 (0.860, 0.059, 0.036, 0.025, 0.020)
0.25 (0.686, 0.124, 0.080, 0.060, 0.050)
0.5 (0.470, 0.186, 0.136, 0.110, 0.098)

0.75 (0.322, 0.209, 0.174, 0.152, 0.143)

1 (0.221, 0.209, 0.198, 0.186, 0.186)

TABLE 4: Weights obtained in test 2.

a Weights

0.1 (0.876, 0.056, 0.036, 0.017, 0.015)
0.25 (0.719, 0.119, 0.083, 0.042, 0.037)
0.5 (0.517, 0.187, 0.145, 0.079, 0.072)
0.75 (0.372, 0.216, 0.192, 0.112, 0.108)
1 (0.268, 0.225, 0.225, 0.141, 0.141)

and B) with specificities (0.95,0.9,0.85,0.8, and 0.8), respec-
tively (see Table 1). The results are shown in Table 3.

In this test, the specificities of the terms that are aggre-
gated are very similar. For this reason, the weights in Table 3
are quite similar to those in Table 2, where specificity was not
considered. This shows that when the specificity of the terms
is similar, the weights are not heavily modified.

For the second test we have used another set of terms with
different degrees of specificity, shown in Figure 7. In this case,
we aggregate the values (E, B, B, C, and C) with specificities
(0.95, 0.8, 0.8, 0.5, and 0.5), respectively.

In this second test the last two terms have a specificity
(0.5) much lower than the first three terms (0.95 and 0.8). The
results given in Table 4 show that this difference affects the
weights as expected, giving more weight to the less uncertain
terms. We can see a notable increase in the overall weight of
the first three terms and a decrease in the weight of the last
two terms.

5. IULOWA Multiperson Multicriteria
Case Study

In this section we use the operator defined in this paper to
address a real environmental evaluation problem. In particu-
lar, we study the impact of disposing sewage sludge in agricul-
tural soils. Environmental impact assessment is defined by the
International Association for Impact Assessment (IAIA) as
“the process of identifying, predicting, evaluating and mit-
igating the biophysical, social, and other relevant effects of

1

0 0.1

02 03 04 05 06 07 08 09 1.0

FIGURE 7: Linguistic variable with 5 terms (Test 2).

development proposals prior to major decisions being taken
and commitments made”” In the last decades the increase of
sewage sludge production as a residue of wastewater treat-
ment plants (WWTP) has become an environmental problem
in several countries. To maintain sustainability, countries are
encouraged to promote the value of sewage sludge as a
useful by-product. One of the most widespread practices has
been to apply sewage sludge to agricultural soils as fertilizer.
Although this option is generally accepted because it reduces
fertilizer costs, it may have ecological and human impacts. In
the SOSTAQUA Spanish research project these impacts have
been studied and evaluated using many different criteria.
Criteria were structured along three basic axes: economic
aspects, environmental suitability, and human health risks
[46-48]. For sludge managers, the decision on how to dis-
tribute the available sludge (from different WW'TPs) among
their clients (farmers with different agricultural fields) is quite
complex due to the large amount of information that has to be
considered and due to the expert knowledge that is required
to make a correct evaluation. For this reason, it is important to
have tools that evaluate the degree of suitability of using a
given sewage sludge on different types of soils in order to find
the best possible combination.

In this paper we focus on the problem of obtaining an
overall suitability index that evaluates the impact of certain
types of sludge on soil. This overall suitability is obtained by
aggregating the five criteria presented in Table 5. The evalua-
tion of these criteria is not straightforward and can be made
using different methodologies [46, 49]. Moreover, some of
the information considered in the evaluation model is sub-
jectively defined by a domain expert, so we can have different
opinions from different people.

5.1. The Multiperson Multicriteria Aggregation Process. It is
quite common to find problematic decisions when a set of
alternatives have been evaluated by different experts on a set
of criteria. In this scenario, an aggregation process with two
steps is carried out. First, the experts’ evaluations of each
criterion are fused in order to find a collective result for each
criterion. Afterwards, collective criteria are aggregated in
order to find the overall evaluation for each alternative. This
two-stage process is illustrated in Figure 8.

