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Abstract 

A main drawback of classical simulation of electrostatic sprays based on the 

Lagrangian description of droplet trajectories is the large number of droplet-to-

droplet electrical 

interactions that must be computed. We present and assess a new methodology in which 

some of these interactions are computed using a mean electrical field due to the droplets 

space charge considered as a continuum. This method has been applied to two systems, 

comprising 26000 droplets and 3500 droplets, resulting in 112 and 9 times 

faster computation, without loosing accuracy, as demonstrated in the predictions of 

impinging flux, droplet number density, and local droplet diameter.  1. Introduction

Electrostatic spraying of liquids from electrified capillary tubes can result in quasi-

monodispersed droplets with diameters ranging from nanometers to 

micrometers (Jaworek, 2008). The electrical charge carried by the droplets 

prevents their coalescence, and enables the control of the droplets' trajectories by 

means of electrodes. 
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These properties are critical in the technique of electrospray ionization mass 

spectrometry (ESI-MS) (Fenn, 2003), in the electrospray production of pharmaceutical 

particles (Peltonen et al., 2010; Enayati et al., 2011; Bock et al., 2012; Zamani et al., 

2013), and other electrospray applications such as micro- or nanoparticles and thin 

coatings (Barrero and Loscertales, 2007; Jaworek, 2007 a, b; Rietveld et al., 2009; 

Martin et al., 2010; Bodnár and Rosell-Llompart, 2013).  

The numerical simulation of electrospray systems, which are characterized by a large 

number of design variables, helps to reduce the number of experimental tests needed 

when developing designs for specific applications. In addition, numerically simulated 

systems can be interrogated in much more detail than experimental systems.  

The most detailed mathematical descriptions available for simulating droplets plume 

dynamics are based on Lagrangian models, which track the forces acting on each 

droplet, and predict the resulting individualized droplets' motions (Gañán-Calvo et al., 

1994; Hartman et al., 1999; Wilhem et al., 2003; Grifoll and Rosell-Llompart, 2012). 

Such individualized tracking of the droplets is straightforward to model; however, the 

numerical simulation of practical systems is hampered by long computation times (CPU 

times).  

At the root of this problem is the requirement to compute   2/1NN  droplet-droplet

electrostatic interactions at each time step of the computation, for N droplets in the 

plume. For instance, as reported by Grifoll and Rosell-Llompart (2012), a simulation of 

0.2 seconds of an electrospray comprising 26000 droplets took 1658 hours of CPU time 

for an integration time step of 1 s. This 0.2 s period covered the transient and a portion 

of the steady state needed to generate a statistically significant sample of independent 

snapshots of the charged spray.  
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The challenge of describing electrospray plumes with reasonable CPU times has 

motivated several studies. Higuera (2012, 2013) has proposed an Eulerian (continuum) 

model for a dilute spray, which gives realistic results at a fraction of the computational 

cost of a Lagrangian simulation. The Eulerian model can be applied in the regions 

where the fluctuations of the droplet velocity are negligible over its local average; for 

example, away from the droplet formation region.  

Within the Lagrangian framework, Yang et al. (2012) have used graphics processing 

units (GPUs) to simulate millions of droplets trajectories with a (theoretical) 

computational power of 10 Tera FLOPS. Currently, this promising alternative to CPU-

based calculations must be coded using a low-level assembly language that runs on both 

GPUs and CPUs.  

Another Lagrangian methodology, implemented by Grifoll and Rosell-Llompart (2012) 

on a standard computer (single CPU), is based on a coarse-grained description of the 

electrical forces due to faraway droplets. This approach reduced the CPU time by a 

factor of 40 for the aforementioned example of 26000 droplets. Yet, these gains in CPU 

time could still be insufficient for practical scenarios, in which droplets can easily 

number in the hundreds of thousands in a single electrospray.  

