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Abstract

Costs or benefits which accumulate for individuals over time are of interest in many life history
processes. Familiar examples include costs of health care for persons with chronic medical
conditions, the payments to insured persons during periods of disability, and quality of life which is
sometimes used in the evaluation of treatments in terminally ill patients. For convenience, here we
use the term costs to refer to cost or other cumulative measures. Two important scenarios are (i)
where costs are associated with the occurrence of certain events, so that total cost accumulates
as a step function, and (ii) where individuals may move between various states over time, with
cost accumulating at a constant rate determined by the state occupied. In both cases, there is
frequently a random variable T that represents the duration of the process generating the costs.
Here we consider estimation of the mean cumulative cost over a period of interest using methods
based upon marginal features of the cost process and intensity based models. Robustness to
adaptive censoring is discussed in the context of the multi-state methods. Data from a quality of
life study of breast cancer patients are used to illustrate the methods.
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1 Introduction

Costs or benefits that accumulate over time for individuals are of interest in many

life history processes. Familiar examples include the cost of health care for persons

with chronic medical conditions, the payments to insured persons during periods

of disability, and cumulative quality of life measures which are sometimes used in

the evaluation of treatments for terminally ill patients. Costs or benefits may be
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multivariate and may accrue for a variety of reasons. For example, in studies of persons

with chronic obstructive pulmonary disease (e.g. Torrance et al., 1999) costs were

incurred by prescription of prophylactic or therapeutic medications, by hospitalizations,

by time off work, and so on.

For convenience we will often use the term costs to refer to cost or other cumulative

measures such as utility, profit, or quality of life, and let C(t) denote a cumulative

(univariate) cost for an individual over the time period (0, t). There is typically also a

random variable T that represents the duration of the cumulative process, so the objects

of interest are T and {C(t), 0 ≤ t ≤ T}. Simple methods for the analysis of cumulative

cost (e.g. Lin et al., 1997; Zhao and Tsiatis, 1997) have focussed directly on them, or in

some cases, just on the total lifetime cost, C(T ). However, a more informative approach

is to consider the underlying event processes that generate costs, along with the costs

themselves. For example, in a breast cancer trial (Gelber et al. 1995) discussed later in

the paper, different utilities were assigned for periods in which patients were (i) subject to

toxic effects of treatment, (ii) toxicity-free and relapse-free, and (iii) in a state of relapse.

Cumulative utility was then used to define a quality of life measure, so that C(T ) can be

thought of as a “quality-adjusted” lifetime.

Advantages of analyzing and modeling the event processes that generate costs

include increased understanding; the ability to deal with observation schemes involving

censoring, intermittent observation, or truncation; methods for predicting costs; a

convenient separation of the underlying event process from costs which may be

subjective, or subject to differing interpretations. The purpose of this paper is to review

models on which analysis of cumulative costs can be based, and to discuss efficiency

and robustness properties associated with these approaches. An analysis of data on the

treatment of breast cancer patients (Gelber et al. 1995) will be used for illustration.

We now set some general notation and describe two frameworks that have been used

to study cumulative processes.

The first framework assumes that for each individual i in a study there is a cumulative

cost (or quality) process {Ci(t), t ≥ 0}, and a time Ti at which the process terminates.

For example, in a cost of treatment study Ti would represent the duration of the treatment

period for the individual. In studies of the utilization of health care resources among

patients with terminal medical conditions, Ti would represent the time of death. In many

studies the value of Ti may be right-censored at some censoring time τi, in which case

the cost process is unobserved for t > τi. Considerable previous work has focussed on

nonparametric estimation of the distribution of “total lifetime cost” Ci = C(Ti), or just

on E(Ci); see for example Lin et al. (1997), Zhao and Tsiatis (1997), Bang and Tsiatis

(2000), Ghosh and Lin (2000), and Strawderman (2000). In most realistic situations Ti

is not independent of the cost process; more specifically, if Ci(t) = {Ci(u), 0 ≤ u < t} is

the cost history to time t, then the termination time hazard function,

lim
∆t 0

Pr(Ti < t + ∆t|Ti ≥ t,Ci(t))

∆t
, (1.1)
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depends on Ci(t). This implies that, even if the censoring time τi and (Ti,Ci(Ti)) are

independent, the censoring value C∗
i = C(τi) and the total lifetime cost Ci = C(Ti) are

not in general independent.

