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Abstract

We consider the mixed dicrete-continuous pattern of observation in a multi-state model; this is a
classical pattern because very often clinical status is assessed at discrete visit times while time
of death is observed exactly. The likelihood can easily be written heuristically for such models.
However a formal proof is not easy in such observational patterns. We give a rigorous derivation
of the likelihood for the illness-death model based on applying Jacod’s formula to an observed
bivariate counting process.
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1 Introduction

Multi-state models are a generalisation of survival and competing risks models. In

epidemiology, multi-state models are used to represent the evolution of subjects through

different statuses, generally including clinical statuses and death. Clinical statuses of

subjects are often observed at a finite number of visits. This leads to interval-censored

observations of times of transition from one state to another. A classical reference for

multi-state models is Andersen et al. (1993). This book however essentially treats right-

censored observations: building estimators by decomposing the observed processes and

equating to zero the martingale term is very elegant in that case but this does not work

for interval-censored observations.

∗ Address for correspondence: D. Commenges, ISPED, 146 rue Léo. Saignat, Bordeaux, 33076, France.
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2 Likelihood for interval-censored observations from multi-state models

One first issue is whether the mechanism leading to these incomplete observations

is ignorable. If this is the case, the likelihood can be written heuristically in terms of

both transition probabilities and transition intensities. In homogeneous Markov models,

transition probabilities can be expressed simply in terms of transition intensities but this

is not the case in more general multi-state models. In addition, inference in homogeneous

Markov models is easy because these are parametric models. Non-parametric approaches

to non-homogeneous Markov models may follow two paths: one is the completely

non-parametric approach and can be seen as a generalisation of the Peto-Turnbull

approach (Turnbull, 1976); the other implies a restriction to smooth intensities models. In

particular, the penalized likelihood method has been applied to this problem. A review

of this topic can be found in Commenges (2002). However all these approaches are

based on likelihoods which have been given only heuristically. In the complex setting

of observations from multi-state models involving a mixed pattern of continuous and

dicrete time observations it is important to have a rigorous derivation of the likelihood.

In Section 2 we describe the possible patterns of observation from multi-state models,

especially those which are relevant in epidemiology, and then we give the heuristic

formulas for the likelihood. We begin Section 3 by describing the theoretical basis of

likelihood, Jacod’s formula for the likelihood ratio for a counting process and a way to

apply it to incomplete observations; we give a rigorous derivation of the likelihood for

the illness-death model, based on a representation of this model by a bivariate counting

process and applying Jacod’s formula to an observed bivariate counting process.

2 Generalities on inference

2.1 Patterns of observation

Generally we will represent the status of a subject i by a stochastic process Xi; Xi(t)

can take a finite number of values {0,1, . . . ,K} and we can make more or less stringent

assumptions on the process, for instance, time homogeneity, Markov or semi-Markov

properties. Multi-state processes are characterized by transition intensities or transition

probabilities between states h and j that we will denote respectively by αh j(t;Ft−) and

ph j(s, t) = P(X(t) = j|X(s) = h,Fs−), where Fs− is the history before s; for Markov

processes the history can be ignored.

We may consider that the state of the process i is observed at only a finite number

of times V i
0,V

i
1, . . . ,V

i
m. This typically happens in cohort studies where fixed visit times

have been planned. In such cases the exact times of transitions are not known; it is only

known that they occurred during a particular interval; these observations are said to be

interval-censored. It is also possible that the state of the process is not exactly observed

but it is known that it belongs to a subset of {0,1, . . . ,K}.
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Figure 1: Illness-death model.

The most common pattern of observation is in fact a mixing of discrete and

continuous time observations. This is because most multi-state models include states

which represent clinical status and one state which represents death: most often clinical

status is observed at discrete times (visits) while the (nearly) exact time of death can

be retrieved. This is the case in the study of dementia by Joly et al. (2002) where an

irreversible illness-death model (see Figure 1) was used and dementia was assessed only

at planned visits. Note that in the irreversible model no transition from state 1 to state 0

is possible, which is well adapted to modelling dementia, considered as an irreversible

clinical condition.

In all cases we should have a model describing the way the data have been observed.

For writing reasonably simple likelihoods, there must be some kind of independence

of the mechanisms leading to incomplete observations relative to the process itself. A

simple likelihood can be written if the observation times are fixed. More realistically,

the observation process should be considered as random and intervene in the likelihood.