The present study aims to further reduce the CPU time in the Lagrangian framework, by 

implementing a continuous description of the electrical field created by the droplets' 

charge (space charge). In previous studies, and for computational purposes, the total 

electrical field sensed by each droplet is split into an external field, generated by the 

static parts of the system (electrodes), and a space charge field due to the droplets 

charge. In our proposal the total electrical field is computed from a continuous charge 

distribution which represents the droplets' charge, and is updated periodically.  
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2 Model and Governing Equations 

 

2.1 Lagrangian Model 

Electrostatically charged droplets are injected into the system near the end of an 

electrified capillary tube, which holds a conical liquid meniscus called a Taylor cone 

(Fernández de la Mora, 2007). The droplets travel towards a collection plate which is 

Earth-grounded. The Lagrangian model describes the droplets' spray plume as a N-body 

system governed by Newton's laws of motion 

 i
i

dt

d
V

R
  (1a) 

 i
i

i
dt

d
m F

V
  (1b) 

where  iiii zyx ,,R  is the position vector of droplet i  (m), im  is its mass (kg), iV  its 

velocity (m/s), and iF  is the sum of all forces acting on it (N). In this study, the z axis 

coincides with the capillary tube axis, and x and y are transversal axes. The resultant 

force can be decomposed as 

 iii elecD FFF   (2) 

where iDF  is the drag force arising from the droplet's motion relative to its gas 

surroundings (N), and ielecF  is the electrical force (N) experienced by droplet i. 

Considering the droplets as spherical particles surrounded by a still gas, the drag force is 

calculated as 

 iigiiDi dC VVFD 
 2

8
  (3) 

where the drag coefficient, iDC , has been estimated from (Abraham, 1970) 

  21104.01
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valid for Reynolds number 5000 ggiii dRe V . In the above equations, id  

denotes the particle diameter (m), g (Pa·s) is the dynamic viscosity of the gas and g  

is the gas density (kg/m3). While the restriction of still gas can be relaxed as shown by 

Arumugham-Achari et al. (2013), in the present work we have kept it for simplicity. 

The electrical force experienced by droplet i is the product of the droplet charge iq  

times the electrical field at the droplet's position  iRE : 

  iii q REFelec   (5) 

Depending on how the electrical field is calculated, one can distinguish different 

submodels, as described next.  

 

 

2.2 Discrete Charge Submodel  

 

This is the classical approach adopted in most previous Lagrangian simulations of 

electrosprays. The electrical field sensed by a droplet i,  iRE  in equation (5), is 

computed as the sum of the so-called external electrical field at the droplet's position 

(  iREext ) due to the static structure (usually, electrodes), plus the field created by the 

space charge associated with all the other droplets in the spray plume and their images 

on the collection plate: 

     iii scext ERERE   (6) 

 iREext  is minus the gradient of the electrical potential which is found by solving 

Laplace's equation (excluding the spray charges), with appropriate conditions at the 

static boundaries. iscE , on the other hand, is calculated by adding all of the contributions 

from the other droplet charges (Grifoll and Rosell-Llompart, 2012): 
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where jiij RRR   is the displacement vector between the position vectors of droplets 

j and i (m), JiiJ RRR   is the displacement vector between the position vectors of the 

image of droplet j, which is positioned inside the collection plate at 

 jjjJ zHyx  2,,R , and droplet i (m) (where H  is the separation between the 

capillary end and the collection plate),   is the gas permittivity (taken for air as 

8.854×10-12 A s/V m) and N  is the total number of droplets in the plume. As mentioned 

in the Introduction, it is the computation of the iscE  term through equation (7) that 

significantly slows down the overall computation.  

Figure 1(a) shows the modulus of the transversal component of the space charge field 

22

yscxsctsc EEE  experienced by three droplets as they travel through a spray 

previously simulated by Grifoll and Rosell-Llompart (2012) using the Discrete Charge 

submodel (therein used in the so called "complete simulation"). The trajectories of the 

droplets projected on the (r, z)-plane are shown in Figure 1(b) overlaid with a snapshot 

of the spray plume.  