The second framework we discuss models the underlying multi-state process driving

the costs. Suppose that at time t an individual occupies one of K life states 1, . . . ,K.

It is assumed that all individuals begin in state 1 at t = 0, that states 1, . . . ,K − 1 are

transient and that state K is an absorbing state. Letting Y (t) represent the state occupied

by an individual at time t, we assume that there is a cost rate function V [Y (t), t] that

determines the incremental cost over the short interval (t, t + dt). The total cumulative

cost up to time t is then

C(t) =
∫ t

0
V [Y (u),u]du. (1.2)

The process terminates upon entry to state K, which occurs at time T , so that V [K,u] = 0

for all u > 0.

Given (Y (u),u), the cost rate function V [Y (u),u] may in general be random, but we

restrict consideration to cases where

V [Y (u),u] = v j(u) if Y (u) = j, (1.3)

where v j(u) is a known (deterministic) function, j = 1,2, . . . ,K. In this case (1.2) gives

C(t) =
K−1

∑
j=1

∫ t

0
v j(u)I[Y (u) = j]du (1.4)

and

E[C(t)] =
K−1

∑
j=1

∫ t

0
v j(u)p j(u)du, (1.5)

where

p j(u) = Pr[Y (u) = j], j = 1, . . . ,K, (1.6)

are prevalence functions. Gelber et al. (1995), Glasziou et al. (1990) and others have

considered the case where v j(u) = v j in connection with quality of life.

Note that in this framework C(T ) = C(∞), and process termination is conveniently

handled within the multi-state model. However, assumptions about the process

{Y (t), t ≥ 0} are needed. In a completely general setting transition intensities might

depend on prior cost history, but in the case of deterministic cost rate functions (1.3) we

have

Pr[Y (t + ∆t) = j|Y (t),C(t)] = Pr[Y (t + ∆t) = j|Y (t)] (1.7)

so we merely need to model the multi-state process.

The remainder of the paper is as follows. Section 2 reviews strategies for estimation

of cost distributions and addresses the multi-state framework in more detail. Methods
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based on full models are compared with those based on recently proposed robust

nonparametric estimates of prevalence functions p j(t). Section 3 examines the various

methods in the context of quality of life assessments in an IBCSG Breast Cancer

Trial (e.g. Gelber et al. 1995). Section 4 presents conclusions and discusses additional

problems.

2 Strategies for estimation

2.1 Marginal methods

Suppose interest lies in the distribution of C = C(T ). Furthermore assume τ is

independent of (T,C(T )) with corresponding survivor function K(t) = P(τ > t). where

h(t|·) is the hazard function for the In this setting we observe X = T ∧ τ, ∆ = I(T ≤ τ)

and C(X) = {C(u), 0 ≤ u < X} which we denote as (X ,∆,C(X)). If n individuals are

under observation and their responses are independently distributed, then we observe n

independent replicates {(Xi,∆i,Ci(Xi)), i = 1, . . . ,n}.

Glasziou et al. (1990) point out that even when τ is independent of (T,C), the

C-censoring value, C∗ = C(τ), and C are correlated. As a result, the assumption of

independent censoring for C is violated, and

lim
∆c↓0

Pr{C < c+ ∆c|C ≥ c,C∗ ≥ c}

∆c
6= lim

∆c↓0

Pr{C < c+ ∆c|C ≥ c}

∆c
.

Zhao and Tsiatis (1997, 1999), Bang and Tsiatis (2000), and others suggest the use

of “inverse probability of censoring-weighted” estimating equations (e.g. Robins and

Rotnitzky, 1995) for estimation of the survivor function Pr(C ≥ c) to adjust for the

dependent censoring induced by τ. Specifically they propose the estimate

P̂r(C ≥ c) =
1

n

n

∑
i=1

∆i

K̂(Ti)
I(Ci ≥ c) (2.1)

where K̂(t) is a consistent estimate of the censoring time survivor function.