Let O = {0,,0,,...,0,} be a finite set of options (or
alternatives) to be considered in the group decision making
problem. Let C = {C,,C,,...,C,,} be a set of criteria (or
attributes). Let E = {E}, E,, ..., E } be a finite set of experts
(or decision makers or stakeholders) who participate in the
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TABLE 5: Environmental criteria.
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Criterion name

Description

Information used

Biodiversity
suitability

Biodiversity is an indicator of the health of ecosystems. Biodiversity can be
adversely affected by metal and organic compound contamination
depending on the characteristics of the soil.

Metal concentration in the sludge
Organic compounds in the sludge
Sludge treatment type

Organic matter in the soil

Soil texture

Soil carbonate level

Nitrates suitability

Contamination of the soil by nutrients should be minimized. Applying
sludge containing nitrates to a soil may affect its recommended level of
nitrates.

Organic matter in the sludge
Sludge treatment type
Nitrates available in the sludge
Soil texture

Nitrates available in the soil

Organic matter

Soil organic matter regulates several processes (e.g., as OM mineralizes
slowly, nutrients are released at a slower pace, reducing the potential risk of

Organic matter in the sludge
Organic matter in the soil

suitability nitrogen leaching to groundwater). Sludge treatment type
Metal contamination in soils is related to its pH. For this reason, basic soils Sludee pH
pH suitability are preferred for sewage sludge treatment. Acid soils should receive sludge Soil Ig)Hp

with a high pH.

Soil contamination
suitability

Soil contamination refers to the presence of heavy metals and organic
compounds in a soil. The presence of contaminants in sewage sludge may
result in risks to humans and ecosystems. The contaminant’s movement
between environmental compartments may lead to soil contamination.

Metal concentration in the sludge
Organic compounds in the sludge
Sludge treatment type

Organic matter in the soil

Soil texture

Soil carbonates level

Soil pH

Attributes

Alternatives
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FIGURE 8: Diagram of the multiperson multicriteria aggregation process.

decision making process, so that each expert E; provides his/
her own payoff matrix (@;;) . The process can be defined as
follows.

Step 1. For each option O; and each criterion C;, take the g
values of the experts E and calculate the weighting vector W
to be used in the IULOWA operator, according to the order-
inducing variable U (i.e., the specificity and fuzziness of the
labels), following the method proposed in Section 4. Then
apply IULOWA to aggregate the g values of the experts E
using the weighting vector W, following Definition 2. The
result is the collective payoff matrix (aj) .-

Step 2. For each option O; and its collective scores obtained
in Step 1, calculate the weighting vector W to be used in the
TULOWA operator, considering the order-inducing variable
U (i.e., the specificity and fuzziness of the linguistic labels of
the ith row of the matrix) and the method proposed in
Section 4. Then, calculate the overall aggregated results with
the TULOWA operator using Definition 2.

Step 3. Adopt decisions according to the results found in the
previous steps. Select the alternative that provides the best
result. Otherwise, establish an ordering or a ranking of the
alternatives from the most- to the least-preferred alternative,
to enable the consideration of more than one selection.
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TABLE 6: Definition and values of specificity and fuzziness of the
linguistic terms.

Linguistic value Definition Specificity  Fuzziness

Dangerous (D) (0.0, 0.0, 0.0, 0.1) 0.950 0.050
Risky (R) (0.0, 0.1,0.1,0.2) 0.900 0.099
Poor (PO)  (0.1,0.2,0.35, 0.5) 0.725 0125
Acceptable (A)  (0.35,0.5, 0.5, 0.65) 0.850 0.150
Good (G) (05,0.65,0.65,0.875)  0.812 0.187
Excellent (E)  (0.65,0.875,0.9, 1.0) 0.812 0.162
Perfect (PF) (0.9, 1.0, 1.0, 1.0) 0.950 0.050

This double-aggregation process is applied to a given
option O; described with m criteria by q experts and can be
expressed as a function MP-JULOWA : S" x §7 — Sso that

o (hal)
o ((ulaly, .., <ufn>az1>))

= IULOWA (IULOWA ;_,

(o ().

