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Abstract

In this paper we consider analysis of survival data with incomplete covariate information. We
model the incomplete covariates as a random coarsening of the complete covariate, and an
overview of the theory of coarsening at random is given. Various ways of estimating the
parameters of the model for the survival data given the covariates are discussed and compared.
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1 Introduction: incomplete covariates

Statistics is often used to investigate the effect of one or more covariates, X , on an

outcome of interest, T . In order to do this, a conditional model for the distribution

of T given X , typically in the form of a (linear, generalised linear, hazard, . . . )

regression, is fitted to the data. If we only look at observations of (T,X) for Xs

fulfilling certain restrictions, which do not depend on T (e.g. X larger than 7,

integer valued,. . . ), the conditional distribution of T given X is not affected. In

particular, if X is sometimes incompletely observed, restricting attention to cases with

X completely observed does not change the conditional distribution of T given X

as long as the incompleteness does not depend on the outcome. Thus a complete
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case analysis will lead to correct inference (consistent estimators, valid tests, etc).

However, there is clearly a loss of information, as we are effectively reducing the sample

size. In some cases this reduction may be considerable. Moreover, if X is multivariate

and only partly missing or more generally incomplete so that X is known to lie in a

restricted set y, a lot of good information may be lost. Consequently, we would like to

incorporate cases with incomplete covariates.

If the incompleteness of X depends on T , then we have a problem. Imagine for

instance that X is incompletely observed if T 6∈ y for some set y. Then a complete case

analysis amounts to looking only at cases with T ∈ y. But as L(T |X ,T ∈ y) 6= L(T |X),

a complete case analysis will fail to give consistent estimators. Here more complicated

methods are necessary.

In this paper we will mainly be concerned with the first type of incompleteness, i.e.

incompleteness of covariates unrelated to the outcome. In prospective studies where the

outcome is measured/recorded at a later stage than the covariate, this would often be

case. We will however also touch upon the more general case, where the incompleteness

of the covariates is related to the outcome as well as or instead of the covariate. This

will often be the case in retrospective studies but also in some prospective studies, for

instance if incompleteness is related to prognosis of outcome.

In the next section we give an introduction to coarse data and the concept of

coarsening at random in discrete sample spaces. We will use this to model the incomplete

covariates. In Section 3 we show how coarsening at random allows us to estimate a

conditional survival function and look at the EM algorithm. In Section 4 we extend the

concepts of Section 2 to general sample spaces and give a discussion of when censoring

is ignorable if the covariates are coarsely observed. Different methods of estimation

–including two likelihood based methods and weighted martingale estimation functions–

in survival models with coarsely observed covariates are discussed in Section 5. Some

conclusions are given in the final section.

2 Coarsening at random–discrete case

2.1 Coarse data

Let us start of with a simple example of an incomplete covariate. Let X denote smoking

status coded as “non-smoker”, “light smoker”, and “heavy smoker”. Imagine that for

some individuals we only know that they are not non-smokers. Then the covariate is

incompletely observed rather than missing for these individuals, since we do have some

information on the value of the covariate: It is either “light smoker” or “heavy smoker”.

Let X be a random variable with values in a finite space E . If X is not completely

observed, it means that all we know is that certain values of X are possible, i.e. that

X ∈Y for some subset Y of E . This subset may be randomly determined as in the example
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above: It is only for some smokers we do not have a complete observation of smoking

status. We call such a random subset Y of E a coarsening of X . As Y is to represent the

possible values of X , we will require that X ∈Y with probability 1; in particular, Y 6= /0.

Example 1 Two examples of coarse data are missing data and heaped data:

• Missing data. We either observe X or nothing at all:

Y =

{
{X} if X is observed

E if X is missing

• Heaped data. The covariate is either completely observed or rounded, i.e. we

observe either X or cbX
c
c for some given c. Thus

Y =

{
{X} if X is observed

{
c
⌊

X
c

⌋
,c
⌊

X
c

⌋
+ 1, . . . ,c

⌊
X
c

⌋
+ c−1

}
if X is heaped

A typical example is self-reported smoking; some individuals report a number of

cigarettes, others a number of packs smoked.

See Heitjan (1993) for more examples. �

2.2 Coarsening at random

Let us go back to the smoking status example. Suppose that the probability of not

observing which kind of smoker a person is, does not depend on whether the person

is a “light smoker” or a “heavy smoker”. Then the incompleteness is ignorable in the

sense that it tells us nothing beyond the fact that this person is a smoker. This idea is

formalised in the notion of coarsening at random.