The mechanism leading to incomplete data will be said to be ignorable if the likelihood

treating the observation process as non-random leads to the same inference as the full

likelihood. An instance where this works is the case of observation processes completely

independent of the processes of interest Xi. A general approach for representing the

observation of a process Xi is to consider a process Ri which takes value 1 at t if Xi(t) is

observed, 0 otherwise. Ri must satisfy certain independence properties relatively to Xi in

order to be ignorable; in that case one can write the likelihood as if Ri was fixed. In the

remaining of this paper we will assume that this is the case that the mechanism leading

to incomplete observation is ignorable: we shall write the likelihood as if the discrete

observation times and the right censoring variable were fixed.
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2.2 Inference

The first interesting fact to be noted is that with continuous observation times, the

inference problem in a multi-state model can be decoupled into several survival

problems; with discrete-time observation (leading to interval-censoring), this is no

longer possible. The likelihood for the whole observation of the trajectory must be

written as in Joly and Commenges (1999); Joly et al. (2002) gave an example of the

bias that occurs when one tries to treat interval-censored observation from an illness-

death model as a survival problem.

We shall give the likelihood for interval-censored observations of a single

process X taken at V0,V1, . . . ,Vm, (treating the Vj as fixed); for sake of simplicity

we drop the index i. If we have a sample of size n the processes X and the

observation times should be indexed by i; assuming the independence of the

processes (the histories of the “subjects”) the likelihood is the product of the

individual likelihoods. For sake of simplicity we will also restrict to Markov models.

So, for purely discrete-time observations this individual likelihood is as follows:

L =
m−1

∏
r=0

pX(Vr),X(Vr+1)(Vr,Vr+1),

where ph j(s, t) = P(X(t) = j|X(s) = h).

Variants of this likelihood can be written in cases of mixing of continuous and

discrete-time observations. We give the likelihood when the process is observed at

discrete times but time of transition towards one absorbing state, representing generally

death, is exactly observed or right-censored, a common model and observational pattern

in epidemiology. Denote by K this absorbing state. Observations of X are taken at

V0,V1, . . . ,VL and the vital status is observed until C (C ≥ VL); here VL is the last visit

time of an alive subject. Let us call T̃ the follow-up time that is T̃ = min(T,C), where T

is the time of death; we observe T̃ and δ = I{T ≤C}. For continuous intensities model

the likelihood can be written:

L =
[L−1

∏
r=0

pX(Vr),X(Vr+1)(Vr,Vr+1)

]

∑
j 6=K

pX(VL), j(VL,T̃ )α j,K (T̃ )
δ
.

This likelihood can be understood intuitively as the “probability” of the observed

trajectory but it is not so easy to prove that this is really the likelihood, as we shall

see in the next section. For this likelihood to be useful, it must be expressed in term

of the transition intensities which are the basic parameters of the model; so we must

be able to express the transition probabilities in term of the transition intensities. This

is particularly easy in the homogeneous Markov model. In other models it generally

requires the computation of integrals.

Let us now specialize these formulas to the illness-death model, a model with the

three states “health”, “illness”, “death” respectively labelled 0,1,2. If the subject starts
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in state “health”, has never been observed in the “illness” state and was last seen at visit

L (at time VL) the likelihood is:

L = p00(V0,VL)[p00(VL, T̃ )α02(T̃ )δ+ p01(VL, T̃ )α12(T̃ )δ]; (1)

if the subject has been observed in the illness state for the first time at VJ then the

likelihood is:

L = p00(V0,VJ−1)p01(VJ−1,VJ)p11(VJ, T̃ )α12(T̃ )δ. (2)

This equations are valid for the reversible as well as for the irreversible illness-

death model. In Markov models, the transition probabilities are linked to the transition

intensities by the Kolmogorov differential equations. For the irreversible illness-death

model, to which we shall specialize from now on, the forward Kolmogorov equation

gives:

d p00

dt
(s, t) = −p00(s, t)[α01(t)+α02(t)]

d p11

dt
(s, t) = −p11(s, t)α12(t) (3)

d p01

dt
(s, t) = p00(s, t)α01(t)− p01(s, t)α12(t).