The transversal field modulus tscE  is smooth far away from the centerline, but it is 

jagged close to the centerline, due to the influence of neighboring droplets. Similar 

trends have been found in analyses of other droplets' trajectories, not shown. The 

finding that the electrical field is very smooth within a large portion of the spray (away 

from the centerline) suggests that a continuous description of the electrical field can be 

adopted in this region. This possibility is explored in the next subsection.  
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2.3 Continuous Charge submodel 

 

A local continuous density of charge,   (C/m3), and the electrical potential   (V) 

satisfy Poisson's equation: 

 



 2  (8) 

from whose solution the electrical field can be calculated with 

 E  (9) 

However, upon injection, the droplets are organized nearly in a line (Tang and Gomez, 

1994); therefore, the space charge density is ill defined there. Moreover, as seen in 

Figure 1, the electrical field for droplets close to the centerline fluctuates strongly. 

These fluctuations are due to interactions with neighboring droplets, and it is clear that 

they would not be properly described by a simple continuous description.  

Therefore, our proposal computes the electrical field experienced by a droplet 

differently depending on its location, which is either near the centerline (within an inner 

region RI defined by radius *rr  ) or away from it (within an outer region RO defined 

by radius *rr  ). Droplets within RO sense a continuous electrical field generated by a 

continuous charge distribution which is a function of position, mimicking the discrete 

charge carried by the droplets. Therefore, this field is the solution to equations (8-9) 

using appropriate boundary conditions at the electrodes. On the other hand, droplets 

within RI sense both a continuous electrical field due to a continuous charge density 

associated to droplets in RO, and a grainy electrical field due to individual droplets in 

RI. Mathematically, 

     iii RIRO ERERE   (10) 

where,  
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where RO  is the continuous charge density associated only to droplets in RO (namely, 

with RO  taken to be equal to zero in region RI). In Eq. (13) the summation is extended 

only to the RIN  droplets which exist within region RI.  

It should be noted that when solving equation (8), the image charge induced on the 

electrodes (spraying capillary tube included) is automatically accounted for, while the 

Discrete Charge submodel neglects the image charge on the capillary tube. When 

solving Eq. (11) the image charge induced on the capillary tube by droplets in region 

RO is also accounted for.  

 

 

2.4 Numerical Implementation 

 

The Discrete Charge submodel (#2.2) has been implemented as in our earlier work 

(Grifoll and Rosell-Llompart, 2012). Equations (1)-(5) are solved starting with a 

droplet-free domain at time t = 0. Droplets are injected near the Taylor cone tip 

according to the injection rules presented in that article.  

The key advantage of the Continuous Charge submodel (#2.3) is the fact that it is not 

necessary to solve equations (8) and (11) at every integration time step. Global changes 

in the electrical field can only occur through restructuring of the spray, which can 

develop over time scales that are much longer than the integration time step. Therefore, 
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these equations are solved every M  time steps, so that the electrical field is updated 

with a frequency high enough to capture the electrical field dynamics, which is of order 

the inverse of the lifetime of a typical droplet (travel time from injection to collection). 

Since this lifetime is much longer than the integration time step, the former being of the 

order of milliseconds and the latter of microseconds, M  can be of the order of 

thousands. As will be shown, such large values of M  result in significant CPU time 

savings.  

Poisson's equation (Eqs. (8) & (11)) has been solved in non-homogeneous finite volume 

discretization, using axisymmetric cylindrical coordinates, with boundary conditions 

 = 0 at the wall of the cylindrical capillary tube (which is centered on the z-axis, and 

extends over z < 0) and Taylor cone external surfaces,  = 0 V at the collection plate 

(z = H), 0 z at z = -10H, and 0 r  at r = 10H. Because the electrodes have 

cylindrical symmetry, we hypothesize that the continuous droplets charge density 

distributions,   and RO , also have cylindrical symmetry. Therefore, we have 

discarded the azimuthal component when solving Equations (8) and (11).  