The expected cost up to time t,

µ(t) = E{C(T ∧ t)} (2.2)

is often of interest, as is the expected lifetime cost E(C) = µ(∞). These can be estimated

using the fact that

µ(t) =

∫ ∞

0
Pr[C(T ∧ t) > c]dc. (2.3)

Cook and Lawless (1997), Lin et al. (1997) and Ghosh and Lin (2000) discuss alternative

estimators based on the fact that

µ(t) =

∫ t

0
S(u)dM(u), (2.4)
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where S(u) = Pr(Ti ≥ u) and dM(u) = E{dCi(u)|Ti ≥ u}. We can estimate S(u) with an

ordinary Kaplan-Meier estimate, and dM(u) as

dM̂(u) =
n

∑
i=1

I(Xi ≥ u)dCi(u)/
n

∑
i=1

I(Xi ≥ u). (2.5)

Strawderman (2000) discusses and compares (2.5) and estimators based on (2.1) and

(2.3).

The estimators above were developed under the assumption that censoring times τi
are independent of (Ti,C(Ti)), i = 1, . . . ,n. This is sometimes violated, as we discuss

below. The next two sections deal with methods based on multi-state models and how to

deal with non-independent censoring.

2.2 Methods based on multi-state models

We consider methods based on specific models for multi-state processes below. First, we

describe an alternative approach based on marginal Kaplan-Meier estimates which was

suggested by Glasziou et al. (1990) and developed more formally by Pepe et al. (1991).

Let T
(`)
j and W

(`)
j denote the times of the `’th entry and exit from state j, respectively.

The prevalence functions can then be written for j = 1, . . . ,K −1 as

p j(t) =
∞

∑
`=1

[Pr(T
(`)
j ≤ t)−Pr(W

(`)
j ≤ t)] (2.6)

and the expected total time spent in state j over the interval (0, t) as

µ j(t) =
∫ t

0
p j(u)du

=
∞

∑
`=1

[E(W
(`)
j ∧ t)−E(T

(`)
j ∧ t)] j = 1, . . . ,K −1. (2.7)

The example in Section 3 involves the progressive model shown in Figure 1. In this

setting we let T
(1)

k = Tk, k = 1,2, . . . ,K and W
(1)

k = Wk, k = 1,2, . . . ,K − 1 since each

state can be visited only once, and note that T1 = 0, T2 = W1, T3 = W2, and T4 = W3.

Then (2.6) gives

p j(t) = Pr(Wj ≥ t)−Pr(Wj−1 ≥ t) = S j(t)−S j−1(t), t > 0, j = 1,2,3, (2.8)

1 2 3 4

Figure 1: A Progressive Model.
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where W0 = 0. Assuming that censoring times τi are independent of W1, W2, W3, we can

estimate the S j’s with standard Kaplan-Meier estimates. Specifically, let Ni j(t) denote

the counting process recording the number of transitions out of state j (and into state

j + 1) by subject i up to time t and let δi j(t) = I(t ≤ min(Wi j,τi)) denote the “at risk”

indicators for exit from state j. Then if w` j (` = 1,2, . . . ,L j) denote the distinct times of

transitions from state j to state j + 1 across all individuals, the Kaplan-Meier estimate

for S j(t) = Pr(Wj ≥ t) is

Ŝ j(t) = ∏
w` j≤t

(
1−

dN. j(w` j)

δ. j(w` j)

)
, (2.9)

where dots indicate summation over i = 1, . . . ,n and dX(t) = X(t)−X(t−) for any right-

continuous process.

The approach just described uses the progressive nature of the process in Figure 1,

but is readily extendible to any other multi-state processes of the type considered here,

through (2.7) and the use of Kaplan-Meier estimates for the survivor functions of the

random variables T
(`)
j and W

(`)
j . Pepe (1991), Pepe et al. (1991), and Couper and Pepe

(1997) discuss specific types of processes, and variance and covariance estimates for the

Kaplan-Meier estimates.

Prevalence functions can also be estimated by developing a full probabilistic model

for the multi-state process. This can be done by specifying transition intensities, denoted

here by

λkk′(t|Y (t)) = lim
∆t↓0

P(Y (t + ∆t) = k′|Y (t),Y (t) = k)

∆t
k 6= k′.