Definition 1 We say that Y is a random coarsening of X if for all y ⊆ E

P{Y = y|X = x} = qy for all x ∈ y. (1)

We shall refer to this condition (1) as CAR (for coarsening at random). (qy)y⊆E is called

the coarsening mechanism; we note that ∑y3x qy = 1 for every x ∈ E . Equivalent to

condition (1) in Definition 1 is

P{Y = y|X ∈ y} =∑
x∈y

P{Y = y|X = x}P{X = x|X ∈ y}

=P{Y = y|X = x} for all x ∈ y
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or conditional independence of the coarse observation Y = y and the complete

observation X = x given the fact that X ∈ y:

{Y = y} ⊥
{X ∈ y}

{X = x}, x ∈ y. (2)

Hence observing Y = y tells us nothing more about the unobserved value of X than

the fact that X ∈ y. This is the essence of the ignorability mentioned above. For future

reference we note that this conditional independence is between three events, which are

tied together by y; Y is not conditionally independent of X given X ∈ y. A third equivalent

condition is that

P{X = x|Y = y} = P{X = x|X ∈ y} for all x ∈ y.

This follows directly from the conditional independence (2) or from the definition (1)

and Bayes’s theorem.

2.3 Estimating p

If CAR holds, the likelihood factors into a product of “the likelihood ignoring the

incompleteness”, ∑x∈y p(x), and the coarsening mechanism, qy:

P{Y = y} = ∑
x∈y

P{Y = y|X = x}P{X = x} = qy ∑
x∈y

p(x), (3)

where p(x) = P{X = x}. Hence to estimate p by maximum likelihood we can maximise

the naı̈ve log-likelihood

L(p) = ∑
y⊆E

ny · log

(

∑
x∈y

p(x)

)
(4)

where ny is the number of observed subsets of type y. In other words, we may ignore the

coarsening mechanism when estimating p (by maximum likelihood). This log-likelihood

can be maximised using the EM algorithm (Dempster, Laird and Rubin).

Given the marginal distributions of X and Y we can always write P{Y = y} =

qy ∑x∈y p(x) by defining qy = P{Y = y}/∑x∈y p(x). Of course, this will not ensure

that ∑y3x qy = 1. Gill, van der Laan and Robins (1997, p. 262) seem to suggest that a

factorisation such as (3) with ∑y3x qy = 1 implies CAR. The reader is invited to show that

this is indeed the case for the smoking status example. However, the following example

shows that it is not the case in general.

Example 2 Let E = {1,2,3,4} and p(x) = 1
4

for x ∈ E. Let P{Y = y} = 1
4

for y =

{1,2},{1,3},{2,4},{3,4} and 0 for all other subsets of E. Then the factorisation holds
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with qy = 1
2 for y with P{Y = y} > 0. In particular, ∑y3x qy = 1 for every x. However it

is quite possible to have, say,

P{Y = {1,2}|X = 1} =
2

3
P{Y = {1,2}|X = 2} =

1

3

and so on, so that P{Y = y|X = x} 6= qy and CAR does not hold. �

However, it is true that given the marginal distribution of Y there is a marginal

distribution of X so that the factorisation (3) holds with ∑y3x qy = 1. In other words,

we cannot test the hypothesis of coarsening at random. This is not unexpected since

CAR is a condition on the distribution of what is observed given what is missing. Gill

et al. (1997) prove this result by showing that the desired factorisation is obtained by

maximising the naı̈ve log-likelihood (4). Moreover, they show that the factorisation is

unique in the sense that for any y ⊆ E with P{Y = y}> 0, ∑x∈y p(x) (and qy) is uniquely

determined. In particular, assuming CAR the distribution of X is determined from the

distribution of Y if for instance P{Y = {x}}> 0 for all x. This is however not a necessary

condition, as the following example shows. Another sufficient condition is that the set

y with P{Y = y} > is a π-system generating the σ-field consisting of all subsets of E

(e.g. Billingsley 1979), but as the example below shows this is not a necessary condition,

either. As an example of p not being identified from the distribution of Y consider the

example above. A necessary and sufficient condition for the identifiability of p does not

appear to be known and may not exist.