Note that, in the literature, there is a wide range of meth-
ods for group decision making including those that use expert
systems, voting systems, and game theory. Observe that game
theory is focused on competitive decision making, where the
individuals make a decision considering the potential actions
of their opponents. In this context, it is worth noting that the
work of Yager [50] considered the use of OWA operator in
game theory. This paper has not received much attention in
the scientific community but it may bring strong implications
for the development of new approaches for group decision
making with game theory. For example, all the extensions and
generalizations of the OWA operator also have the potential
to be implemented under this framework, including the
IULOWA operator presented in this paper. By using the
IULOWA operator, deeper assumptions should be made
because the first step would be to assume that the available
information is given in the form of linguistic variables, poten-
tially defined on unbalanced fuzzy sets. Although this point
is not considered in this paper, note that this issue may bring
some potential developments in future research.

MP-TULOWA (({uy,ay

(24)

5.2. Solving the Case Study. In this section we apply the MP-
TULOWA operator to an example with 3 types of sludge (S1,
§2,and S3) and 4 agricultural fields (F1, F2, F3, and F4), which
leads to a total of 12 different combinations or cases. Let us
assume that three experts (El, E2, and E3) have evaluated
those cases with the five criteria explained in Table 5 and
using the unbalanced linguistic variable depicted in Figure 9.

The linguistic vocabulary gives 7 degrees of suitability,
ranging from a dangerous to a perfect situation. This linguis-
tic scale presents an unbalanced set of terms with different
specificity and fuzziness (see Table 6). The most specific terms
are those that correspond to the most extreme scores (danger-
ous and perfect), followed by the term “risky.” This specificity

13
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FIGURE 9: Evaluation scale for the criteria (D: “dangerous;” R:
“risky;” PO: “poor;,” A: “acceptable,” G: “good,” E: “excellent,” and PF:
“perfect”).

is needed because those labels refer to very critical and precise
situations. A not so specific neutral term is available for use
if there is a combination of values that is neither positive nor
negative, from the point of view of environmental suitability.
The other terms permit the identification of different suitabil-
ity levels without the need to be too precise.

Notice that, in this vocabulary, the specificity of the terms
is a useful indicator to induce the aggregation weights because
the most specific values correspond to those terms that
are detecting the most interesting situations, from the deci-
sion maker’s point of view. In fact, the most specific terms give
more information than the rest. It is also necessary to take
into account the fact that when the specificity of the evalu-
ations is the same, fuzziness is used to solve those ties. The
definition, specificity, and fuzziness of the terms depicted in
Figure 9 are shown in Table 6. In this example it is assumed
that the scientists that provide the evaluations have similar
expertise and it is not necessary to assign different confi-
dences to each of them.

Table 7 corresponds to the three experts’ evaluations
of the twelve cases, taking into account the environmental
criteria explained above.

After obtaining the evaluations of the three experts, it is
necessary to aggregate all of this information into a single
matrix to represent the group opinion regarding the alterna-
tives for the five criteria. As we want to give more confidence
to values with high precision, we will use the proposed two-
stage [IULOWA aggregation process (see Figure 8).

First, when we aggregate the three experts’ evaluations
to obtain a single evaluation for each attribute of each
alternative, we will apply (18) and (20) to give more confi-
dence to the labels with more specificity and less fuzziness.
Table 8 shows the matrix obtained after the aggregation of
the three experts’ opinions using the IULOWA operator
induced by the specificity and by the quantifier Q(r) = 2,
which corresponds to high orness. This policy establishes that
the evaluations given by the more uncertain values will be
almost ignored, and the overall result will be mostly based on
the most specific evaluation given by one of the experts (w,
around 0.55). For example, for alternative 1 and the “biodi-
versity” criterion, the ranking of the values given by the three
experts is risky > acceptable > excellent. The result given by
IULOWA is poor and is mainly based on the combination of
the two first labels (w; + w, = 0.85). Thus, as the most precise
expert has indicated only a “risky” level of suitability, and
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TABLE 7: Evaluations of experts E1, E2, and E3.