Methods based on Markov models where λkk′(t|Y (t)) = λkk′(t) are well known, and

nonparametric estimation of transition probabilities is given by the Aalen-Johansen

estimates (Andersen et al. 1993, Section 4.4). Couper and Pepe (1997), Aalen et al.

(2001) and Datta and Satten (2001) point out that the Aalen-Johansen estimator of

the prevalence functions, while formally justified under a Markov assumption, in fact

provides a consistent estimate of the state occupancy probabilities (prevalence functions)

for non-Markov processes. To show this, Datta and Satten (2001) consider the “partially

conditioned transition rate” (Pepe and Cai, 1993),

αkk′(t) = lim
∆t↓0

P(Y (t + ∆t) = k′|Y (t) = k)

∆t
, k 6= k′,

with αkk(t) = −∑k′ 6=kαkk′(t), as well as a corresponding integrated transition rate

Akk′(t) =
∫ t

0αkk′(u)du with matrix form A(t) = {Akk′(t)}. The αkk′(t) are also the

transition intensity functions for Markov models but not for non-Markov models. Let

Nikk′(t) denote the cumulative number of transitions from state k to k′ over (0, t] for

subject i and N.kk′(t) = ∑
n
i=1I(t ≤ τi)Nikk′(t). Let Yik(u) = I(Yi(u

−) = k), and Y.k(u) =

∑
n
i=1I(u ≤ τi)Yik(u). The Markov process estimator is the Nelson-Aalen estimate of
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Akk′(t),

Âkk′(t) =

∫ t

0

I(Y.k(u) > 0) dN.kk′(u)

Y.k(u)
.

Product integration gives the Aalen-Johansen estimate of the transition probability

matrix over (0, t) as

P̂(0, t) = ∏
(0,t]

(I + dÂ(u)). (2.10)

If p(0) = (p1(0), . . . , pK(0))′ is the initial probability vector, then the prevalences (1.6)

at time t are estimated as p(0)′P̂(0, t). The estimate (2.10) is not robust to departures

from the Markov model, but Couper and Pepe (1997), Aalen et al. (2001), and Datta

and Satten (2001) show that the estimates of the prevalence functions p j(t) are robust

to departures from the Markov model under the assumption that censoring times τi are

independent of the multi-state processes. Glidden (2002) discusses variance estimation

for the p̂ j(t)’s.

If there is no censoring until after time t, then the Glasziou-Pepe estimates of p j(t)

based on (2.6) and the Markov (Aalen-Johansen) estimates based on (2.10) are identical

and equal to the observed prevalences ∑
n
i=1I(Yi(t) = j)/n. Obtaining variance estimates

for

µ̂(t) =
K−1

∑
j=1

∫ t

0
v j(u)p̂ j(u)du (2.11)

in the general case is messy via delta method techniques (see Praestgaard 1991 for

similar calculations) and bootstrap methods seem the best approach. We also note that

the Cook-Lawless (1997) estimate of µ(t) based on (2.4) and (2.5) uses, under (1.3),

dM̂(u) =

n

∑
i=1

K−1

∑
j=1

v j(u)I(Xi ≥ u)I[Yi(u) = j]du

n

∑
i=1

I(Xi ≥ u)

=
K−1

∑
j=1

v j(u)






n

∑
i=1

I(Xi ≥ u)I[Yi(u) = j]

n

∑
i=1

I(Xi ≥ u)





du

and so differs from (2.11) by the use of an empirical prevalence estimate p̂ j(u) instead

of the Glasziou-Pepe or Aalen-Johansen estimates. It is identical to the other estimates

when there is no censoring until after time t, but might be expected to be less efficient

with censored data.

The methods in this section assume that censoring is completely independent of the

multi-state process. Thus, for example, if censoring were state-dependent, bias could

occur. The next section discusses ways of dealing with this.



20 Cumulative processes related to event histories

2.3 State-dependent censoring

The assumption of general independent censoring (e.g. Andersen et al. 1993, pp. 139-

40; Kalbfleisch and Prentice 2002, pp. 194-5) implies that at any time the transition

intensities for individuals that are under observation are representative of those in

the population of interest at that time. This allows consistent estimation of hazard

functions or state transition intensities. Thus, the transition probability matrix (2.10)

and associated prevalence estimators are consistent when there is general independent

censoring, provided the multi-state model is Markov. This means that censoring does

not have to be fully independent of the multi-state process, but could be state-dependent.