The solution of these equations are:

p00(s, t) = e−A01(s,t)−A02(s,t)

p11(s, t) = e−A12(s,t)

p01(s, t) =
∫ t

s p00(s,u)α01(u)p11(u, t)du,

where Ah j(s, t) =
∫ t

s αh j(u)du. These equations have been given for general

compensators in Andersen et al. (1993).

Inference can be based on maximising the likelihood. If a parametric model is chosen,

modified Newton-Raphson algorithms (such as the Marquardt algorithm) can be used for

the maximisation (the simplest parametric model is the homogeneous Markov model,

followed by the piece-wise homogeneous Markov model). Non-parametric approaches

can take two paths: one is the unconstrained non-parametric approach in the spirit of

Turnbull (1976) and this was developed by Frydman (1995), another one uses smoothing,

for instance through penalized likelihood such as in Joly and Commenges (1999). In the

former path the EM algorithm is attractive, in the latter the Marquard algorithm achieves

a good speed of convergence. All the above approaches are based on the likelihood

which has been derived heuristically. In complex problems such as the one at hand, it is

important to have a rigourous derivation of the likelihood; this is the purpose of the next

section.
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3 Rigorous derivation of likelihood for illness-death

3.1 Generality on likelihood

Consider a measurable space (Ω,F) and a family of measures Pθ absolutely continuous

relatively to a dominant measure P0. The likelihood ratio is defined by:

LF(θ) =
dPθ

dP0 |F

where dPθ

dP0 |F
is the Radon-Nikodym derivative of Pθ relatively to P0. Recall that dPθ

dP0 |F

is the F-measurable random variable such that

Pθ(F) =
∫

F

dPθ

dP0
dP0

,F ∈ F

For instance, the likelihood ratio corresponding to the observation of a random

variable X (that is to the σ-algebra X = σ(X)) can be written

LX(θ) =
f θX(X)

f 0
X(X)

,

where f θX(.) is the density of the law of X relatively to a given measure: for instance, for

a continuous variable, f θX(.) is the probability density function. Since the denominator

does not depend on θ, inference can be based only on f θX(X), which is the form of

the likelihood which appears in statistical papers. It is sometimes overlooked that the

likelihood is a random variable, being a composition of the probability density function

and the random variable X itself.

When dealing with complex problems such as inference based on incomplete

observations of processes, such a simplification is not available and it is necessary to

return to more fundamental theory. We are especially interested here in writing the

likelihood for interval-censored observations from an illness-death model. We shall

see that an illness-death model can be described as a bivariate counting process. We

could find the likelihood for interval-censored observation of a unidimensional counting

process relatively easily, for instance by considering that we have interval-censored

observation of a random variable which represents the time of jump. However for a

multivariate process this becomes much more difficult.

Consider the case of multivariate (or marked) point processes: N = (Nh,h = 1,2, . . .).

Denote N. = ∑Nh and Λ. = ∑Λh, where Λh are the compensators of Nh (that is Nh −Λh

are martingales and Λh are increasing predictable processes); when the compensators are

continuous we define intensities λh by Λh =
∫

λh. Consider also two probability measures

P̃ and P with P̃ � P. Jacod (1975) has given the formula for the likelihood ratio of the

process N; this formula is presented in Andersen et al. (1993) in term of product-integral,
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and supposing there is no information at time 0 it takes the form:

dP̃

dP
= ∏

t≤C
∏

h

(

dΛ̃h

dΛh

(t)

)∆Nh(t)
∏t≤C:∆N.(t) 6=1(1−dΛ̃.(t))

∏t≤C:∆N.(t) 6=1(1−dΛ.(t))

This is the likelihood ratio for the sigma-algebra N = σ(N(t), t ≥ 0) with compensators

relative to the filtration Nt = σ(N(u),u ≥ 0,u ≤ t); thus we cannot directly apply the

formula because we do not observe N but O ⊂ N.