Case Biodiversity Nutrients suitability ~ Organic matter suitability PH suitability Absence of soil contamination
E1l E2 E3 E1l E2 E3 El E2 E3 E1l E2 E3 El E2 E3

1 A R E D PO PO R R R A E G R R D

2 G G G A G A PF G PF PF PF PF PO PO D

3 PO G A D D D A PO PO R R A R R R

4 A R PO A PO A G E G PF G PF PO G PO

5 R A D A E A A R A E G PF G A PF

6 PO G PO E G G G G E G G A PO D PO

7 G PO A G G A G PO G PF PF PF A G E

8 E E E G A G E E E E E PF G G G

9 R D R PO G PO A A PO D D D A A A

10 A A R G G PF G G G R D R PO PO PO

1 G E A G G G E E G G G G G G A

12 PO PO PO A A PO A A A PF PF PF PO PO PO

TaBLE 8: Collective data matrix, including the overall suitability value.

Case Biodiversity Nutrients suitability ~Organic matter suitability PH suitability ~Absence of soil contamination Overall suitability

1 Poor Risky Risky Acceptable Risky Risky

2 Good Acceptable Excellent Perfect Risky Good

3 Acceptable Dangerous Acceptable Risky Risky Risky

4 Poor Acceptable Excellent Excellent Acceptable Good

5 Risky Acceptable Poor Excellent Excellent Acceptable

6 Acceptable Excellent Excellent Acceptable Risky Acceptable

7 Acceptable Acceptable Acceptable Perfect Acceptable Good

8 Excellent Acceptable Excellent Excellent Good Good

9 Risky Acceptable Acceptable Dangerous Acceptable Poor

10 Poor Excellent Good Risky Poor Acceptable

1 Acceptable Good Excellent Good Acceptable Good

12 Poor Acceptable Acceptable Perfect Poor Good

taking into account the precise medium evaluation given by
“acceptable,” the result is “poor”

In the resulting matrix, which contains the collective
evaluation, [IULOWA is applied again to each row in order to
obtain a final overall evaluation for each alternative. We
follow the same aggregation policy, which weights the con-
tribution of the values according to their precision. The last
column of Table 8 shows the overall suitability of each of the
twelve alternatives considered.

As indicated above, evaluating the environmental impact
of treating soil with sewage sludge is quite a delicate task and
the experts will want to give more importance to the cases,
where they have detected extreme values such as “dangerous”
or “perfect” Using the IULOWA weighting mechanism and
applying a disjunctive aggregation policy, we find that the
most specific label contributes around 45% to the final result
(w, =0.45). The remaining 55% is divided among the other
labels, in particular the one in the second position after
the ranking according to the uncertainty. For example, in
case 8, the ranking is acceptable > excellent > excellent >
excellent > good, so the final result is mainly a combination of
“acceptable” and “excellent;” which gives the result “good”

Notice that, with this criterion, a precise evaluation is
considered more important because experts are more con-
fident when they give a specific evaluation that when they
choose a more general one. This rationale is clearly exempli-
fied in cases 7 and 9, where an extreme evaluation (positive
“perfect” for case 7 and negative “dangerous” for case 9) has
direct consequences on the final overall suitability evaluation.
In case 7, despite having an “acceptable” evaluation for most
of the attributes, the fact of having a single but very specific
“perfect” evaluation makes the overall evaluation “good” A
similar event occurs in case 9, where having a “dangerous”
evaluation reduces the final evaluation to “poor,” although
most of the attributes have an “acceptable” suitability.