However, the Glasziou-Pepe estimators based on (2.8) and (2.9) are not valid under state-

dependent censoring. To illustrate this, consider the estimate for S3(t) in (2.8), which

from (2.9), has jumps determined by

dĤ3(t) =
dN.3(t)

δ.3(t)

=
dN.34(t)

Y.1(t)+Y.2(t)+Y.3(t)
, (2.12)

where in the second expression we switch to the multi-state notation. If the model is

Markov with censoring intensities λ jc(t), j = 1,2,3 from states 1, 2, and 3 then dĤ3(t)

does not estimate

dH3(t) = dA34(t)

[
p3(t)

p1(t)+ p2(t)+ p3(t)

]
(2.13)

in general, but instead estimates dA34(t)P
∗
3 (t), where P∗

3 (t) is the probability an

individual is in state 3, given that they are in states 1, 2, or 3 (and thus uncensored).

The quantity dA34(t)P
∗
3 (t) equals (2.13) only if λ1c(t) = λ2c(t) = λ3c(t).

Robins (1993), Satten et al. (2001) and others have suggested a way to adjust

estimators for adaptive censoring, by identifying internal time-dependent covariates,

denoted by Z(t), with history Z(t) = {Z(u),0 ≤ u < t}, such that at time t the censoring

intensity satisfies

λC(t|Z(t),T ≥ t) = λC(t|Z(t)).

They propose the use of “inverse probability of censoring weighted” estimates for

survival probabilities and other quantities. In the context of survival times T , let

Ki(t) = ∏
s≤t

[1−dΛC(s|Zi(s))]

where dΛC(t|Zi(t)) = λC(t|Zi(t))dt. Robins (1993) and Satten et al. (2001) consider

N̄(t) = ∑
n
i=1I(ti ≤ min(t,τi))/Ki(ti−) and δ̄(t) = ∑

n
i=1I(t ≤ min(ti,τi))/Ki(t

−). They

prove that E(N(t)) = E(N∗(t)), where N∗(t) = ∑
n
i=1 I(ti ≤ t), and E(δ(t)) = E(δ∗(t)),

where δ∗(t) = ∑
n
i=1 I(t ≤ ti). As a result, if Ki(t) is known, and w1, . . . ,wL denote the L
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unique failure times,

S(t) = ∏
wk≤t

(
1−

dN(wk)

δ(wk)

)
(2.14)

is consistent for Pr(T ≥ t). Replacing Ki(t) with a consistent empirical estimate, K̂i(t),

gives

N̂(t) =
n

∑
i=1

I(ti ≤ min(t,τi))/K̂i(ti−)

and

δ̂(t) =
n

∑
i=1

I(t ≤ min(ti,τi))/K̂i(t
−).

δ(t) = ∑
n
i=1 then with known Ki(t), Satten et al. (2001) show that

Ŝ(t) = ∏
wk≤t

[
1−

dN̂(wk)

δ̂(wk)

]

is then a consistent estimate of the marginal survivor function, S(t) = Pr(T ≥ t).

In the context of progressive multi-state models such as the one represented in Figure

1, inverse probability of censoring-weighted methods can be used to obtain consistent

estimates of the distributions for the time to entry/exit of each state. As a result estimates

of the state occupancy probabilities based on (2.8) can be corrected for state-dependent

censoring.

This method of inverse probability of censoring-weighted estimation was generalized

to deal with multi-state processes in Datta and Satten (2002) where the focus was on

marginal transition rates. Let si1, . . . ,siri
denote the ri transition times for subject i. Then

let

N̄ikk′(t) =
ri

∑
r=1

I(sir ≤ min(τi, t))dNikk′(sir)

Ki(siri
−)

and

Ȳik(t) = Yik(t)I(t ≤ τi)/Ki(t−) .

Replacing Ki(t) with a consistent estimate gives N̂ikk′(t) and Ŷik(t), which give

N̂.kk′(t) =
n

∑
i=1

I(t ≤ τi)N̂ikk′(t)

and

Ŷ.k(t)=
n

∑
i=1

I(t ≤ τi)Yik(t)}.