There are two strategies for applying this formula to our incomplete observation

problem:

• Take the conditional expectation: E[dP̃
dP
|O]

• Apply the formula not on N but on an observed process

As an example of the latter consider the one-dimensional (so h = 1) process NO(t) =

N(l(t)), where l(t) = sup(u ≤ t : R(u) = 1). By definition this process is observed:

O = σ(NO(t), t > 0), so that we can apply Jacod’s formula. Consider the case of purely

interval-censored data: R(t) = 1 for t = V0,V1, . . . ,Vm, R(t) = 0 otherwise. Then NO has

a discrete compensator with jumps at V0,V1, . . . ,Vm

∆ΛO(Vj) = P[NO(Vj) = 1|NO(Vj−1) = 0]I{NO (V j−1)=0}

It is easy to see that by applying Jacod’s formula we get the expected result for the

likelihood (expressed in term of the survival function S of the jump time):

L = dP̃ = S̃(VJ−1)− S̃(VJ),

where the random variable J is defined as NO(VJ)−NO(VJ−1) = 1; in this formula we

have dropped the denominator which does not depend on the parameters.

3.2 Counting process model for illness-death

Consider one counting process NI for illness (NI(t) = 0 if healthy at t, NI(t) = 1 if

subject became ill before t) with intensity λI and one for death ND (ND(t) = 0 if alive at

t, ND(t) = 1 if subject died before t) with intensity λD. Let us model the intensities (in

the Nt-filtration) as:

λI(t) = I{NI(t−)=0}I{ND(t−)=0}α01(t)

λD(t) = I{ND(t−)=0}[I{NI(t−)=0}α02(t)+ I{NI(t−)=1}α12(t)] (4)

If we define X = NI + ND + ND(1−NI), this defines a multi-state process taking values

on {0,1,2} and with transition intensities α01(.), α02(.) and α12(.) between (0,1), (0,2)

and (1,2) respectively; there is identity between this multi-state (illness-death ) process

and the bivariate counting process.
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To ND we associate a response process RD(t) = 1, for all t ≤C; to NI , we associate a

response process RI(t) = 1 for t = V0, . . . ,Vm, RI(t) = 0 otherwise. The observed process

is NO = (NO
I ,NO

D ), with

NO
I (t) = NI(l(t))

where l(t) = sup{u ≤ t : RI(u) = 1}, and

NO
D (t) = ND(t), for t ≤C.

Jacod’s formula can be applied if we know the compensator of NO in the Ot filtration:

although we observe ND its compensator is not the same on Nt and on Ot . Thus, we need

compute the compensators of NO
I and NO

D in the Ot -filtration. It is easy to see that NO
I

has a discrete compensator which is null everywhere except possibly at observation times

Vj, j = 0, . . . ,m where it is equal to :

∆ΛO
I (Vj) = P[NO

I (Vj) = 1|NO
I (Vj−1) = 0,NO

D (Vj−) = 0]I{NO
I (V j−1)=0}I{NO

D (V j−)=0}

It can be seen that NO
I and NO

D can be replaced by NI and ND and, reminding that NI and

ND are not independent, we can write:

P[NI(Vj) = 1|NI(Vj−1) = 0,ND(Vj−) = 0] =
p01(Vj−1,Vj)

p0.(Vj−1,Vj)
,

where p0.(., .) = p00(., .) + p01(., .) (the probability of being still alive); of course the

transition probabilities ph j(s, t) still have a meaning in terms of the bivariate counting

process, for instance p00(s, t) = P[NI(t = 0,ND(t) = 0|NI(s) = 0,ND(s) = 0].

As for ND, it is observed in continuous time so we have NO
D (t) = ND(t), for t ≤ C.

However its compensator is not the same in the Nt -filtration and in the Ot-filtration: it

is clear that the intensity given in formula (4) is not Ot−-measurable. We may use the

innovation theorem and compute the Ot -intensity as:

λ
O
D(t) = E[λD(t)|Ot−] = E[I{ND(t−)=0}[I{NI(t−)=0}α02(t)+ I{NI(t−)=1}α12(t)]|Ot−].

In this formula, only I{NI(t−)=0} is not Ot−-measurable so the only problem is to compute

E[I{NI(t−)=0}|Ot−] = P[NI(t−) = 0|Ot−].

If ND(t−) = 1 we can take any arbitrary value for this probability; if NI(l(t−)) = 1, this

probability is null. The only non-trivial quantity is

P[NI(t−) = 0|ND(t−) = 0,NI(l(t−)) = 0] =
p00(l(t−), t−)

p0.(l(t−), t−)
.