6. Comparison with Xu-IULOWA Aggregator

In this section we compare the performance of the proposed
TULOWA aggregator with another well-known induced lin-
guistic operator with the same name defined by Xu [21]. The
method proposed by Xu intends to aggregate the information
provided by a set of uncertain linguistic variables. Each of
these variables is defined with an interval of two linguistic



The Scientific World Journal

15

\n
S

)
S

S_y Sz S, Sy So s Sy s3 S
) S O S T PP PR S DA :
0 : : - 0 - - .
o n n 1 n n IS L — o N n N n n n I —
N N o> S I ~ > N IS o> S I ~ >
- =) @ o S *® = <) “ o S *x
S <) S S S =) S S
(a) (b)
1 - . §
0 : : : - - y \
o n N n n n s — o n N N n 1 —
~ 5] > I ~ > N N o I >
— <) “Q e S ® — = @ o x
S S <) S S <) S S

(c)

0.75 -

(d)

FIGURE 10: Linguistic terms used in the comparison. (a) Basic set of 9 labels equally distributed; (b) terms aggregated in case I; (c) terms

aggregated in case 2; (d) terms aggregated in case 3.

terms from a fixed finite set of predefined terms. Figure 10(a)
shows an example set of 9 labels, numbered from s_, to s,
whose meaning may be taken to be implicitly represented by
a set of symmetric and uniformly distributed triangular fuzzy
sets. Moreover, each item to be aggregated has an associated
value that is used to induce the order in which the items have
to be aggregated; however, Xu does not propose any specific
induction order. In Section 2 (10) we have provided the
definition of the Xu-IULOWA operator, which only depends
on the indexes of the aggregated elements (no operations
are performed explicitly on fuzzy sets). The result of the
aggregation is also an uncertain linguistic variable that is
an interval [s,, s,], where a and b do not have to be values
from the original set of terms. For example, the result of an
aggregation could be [s_; 3,5, 4].

In this section we show how our proposal is flexible
enough to be able to “simulate” the uncertainty represented by
the intervals in Xu’s work. The flexibility of our method relies
on the possibility of associating any fuzzy set to a label, even
if it is unbalanced or the labels are not uniformly distributed
throughout the domain of discourse.

Let us consider three case studies. In each of them the
aim is to aggregate 4 uncertain linguistic values, as defined
by Xu (i.e., 4 intervals of terms defined on a set of 9 labels),
using Xu’s method and our novel IULOWA operator. In order
to apply our method, first it is necessary to translate each
interval to a fuzzy set. Our idea is to simulate each interval
with a trapezoid, using the triangular fuzzy sets shown in
Figure 10(a); for instance, the interval (s_,,s;) would be
simulated with the trapezoid (0.125, 0.25, 0.875, and 1.0).
Table 9 shows the 4 values to be aggregated in each of the 3
cases and the trapezoids associated with each interval. These

trapezoids are also shown in Figures 10(b), 10(c), and 10(d).
In order to induce the aggregation order in our method,
it is necessary to know the specificity, fuzziness, and index
associated with each of the fuzzy sets to be aggregated.
The values are shown in Table 9 (the index refers to the
relative order of the lowest extreme of the intervals). Having
these three values, the order in which the items have to be
aggregated is determined (the last column of Table 9). First
we take the more specific sets. If two sets have the same
specificity, the less fuzzy set is preferred. If two sets have the
same specificity and fuzziness, the one with lower index takes
precedence.

The next step of our method is to calculate the weighting
vector, which depends on the aggregation policy (the param-
eter a described in Section 4.2) and on the specificity of the
values to be aggregated (the more specific values have a higher
weight than the less specific values). Table 10 shows the values
of the weighting vector for 3 different policies (a = 0.1,
a =0.5,and a = 1) as described on Section 4.2.

After all this process, we can apply our IULOWA aggrega-
tor and Xu’s IULOWA operator, using in both cases the same
induced order and the same weighting vector. The results (a
label in our approach, an interval in Xu’s case) are also shown
in Table 10. It is worth noting that, in our approach, after the
aggregation of each pair of labels, we take as result the closest
label of the original 9 term set.