 

 

3. Results and discussion 

 

We have compared the results from the Discrete Charge and the Continuous Charge 

submodels for two real electrospray systems, which are characterized by the parameters 

listed in Table 1 (Grifoll and Rosell-Llompart, 2012). In both cases, the simulations 

were run for electrospray time running between t = 0 and 0.6 s, and the steady state was 

found to start at approximately t = 0.1 s, according to the criterion given in Grifoll and 

Rosell-Llompart (2012). Except for CPU time data, which include the initial transient  
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(0 < t < 0.1 s), all of the graphs and data discussed in this section refer to the steady 

state part of this period. 

 

Table 1. Parameters characterizing the simulated spray systems 

 Case 1 Case 2 

Reference 
Park et al., 

(2004) 

Tang and 

Gomez, (1994) 

Liquid density (kg/m3),  789.4 685 

Liquid flow rate (m3/s), Q 0.333×10-9 2.78×10-9 

Outer capillary tube diameter (m) 9×10-4 4.5×10-4 

Capillary tube to collection plate 

distance (m), H 

0.03 0.03 

Capillary tube potential (V), 0 4000† 5000† 

Electric current intensity (A), I 37.4×10-9 n.g.¥ 

Primary droplet count mean 

diameter (m)  

8.84×10-6 3.24×10-5 

Primary drop diameter RMS (%)  20.9 2.02 

Satellite droplet count mean 

diameter (m) 

n.a.§ 9.93×10-6 

Satellite drop diameter RMS (%) n.a.§ 25% 

Jet break up position (m), z0 0.5×10-3# 2.4×10-3£ 

Jet velocity (m/s), 0v  19.4 12.0 

 

†Referred to collection plate potential of 0 V. 

§n.a.: not applicable. 
¥n.g.: not given. 
#This value is chosen ad hoc at 13.5× d  plus the Taylor cone height (0.39 mm).  
£Taken from Fig. 7 of Tang and Gomez (1994). 

 

 

 

 

 

3.1 Case 1 

 

Case 1 is based on one of the electrosprays described by Park et al. (2004). We have 

focused our method development on this case because this is the electrospray with the 

largest droplet population studied here.  
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3.1.1 Selection of the number of snapshots needed for charge density averaging  

 

The charge density fields (  and RO ) needed to solve equations (8) and (11) have been 

found using the last snapshot available. Under steady state, no significant difference has 

been found between solutions based on charge density fields based on a single snapshot 

or based on the averaging of many snapshots (~500). (Throughout the simulation, a 

snapshot of the spray, consisting of all the droplets' positions and velocities, is recorded 

every 2×10-4 spray-time seconds.) Figure 2(a) shows that using a single snapshot to 

build the charge density field, results in isopotential lines that are smooth. This solution 

(taken from the simulation using the Discrete Charge submodel) is indistinguishable 

from the solution based on averaging 500 snapshots (not shown).  

That the space charge contributes significantly to this field can be seen by comparison 

of this panel with panel (b), which shows the isolines that are only associated to the 

external field (due to the electrodes).  

 

 

 

3.1.2 Selection of regions RI and RO  

For selecting regions RI and RO, it is helpful to investigate the fluctuating nature of the 

electrical field experienced by the droplets as a function of the radial coordinate. This 

calculation has been performed using snapshots from a Discrete Charge submodel 

simulation in order to properly capture the fluctuations arising from droplet-droplet 

interactions. Figure 3 shows the radial distribution of the average and the root mean 

square (RMS) of the modulus of the transversal electrical field, 22

yxt EEE  , 

where xE  and yE  are the non-axial components of  iRE , computed using Eq. (6). In 



 12/26 

this graph, we consider the droplets found within a slice z  = 15 mm ± 0.5 mm in 2500 

snapshots.  

As the centerline is approached, the average modulus decreases while the RMS 

increases to comparable values or even higher. As discussed earlier in the context of 

Figure 1, such fluctuations in the electrical field are associated with local 

non-homogeneities of the droplets' space charge. 