These can in turn be used to compute weighted Nelson-Aalen estimates of the integrated

partially conditioned transition rates as

Ãkk′(t) =

∫ t

0

I(Ŷ.k(u) > 0)dN̂.kk′(u)

Ŷ.k(u)
, (2.15)
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and an estimate of the transition probability matrix by (2.10). These give estimates of

state occupancy probabilities that are robust to departures from the Markov model when

there is adaptive or state-dependent censoring.

The weighted Glasziou-Pepe approach and the weighted Aalen-Johansen approach

enable one to adjust for state-dependent censoring in estimating state prevalence

functions. In general, however, considerable effort may be required to identify a suitable

model for λC(t|Z(t)); see Datta and Satten (2002). If censoring is only state- and time-

dependent, then λC(t|Z(t)) = λ jC(t) and adjustments are readily made; we consider this

in Section 3.

Instead of modelling the censoring intensity, an alternative approach is to specify

intensities for the state transitions, thus rendering the censoring process ignorable. State

prevalence functions can then be estimated from this model. Intensity based methods

for multi-state processes raise issues of model specification and diagnostic checks are

essential to assess fit, because the prevalence estimates may be non-robust to departures

from the model. Advantages of this approach include a more thorough understanding

of the process of interest, and the ability to use the model for prediction. If interest

lies solely in the prevalence functions, however, then censoring-adjusted Markov-based

estimation is appealing.

3 An example

To illustrate the methodology and various points discussed in the preceding sections,

we consider a randomized clinical trial of adjuvant chemotherapy for breast cancer that

was conducted by the International Breast Cancer Study Group (IBCSG). This study

investigated the effectiveness of short duration (one month) and long duration (six or

seven months) chemotherapy (e.g., see The Ludwig Breast Cancer Study Group 1988,

Gelber et al. 1995). A total of 1,229 patients were randomized to treatment: 413 to the

short duration treatment and 816 to the long duration treatment. Median folllow-up time

was about seven years.

These data have been the subject of various quality of life analyses, based on a four

state progressive model as displayed in Figure 1. In this case the four states were 1:

Toxicity, 2: Toxicity-free and symptom-free, 3: Relapse, and 4: Death. Quality of life

utilities for states 1-4, such as v1 = 0.5, v2 = 1.0, v3 = 0.5, v4 = 0, have been used by

many authors; Gelber et al. (1995) provide references. We focus here on estimation of

the prevalence functions p j(t) = P1 j(t), j = 1,2,3,4 for patients in the two treatment

groups, but will discuss total quality of life at the end of the section. For the analyses

here, we dropped 16 patients for whom one or more state transition times were missing,

leaving 411 and 802 subjects in the short and long duration groups, respectively.

Figure 2 shows Kaplan-Meier estimates of the survivor functions S j(t), j = 1,2,3

for the times Tj at which the sojourn in state j ends, for the two treatment groups. The
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Figure 2: Kaplan-Meier estimates for distributions of exit times from states 1, 2, and 3.
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Figure 3: Prevalence estimates for states 2 and 3 for the long duration chemotherapy group.
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prevalence functions can be estimated from (2.8); these estimates are apparent from

the figure. Figure 3 shows prevalence estimate P̂12(t) and P̂13(t) based on both (2.8)

and the Markov (Aalen-Johansen) estimator (2.10), for the long duration group. The

two estimates for P12(t) are virtually identical, but those for P13(t) differ substantially.

Pointwise .95 confidence limits for the Glasziou-Pepe estimator (2.8), obtained via 500

nonparametric bootstrap samples, are also shown. Each bootstrap sample was a sample

of 802 subjects, drawn with replacement from the 802 long duration chemotherapy

subjects. The confidence limits are the estimated prevalence plus or minus 1.96 standard

errors, which were estimated from the 500 bootstrap samples.

As discussed in Section 2, the estimates represented in Figure 3 are robust, provided

that the censoring mechanism is completely independent of the multi-state process. The

Markov estimate is also valid under more general independent censoring (Andersen et

al. 1993) if the multi-state process is actually Markov. However, the estimates may be
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biased if these assumptions are not met. It is therefore advisable to assess the censoring

process and also the state transition intensities.