The main difference between both proposals is that the
result of our method is, by definition, a single label, whereas
the result of Xu’s approach is an interval. Note that each of the
nine original labels may be taken to represent, in some way;,
a certain interval (e.g., label s; corresponds basically to the
values between 0.5625 and 0.6875). Table 10 shows how, in
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TABLE 9: Fuzzy terms and features used during the comparison.
Case ULOWA pair Membership function (p;, p,, Ps» Ps) Specificity Fuzziness Index Induced order
[s.55.4] (0,0.125, 0.375, 0.5) 0.625 0.125 0 4
. (5951 (0.375, 0.5, 0.625, 0.75) 0.75 0.125 2 2
[s_1 o] (0.25,0.375, 0.5, 0.625) 0.75 0.125 1 1
[s1,55] (0.5, 0.625, 0.875,1) 0.625 0.125 3 3
[5), 5] (0.5, 0.625, 0.875, 1) 0.625 0.125 3 2
5 [5 1> 54] (0.25,0.375,1,1) 0.3125 0.062 1 4
(55 50] (0,0.125, 0.5, 0.625) 05 0.125 0 3
[5),5,] (0.5, 0.625, 0.75, 0.875) 0.75 0.125 2 1
[s_5,5,] (0, 0.125, 0.75, 0.875) 0.25 0.125 1 4
3 [s 4] (0, 0, 0.625, 0.75) 0.3125 0.062 0 3
(555 4] (0.625,0.75,1,1) 0.6875 0.062 2 2
(55 5,] (0.75, 0.875,1,1) 0.8125 0.062 3 1
TABLE 10: Aggregation of terms.
Case Terms to aggregate Policy Weights Xu-IULOWA  Our proposal
a=1  (0273,0273,0.227,0227)  [S_g72 Som) S
1 (L lsnso])s 2 [s0s1])s B fsnss])s (4 [spnsa])) a=05 (0.523,0216,0.140,0.121)  [s_g74:S05] So
a=0.1  (0.878,0.063,0.033,0.026) [$_0.92> So13] sp» almost s_,
a=1  (0.343,0.285,0.228,0.144)  [s 5200521) 5,
2 (Ls1>s])s (2 [s1585]) - Bo [s23%])» (4 [s-5s4])) - @a=05  (0.585,0.207,0.133,0.075) [S0.51> S2.00) 5
a=0.1  (0.898,0.056,0.030,0.016) [So.84> 52,00 s, almost s,
a=1  (0.394,0.333,0.151,0.122) (50,87 5330 s,
3 (1, [53:84])5 (2 [50554]) > (B [sews1]) s (4 [s252]))  @a=05  (0.627,0.225,0.084, 0.064) [5) 50> S3.60] s,, almost s,
a=01  (0.911,0.057,0.018,0.014) (5573 S3.01] S5

all cases, our result is indeed very close to the middle of the
uncertain interval obtained by Xu.

The three cases can be mentioned in more detail. In
case 1 (Figure 10(b)) there are two specific labels (-1, 0) and
(0, 1) and two slightly more general ones (1, 3) and (-3,-1),
defined in a symmetric way with respect to the centre of the
domain. When a = 1 the two more specific intervals have a
slightly higher weight than the others, but the positive ones
compensate for the negative ones and the result is perfectly
symmetric. When a = 0.5 almost 74% of the weight relies on
the two initial intervals; although the result is not perfectly
symmetric with respect to 0, the first one (-1,0) has a
significantly higher weight. When a = 0.1 almost all the
weight (87.8%) is taken by the first label (-1, 0), so the result
is very close to this interval.

In case 2 (Figure 10(c)) there are two specific positive
labels (1,2) and (1, 3) and two labels that are more general (a
negative one (-3, 0) and a positive one (-1, 4)). The difference
in the specificity of the labels is clearly reflected on the weights
assigned to each label, even when a = 1, as the first label is
more than twice the weight of the last one (43.3% and 14.4%
respectively). This difference is even bigger when a = 0.5,
where the two initial labels already take 79.2% of the total
weight, and it takes its maximum expression when a = 0.1
and the first label takes almost 90% of the whole weight. The
two initial labels move the result towards the (1, 2) interval,
although the third label displaces a little bit this interval

towards the negative side (especially when a = 1 and this
third interval still has a weight of 22.8%).

Finally, in case 3 (Figure 10(d)) there are two very
positive and specific intervals (3,4) and (2,4) and two very
negative and uncertain intervals (-4, 1) and (-3, 2). The large
difference of specificity between the first two intervals and the
other two is clearly shown in their associated weights, which
give an overall weight to the first two values of 72.7% (a = 1),
85.2% (a = 0.5), and 96.8% (a = 0.1). Thus, the lower is the
parameter a; the more positive is the result of the aggregation.