The boundary between regions RI and RO should separate the region RI, where the 

fluctuations are important, from the RO region, where tE  should be much greater than 

RMS( tE ). Therefore, Figure 3 suggests, for this spray, that such boundary should be at 

a radius r* equal to a few mm. In this work we have used a standard value of r* = 3 mm 

(where in Figure 3,   %15tt EERMS ).  

 

 

 

3.1.3 Selection of integration time step and electrical field update time 

 

According to Grifoll and Rosell-Llompart (2012) a convenient integration time step for 

this case is 1×10-6 s. This choice is dictated by the fast droplet dynamics close to the 

injection point. Therefore, we have adopted the same integration time step. 

The effect of the electrical field update time has been studied, for M ranging between 

2500 and 10000 (and r* between 1 and 3 mm). Very similar results have been obtained 

in all of these simulations; therefore, we have selected M = 5000 as a standard value in 

this work.  

 

 

3.1.4 Comparison of the two submodels 
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Figure 4 shows the radial distributions of the droplet volumetric flux impinging onto the  

collection plate, as predicted using the Discrete Charge submodel and the Continuous 

Charge submodel (for r* = 3 and 1 mm; M = 5000). The uncertainty bars have been 

estimated according to the procedure outlined in appendix A.  

Using r* = 3 mm, the prediction agrees very well with the Discrete Charge submodel, 

although the CPU time taken by this simulation was only 0.9% that required when using 

the Discrete Charge submodel. The maximum discrepancy (from the Discrete Charge 

submodel) is only -3.6% at r = 3.8 mm. Using r* = 1 mm, the prediction is still quite 

good (with maximum relative discrepancy of -5.8% at r = 2.4 mm). Relative to the 

Discrete Charge submodel prediction, both of these cases underestimate the flux close 

to r = r*, while this deficit is compensated by a flux surplus at the spray periphery, 

resulting in a slightly expanded spray.  

Further confirmation of equivalence between the two submodels is provide in Figures 5 

and 6, which show contour plots of the predicted locally-averaged droplet number 

density and droplet diameter, respectively.  

On the other hand, using r* = 0 mm resulted in poorly predicted spray dynamics, 

characterized by depletion of droplets from the central region, non monotonous droplet 

number density, and oscillations in the number of droplets in the spray (data not 

shown).  

We have also checked that using either M = 2500 or 10000 lead to very similar results, 

including predictions within the initial transient. In these two simulations (with 

r* = 3 mm), the CPU times were 30% longer and 15% shorter, respectively, than the 

M = 5000 run (31 hours).  
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In sum, these results lead us to conclude that the method based on the Continuous 

Charge submodel is robust and accurate for the simulation of Case 1, while it needs 

only a small fraction of the CPU time taken by the classical approach.  

 

 

3.2 Case 2  

 

Figure 7 shows two snapshots of the Tang and Gomez (1994) electrospray in the steady 

state, which has been simulated both using the Discrete Charge submodel (Fig. 7(a)), 

and the Continuous Charge submodel (Fig. 7(b)). These snapshots are characterized by 

a central plume of primary droplets, surrounded by a shroud of satellite droplets, as 

found experimentally by Tang and Gomez (1994).  

Figure 8 shows the predicted radial distribution of the corresponding volumetric 

impinging flux associated to the droplets impinging on the collection plate. Excellent 

agreement is found between the simulations based on the Discrete Charge and the 

Continuous Charge submodels, with maximum disagreement near the central region of 

2.3%.  

In view of these results, we conclude, also for Case 2, that the method based on the 

Continuous Charge submodel is robust and accurate.  