Finally, the Ot -intensity of ND is

λ
O
D(t) = I{ND(t−)=0}[I{NI(l(t−))=0}ᾱD(t)+ I{NI(l(t−))=1}α12(t)],
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where ᾱD(t) = p00(l(t−),t−)α02(t)+p01(l(t−),t−)α12(t)
p0.(l(t−),t−) . This formula has a natural

interpretation, the intensity being a weighting of the transition intensities from health

and illness with the required probabilities conditional on what has been observed just

before t; if the subject has been observed in the illness state, then the intensity is α12 (for

an alive subject).

The likelihood ratio in Jacod’s formula can be written as the product of three terms

L = LILDL.. The first term is the contribution of observing a jump of NI: it is equal to

1 if no jump has been observed and if a jump has been observed at VJ :

LI =
∆Λ̃O

I (VJ)

∆ΛO
I (VJ)

=
p̃01(VJ−1,VJ)p0.(VJ−1,VJ)

p̃0.(VJ−1,VJ)p01(VJ−1,VJ)
.

From now on we drop the denominator and the tilde and we will simply write:

LI = p01(VJ−1,VJ)
p0.(VJ−1,VJ)

The second term is the contribution of observing a jump of ND: it is equal to 1 if no

jump has been observed; if a jump (that is death) has been observed at T ,it is equal to

λ
O
D(T ). If the subject has been seen ill at VJ the contribution is LD = α12(T ); if not it is

LD = ᾱD(T ) =
p00(l(T−),T−)α02(T )+ p01(l(T−),T−)α12(T )

p0.(l(T−),T−)
.

The last term of the formula, the product integral over times where no jump

happened, is the product of a dicrete and a continuous part: L.L.IL.D. The discrete part

L.I comes from the discrete compensator ΛO
I and if a subject has been seen ill for the

first time at VJ is a simple product:

L.I =
J−1

∏
j=1

(1−∆ΛO
I (Vj)) =

p00(V0,VJ−1)

p0.(V0,VJ−1)
;

the product stops at VJ−1 because there is a jump at VJ and the compensator is constant

after VJ; if the subject is never seen ill, the product goes until the last visit time. Finally

the continuous part of the product integral is

L.D = ∏
t≤T̃

(1−dΛO
D(t)) = e

−
∫ T̃

V0
λ

O
D (t)dt

.

On Vj−1 < t < Vj, where NI(Vj−1) = 0 and ND(t−) = 0 we have using the Kolmogorov

equations (3)

λ
O
D(t) = ᾱD(t) = −

d log p0.(Vj−1, t)

dt
.

Thus for a subject who has not been seen ill we have:

L.D = e
−
∫ T̃

V0
ᾱD(t)dt

= p0.(V0, T̃ ),



10 Likelihood for interval-censored observations from multi-state models

and for a subject seen ill at VJ:

L.D = e
−
∫ VJ

V0
ᾱD(t)dt−

∫ T̃
VJ
α12(t)dt

= p0.(V0,VJ)p11(VJ , T̃ ).

Finally for a subject not seen ill, calling VL = l(T̃ ) the last visit time, we have

L.IL.D = p00(V0,VL)p0.(VL, T̃ ).

Thus the likelihood is:

L = p00(V0,VL)p0.(VL, T̃ )ᾱD(T̃ )δ,

where αD(T̃ ) = p00(VL,T )α02(T̃ )+p01(VL,T̃ )α12

p0.(VL,T̃ )
, which is identical to (1).

For a subject seen ill at VJ , writing the likelihood as L = L.ILIL.DLD we have:

L =
p00(V0,VJ−1)

p0.(V0,VJ−1)

p01(VJ−1,VJ)

p0.(VJ−1,VJ)
p0.(V0,VJ)p11(VJ, T̃ )α12(T̃ )δ,

which is identical to (2).

Thus we have proved that the heuristic way of deriving the likelihood gives the

correct result for the illness-death model with the mixed discrete-continuous time

observation pattern.
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Resum

Considerem un patró d’observació mixt: discret i continu en un model multi-estat; aquest patró és
clàssic ja que molt sovint l’estatus clı́nic s’avalua en temps de visita discrets i el temps de la mort
s’observa exactament. La versemblança es pot escriure, heurı́sticament, de forma senzilla per a
aquests models. Nogensmenys, les demostracions formals no són senzilles amb aquest patrons
observacionals. Donem una derivació rigorosa de la versemblança per al model de malaltia-mort
basant-nos en l’aplicació de la fòrmula de Jacod a un procés comptador bivariat.
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