In summary, the comparison between our novel method
and the one proposed by Xu shows how our IULOWA
methodology is flexible enough to model the uncertainty
represented by Xu’s intervals, giving an overall result that,
despite being a single label, closely reflects the middle of the
resulting uncertain intervals of Xu-ITULOWA.

7. Conclusions and Future Work

The fusion of partial evaluations to obtain an overall score for
each alternative is usually done with aggregation functions.
This paper has presented a new aggregation operator called
IULOWA, which enables complex reordering processes to be
carried out by using order-inducing variables. In particular,
the IOWA operator has been extended to deal with linguistic
variables that use unbalanced fuzzy sets. Unbalanced sets
of terms allow managing values with different degrees of
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uncertainty, thus permitting the design of sets of linguistic
terms for variables that, due to their nature, require different
degrees of precision in different parts of the domain.

First, we have proposed a new procedure to aggregate
terms with different degrees of precision. This method is
based on the extension principle and it uses operations on
the fuzzy sets associated with the linguistic terms that are
aggregated. The procedure is recursive, following the well-
known LOWA operator.

Second, we have carefully analysed the use of induced
variables in unbalanced sets of linguistic terms. The paper has
proposed a procedure to use the measurement of uncertainty
as an order-inducing criterion in IULOWA. In this approach
the decision is based on the less uncertain values. The concept
of minimum uncertainty is interpreted as maximum speci-
ficity and minimum fuzziness, two well-known measures in
fuzzy theory. Ties are solved by taking the linguistic scale of
evaluation as the preference degree. The paper also shows that
it is useful to modify the weighting policy according to the
level of uncertainty to make a coherent aggregation of the
values.

It can be clearly seen that we have defined a general
operator that includes the ULOWA operator when all the
terms have the same specificity and fuzziness. This can also be
reduced to the LOWA operator if the terms are balanced. In
fact, the IULOWA operator provides a wide range of families
of unbalanced linguistic aggregation operators following the
methodology used in the OWA literature.

On the basis of the [IULOWA operator, a multiperson
multicriteria scenario has been presented, proposing a solu-
tion to the decision making problem in two steps: (1) using
IULOWA to obtain a collective value for each criterion of
each alternative and (2) using IULOWA to combine the
aggregated values of the different criteria into a single overall
evaluation. The final overall linguistic value will identify the
best alternative/ alternatives. This model has been used in a
real environmental assessment problem, using a set of criteria
defined in the Spanish research project SOSTAQUA. The
results obtained show that when specific values give more
information than the more uncertain ones, the IULOWA
operator and the weighting policy proposed in this paper give
good and consistent results.

Finally, a thorough comparison with an aggregation
operator for uncertain linguistic values defined by Xu [21] has
been performed. The versatility of our approach, allowing the
definition of unbalanced and not uniformly distributed fuzzy
sets to represent the meaning of linguistic labels, permits
modelling the uncertain intervals considered by Xu and
obtaining results that lie closely within the centre of the
intervals obtained with that method.

In future research, we plan to develop further aggregation
operators for unbalanced linguistic variables including the
possibility of introducing the importance of the variables.
This combination of weighting criteria has been already stud-
ied in the numerical case so different methodologies can be
considered in future research [51]. We are also interested in
using this approach for group decision making. We intend to
study measures of consensus to evaluate the degree of
agreement between the experts and to estimate the proximity

17

between the individual opinion and the collective one [52].
The similarity measure between fuzzy sets that we apply to
combine pairs of labels during the aggregation process could
also be used for this purpose. As mentioned in the paper, the
relationship between this novel method of group decision
making and game theory is also worth studying in detail.
Finally, this study is part of the Spanish DAMASK research
project, in which we are developing a web-based online rec-
ommender system. In particular, we will deploy a version of
this system that is aimed at helping the user to find holiday
destinations and restaurants according to his/her personal
preferences [53-55].
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