 

3.3 Computational efficiency 

 

Table 2 compares the times taken by the various simulations based on the Discrete 

Charge and Continuous Charge submodels. We can see that the computations based on 

the Continuous Charge submodel are much faster than those based on the Discrete 

Charge submodel. This improvement is the net result of having greatly reduced the 

number of droplet-pair interactions computed at each step, despite having to solve 
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Poisson's equation twice every M time steps. Such interactions are now computed only 

among droplets within region RI, which are a fraction of the total number of droplets 

(7.5% for Case 1, 10% for Case 2). It should also be noted that the standard values for 

the r* and M parameters have not been optimized. Moreover, we have seen that there is 

room for optimization, since halving r* and doubling M have produced similar results 

with further decreases in CPU time.  

 

Table 2. CPU time ratios for the various methodologies for Cases 1 and 2.  

Case 

Average 

number of 

droplets in the 

steady state 

spray plume 

Methodology 

(submodel) 

CPU time / 

CPU time for 

complete 

simulation 

CPU time / 

system time§ 

1* 26000 
Discrete Charge 1 2.0×107 

Continuous Charge¥ 0.0089 1.8×105 

2** 3490 
Discrete Charge 1 3.9×105 

Continuous Charge¥ 0.113 4.4×104 

 *Park et al (2004) 

 **Tang and Gomez (1994) 

 §System time at the end of the simulation = 0.6 seconds.  

 ¥M = 5000, r* = 3 mm 

 

 

4. Conclusions 

 

Numerical simulations of electrospray droplets dynamics in the classical Lagrangian 

framework rely on the calculation of all droplet-to-droplet electrical interactions, which 

result in long computation times (CPU time). In contrast to this Discrete Charge 

approach, in this work we have explored the merits of a Continuous Charge submodel, 
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which approximates the spray to a continuous charge distribution, updated periodically 

as the plume evolves, from which the electrical field is solved using Gauss' law.  

However, when applied to the entire spray this approach leads to unrealistic and highly 

distorted spray plume distributions. Instead, we have shown that this continuous 

approximation can be applied provided that different methods for computing the 

electrical force are used depending on the droplet's location. The electrical force on any 

droplets belonging to an 'outer' region RO, defined by a radius r > r*, is computed from 

Gauss' law in terms of Poisson's equation whose source term is the continuous charge 

distribution representing the entire spray charge. On the other hand, the electrical force 

on any droplets belonging to an 'inner' region RI (r  r*) has two contributions: the 

forces due to other droplets within region RI, which are accounted for one by one, and 

the forces due to droplets in RO, which are modeled as a continuous charge distribution.  

This method takes advantage of the fact that the characteristic time scales for droplets' 

motion (microseconds) and for the global dynamics of the plume (milliseconds) are 

widely different. Since the global electrical field dynamics are much slower, the 

solutions of Poisson's equation are updated periodically, every several thousand time 

steps used in the integration of the droplets' motion equations.  

We have applied this new methodology to simulate the spray dynamics for two real 

electrospray systems, described in the literature. The Discrete and the Continuous 

Charge submodels lead to minimal differences in the volumetric flux impinging on the 

collection plate, the droplet number density, and the droplet diameter distribution within 

the plume. For the system comprising 3490 droplets in the steady state, the use of the 

Continuous Charge submodel leads to a computational time which is only 11% of that 
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spent when the Discrete Charge submodel is used. For the system comprising 26000 

droplets in the steady state, this computational time fraction is reduced to just 0.9%.  
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APPENDIX A. Confidence intervals for the flux distribution over the collecting 

plate 

 

The flux distribution on the collecting plate along a radius, as presented in Figures 4 and 

8, has been calculated according the following procedure. 

First, we select a period t  in the steady state portion of the simulation. The droplets 

impinging into the collection plate are sorted into bins representative of equal radially 

spaced rings ...,,0 21 rr , (where 1 mm rrr  is constant). The impinging volumetric 

flux in bin m , is estimated as 

 
  trr
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 (A.1) 

where mN  is the number of droplets collected in bin m and ld  is the diameter of the l  

droplet. By this definition, mf  is a stochastic variable with some confidence interval, 

which should decrease as t  increases. 