An examination of censoring suggests that it is not completely independent of the

multi-state disease process. In particular, the censoring intensity at time t on study differs

according to whether an individual is in state 1, 2 or 3 at time t. First, all individuals

spend only a short time (9 months or less) in state 1, and no one in the study was

censored while in state 1. Figure 5 shows estimated cumulative censoring intensities

Λ̂2C(t) and Λ̂3C(t) for the Markov model portrayed in Figure 4, where the state C stands

for “censored”, or withdrawn from the study. Because no individuals were censored

from state 2 until well after 12 months on study, and because there were only a very

few subjects who progressed to state 3 before 12 months, we have shown the Nelson-

Aalen estimates Λ̂2C(t)− Λ̂2C(12) and Λ̂3C(t)− Λ̂3C(12) in the figure. Two features

are apparent: (1) the censoring intensities from states 2 and 3 are very different for

t ≤ 60 months, and (2) up to about t = 48 months the censoring intensity for state 3 is

substantially higher for the long duration group than for the short duration group. These

features suggest that some individuals were withdrawn from the study after relapse and

that this was more pronounced in the long duration chemotherapy group.

Diagnostic checks on the Markov model, for which the transition intensities λ12(t),

λ23(t) and λ34(t) in Figure 4 are functions of time on study only, did not show

serious departures from the model for either the short or long duration groups. These

checks included the introduction of terms in multiplicative models for λ j, j+1(t|Y (t)) that
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Figure 6: Markov, Glasziou-Pepe, and hybrid model estimates of state 3

prevalence for short duration chemotherapy group.
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represented time since entry to the current state, and sojourn times in previous states.

This suggests that the Markov prevalence estimates should be fairly robust to the state-

dependent censoring. As a further check, we used censoring-related weights as defined

in (2.14) and (2.15), with the censoring intensity dΛC(s|Zi(s)) = dΛC(s|Yi(s)) at time s

depending on the state occupied. This made very little difference in the Markov estimates

for either P12(t) or P13(t). Interestingly, the use of weighted Kaplan-Meier estimation for

the Glasziou-Pepe prevalence estimates based on (2.8) also made very little difference,

even though the unweighted estimates are affected by state-dependent censoring. The

overestimation of state 3 prevalences in Figure 3 (and in Figure 6 below) is as suggested

by a comparison of (2.13) with dA34(t)P
∗
3 (t). In the setting here, P∗

3 (t) underestimates

the term in square brackets in (2.13), so the estimate (2.9) for j = 3 is biased up, as is

the estimate of p3(t) from (2.8).

The transition intensities from states 3 to 4 might be expected to depend on time

in state 3 (i.e. time since relapse). Although the checks on the Markov model did not

indicate any such dependence, we also fitted a model for which

λ34(t|Y (t)) = λ0(t − t2)e
βt2 . (3.1)

This model gave a reasonably satisfactory fit, especially for the short duration

chemotherapy group. The effect of t2 in (3.1) was highly significant, with β̂ > 0

indicating a negative association between time spent in the toxicity and toxicity-free

states, and the relapse state. This effect is sometimes seen in other cancer treatment

studies, where patients with longer times to relapse tend to have somewhat shorter

survival after relapse. Our preference here is for the simpler Markov model, but we

note that if (3.1) is adopted the prevalence estimate for P13(t) becomes

P̂13(t) =

∫ t

0
exp[−eβ̂uΛ̂0(t −u)](−dŜ2(u)). (3.2)

Figure 6 shows this estimate along with the Gelber-Pepe and Markov estimates for the

short duration group. We see that the new estimate falls substantially below the other

two. There is no obvious explanation for this, except that prevalence estimates from

semi-Markov models appear to be quite non-robust to model departures (e.g. Couper and

Pepe 1997). Another possibility that would also affect the Markov estimates is that some

persons were withdrawn from the study because of factors related to future prognosis.

This would render the censoring non-independent.