This confidence interval can be estimated for a monodisperse electrospray (droplets 

with equal diameter d) considering the total number of droplets emitted in the period 

t , TN , and the number of droplets collected in bin m over the same period, mN . The 

probability that an emitted droplet is collected in bin m is pm, which can be estimated as 

 
T

m
m

N

N
p ~  (A.2) 

Then, the number of total droplets collected follows a binomial distribution. The 

variance of the flux in bin m is then 
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If the spray is not monodisperse, the procedure is still applicable if we divide the span 

of diameters collected in bin m into L intervals. In this study we have taken equally 

spaced intervals, so 

   LkLddddd mmkmkmkm ,...,1;min,max,1,,,    (A.4) 

A representative diameter for interval k is   21,,,  kmkmkm ddd . Now the probability 

that a droplet with a representative diameter kmd , is collected in bin m, is kmp , , which 

can be estimated as 
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where kTN ,  is the total number of droplets with representative diameter kmd ,  emitted in 

the period t , and kmN ,  is the number of droplets with representative diameter kmd ,  

collected in bin m in the same period. Because collecting droplets with different 

representative diameters are independent random events, the variance of the flux can be 

calculated as the sum of variances for the fluxes associated with each representative 

droplet diameter, as 
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According to Box et al. (1978) a binomial distribution can be roughly estimated from 

the Normal distribution when 5, kTN  and 

     kTkmkmkmkm Npppp ,,,,, 11   < 0.3. The error bars in Figures 4 and 8 

indicate one standard deviation (each side) which, under the Normal approximation, 
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represents a confidence interval of 68.3%. In these Figures, 5.1r mm and L = 10. 

When L = 5 the results differ by less than 1% from when L = 10. 
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Figure 1. (a) Modulus of the transversal component of the space charge field 

experienced by three droplets as they travel through an example spray. (b) 

Projection in the in rz-plane of the trajectories of the same droplets, overlaid on a 

snapshot of droplets' positions, wherein each symbol diameter is proportional to the 

droplet diameter. (This spray coincides with Case 1 in this study.) 

 

 

Figure 2. Contour plots of the electrical potential for Case 1: (a) considering the 

electrodes and the charge density field from a single snapshot; (b) considering only 

the electrodes.  
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Figure 3. Average and RMS of the transversal component of the electrical field versus r 

for Case 1. This figure is built from droplets in a slice defined by 14.5 < z < 15.5 

mm, for 2500 snapshots of the spray taken at regular intervals within the period 0.1 

to 0.6 seconds. 
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Figure 4. Radial distribution of the volumetric flux impinging on the collection plate for 

Case 1, obtained using the Discrete Charge submodel and the Continuous Charge 

submodel with M = 5000 and two values of r*. Uncertainty bars represent 68.3% 

confidence intervals. This figure is built from 2500 snapshots taken at regular 

intervals within the period 0.1 to 0.6 seconds.  
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Figure 5. Average droplet number density (#/m3) contour plots for Case 1, obtained with 

(a) Discrete Charge submodel, and (b) Continuous Charge submodel. This figure is 

built from 2500 snapshots taken at regular intervals within the period 0.1 to 0.6 

seconds. 

Figure 6. Average droplet diameter (m) contour plots for Case 1, obtained with (a) 

Discrete Charge submodel, and (b) Continuous Charge submodel. This figure is 

built from 2500 snapshots taken at regular intervals within the period 0.1 to 0.6 

seconds. 
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Figure 7. Snapshots of droplets' positions in rz-plane for Case 2 (at time 0.6 seconds), 

obtained with (a) Discrete Charge submodel, and (b) Continuous Charge submodel. 

Each symbol diameter is proportional to the droplet diameter.  

Figure 8. Radial distribution of the volumetric flux impinging on the collection 

plate for Case 2, obtained using the Discrete Charge submodel and the Continuous 

Charge submodel. Uncertainty bars represent 68.3% confidence intervals. This 

figure is built from 2500 snapshots taken at regular intervals within the period 0.1 

to 0.6 seconds. 