Quality of life (QOL) utilities used by Glasziou et al. (1990) and others for this study

were v1 = 0.1, v2 = 0.5, v3 = 0.1. Because the Glasziou-Pepe and Markov prevalence

estimates differed substantially only for the low-utility state 3, the corresponding

estimates of cumulative quality of life, which from (1.5) are

µ̂(t) =
3

∑
j=1

v j

∫ t

0
p̂ j(u)du, (3.3)
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do not differ much. In particular, the estimated mean QOL µ(t) at t = 84 months (as

discussed by previous authors) for the long duration group is 29.29 (Markov estimate) or

29.54 (Glasziou-Pepe estimate), with standard errors estimated by 500 bootstrap samples

of about 0.43. For the short duration group the corresponding estimates for µ(84) are

26.20 and 26.35, with standard errors of about 0.65.

4 Discussion

Multi-state models often provide an effective way to deal with cumulative cost or quality

processes. As indicated, robust estimation of state prevalence functions is possible

in many settings; this provides estimates of expected cumulative cost in the settings

discussed here. However, the development of full probabilistic models for a multi-state

process has the added advantages of providing (in conjunction with the cost model)

estimates of the distribution of costs, prediction, and ways of dealing with incomplete

data due to intermittent observation or selective sampling of subjects.

There are several areas that deserve further attention. One concerns efficiency and

robustness trade-offs among the methods of prevalence function and expected cost

estimation discussed in Sections 2 and 3. Limited simulation studies carried out by

us and others (e.g. Couper and Pepe 1997, Datta and Satten 2002) for specific multi-

state models suggest that the Markov (Aalen-Johansen) estimates are both more efficient

and more robust to adaptive censoring than the Glasziou-Pepe estimates. They also

suggest that estimates based on semi-Markov models are highly susceptible to departures

from the model even under random censoring. Interestingly, the use of censoring-based

weighting as described in Section 2.3 seems to have a relatively small effect in many

situations involving adaptive or state-dependent censoring. Further study is needed, but

it may be that censoring has to be highly adaptive for the weighting to make much

difference. In practice there is, of course, the problem of having to model the censoring

process in order to produce weights, and the effects of model misspecification here have

not been investigated.

It would also be worthwhile to study the estimation of cost distributions, and variance

estimation and confidence interval procedures for cost distribution characteristics.

Nonparametric bootstrap methods based on resampling individual data histories seem

to the most feasible approach at present.

In many applications it may not be feasible to define states in such a way that the

cost processes are linear with rates v j, or even deterministic, given the state occupied.

A more general cost process that has some degree of tractability is that the cumulative

cost up to a duration s for a sojourn in state j is v js + Z j(s), where {Z j(s), s ≥ 0} is a

stochastic process with independent increments. It seems important for tractability and

interpretability that we define states so that (1.7) holds, that is, so that state transition

intensities are independent of cost history, given the multi-state history. In some cases
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we may want to stratify individuals or add covariates to the multi-state process in order

to achieve this.
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Resum

Els beneficis o costos acumulats al llarg del temps per als individus són aspectes d’interès
en molts processos sobre la història dels esdeveniments. Exemples familiars inclouen el cost
mèdic per a persones amb una malaltia crònica, els pagaments a les persones assegurades
durant els perı́odes de discapacitat, i la qualitat de vida usada de vegades en l’avaluació del
tractament en pacients terminals. Usarem aquı́ el terme cost per a referir-nos al cost o a d’altres
mesures acumulades. Hi ha dos escenaris importants: (i) aquell en què els costos estan associats
amb l’ocurrència de certs esdeveniments, i en aquests el cost total s’acumula com una funció
esglaonada, i (ii) aquell en què els individus es mouen entre diferents estats al llarg del temps,
amb un cost que s’acumula a una taxa constant determinada per l’estat que s’ocupa. En ambdós
casos, acostuma a definir-se una variable aleatòria T que representa la duració del procés que
genera els costos. Considerarem aquı́ l’estimació del cost miitjà acumulat al llarg d’un perı́ode
d’interès usant mètodes basats en aspectes marginals dels processos i models d’intensitat. Es
discuteix la robustesa dels mateixos per esquemes de censurament adaptatiu en el context de
mètodes multi-estat. Els mètodes s’il·lustren amb dades d’un estudi de qualitat de vida amb
pacients amb càncer de pit.
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