Example 3 Let E = {1,2,3,4} and suppose that P{Y = y} > 0 for y = {1,2},{2,3},

{2,4} only. Then we can identify p(1)+ p(2), p(2)+ p(3), and p(2)+ p(4), and from

this we get

p(2) = 1−
(

p(1)+ p(2)+ p(2)+ p(3)+ p(2)+ p(4)
)
/3.

Now the rest follows easily: For instance, p(1) = p(1)+ p(2)− p(2). �

2.4 Discrete?

The “discrete case” in the title of Section 2 refers to the discreteness of the joint

distribution of (X ,Y ). We note that almost everything discussed above carries through

to the case where E is countable if the support of the distribution of Y is also at most

countable. The only exception is the result about the existence of the CAR factorisation.

Indeed, Gill et al. (1997) give a counter example (due to Y. Ritov) showing that if the

support of the distribution of Y is countable there may be no such factorisation. However

since all observed data sets are finite, it is still fair to say that the CAR hypothesis cannot

be tested.
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Notes

Coarsening at random was first defined by Heitjan and Rubin (1991) as a generalisation

of Rubin’s (1976) “missing at random”. Their treatment was essentially restricted to

the discrete case considered here. Jacobsen and Keiding (1995), Gill et al. (1997), and

Nielsen (2000) extend their original idea to general sample spaces (see Section 4). Gill et

al. (1997) also consider the discrete case in detail, and the present presentation is based

on their work.

3 Survival data

We shall apply the ideas discussed in the previous section to the analysis of survival

data with incomplete covariate information. Thus the data we are considering is in the

form of a survival time, T , a censoring time, C, and a covariate, X , for each individual.

This is the complete data. The observed data is the censored survival time, T ∧C,

the censoring indicator, 1{T≤C}, and a coarsening, Y , of X . We will work under the

assumption of random censoring in the sense of either independence of T and C or

conditional independence of T and C given X . In many applications the latter assumption

is more reasonable: If T is time to death of a specific cause and the censoring includes

“death of other diseases”, both will usually depend on life style risk factors such as

smoking. However, we shall see that conditional independence given X causes problems

for many of the methods we will consider.

3.1 Estimating the survival function

We will first consider estimating the conditional survival function F̄(t|x) = P{T > t|X =

x} of T given X based on the censored survival times and the coarsened covariates.

Suppose that Y is a random coarsening of X and that it is independent of T given X .

Then the conditional survival function given Y = y is given by

F̄(t|y) = E[1{T>t}|Y = y] = E
[
E[1{T>t}|X ,Y = y]

∣∣Y = y
]

= E
[
E[1{T>t}|X ]

∣∣Y = y
]
= E[F̄(t|X)|Y = y] =

∑x∈y F̄(t|x)p(x)

∑x∈y p(x)

Thus if the censoring is independent of T and X , we may estimate F̄(t|y) by the usual

Kaplan-Meier estimator and p from Y , plug-in and minimise the sum of squares to obtain

an estimator of F̄(t|x). Thus

[
̂̄F(t|x)

]

x
= (W>W )−1W>

[
̂̄F(t|y)

]

y
where W =

[
p̂(x)

∑x∈y p(x)

]

y,x
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We note that ̂̄F(t|{x}) actually estimates F̄(t|x); it is just the complete case estimator

discussed in the introduction. However, the weighted estimator derived above uses all

the data and should therefore be more efficient.

Example 4 To illustrate we simulate 4000 datasets with 200 survival times such that T

given X = x is exponential with intensity x. X is uniform on {1,2,3} and coarsened as

in the smoking status example such that

P{Y = y|X = x} =






1 if y = {1},x = 1
1
2 if y = {2},{3}, or {2,3} and x ∈ y

0 otherwise

The censoring is exponential with intensity 2 independent of T and X. We give results

for t = 0.2 in Table 1.

Table 1: Estimation of F̄(t|x) for t = 0.2: Complete case estimators and weighted
estimators (standard deviations in parentheses). Efficiency is of the complete case
estimator compared to the weighted estimator.

True value Complete cases Weighted estimates Efficiency

X = 1 0.8187 0.8185 (0.0530) 0.8185 (0.0530) 100%

X = 2 0.6703 0.6693 (0.0909) 0.6690 (0.0809) 079%

X = 3 0.5488 0.5484 (0.0979) 0.5487 (0.0874) 080%

We see that both complete cases and the weighted estimators are unbiased, and that

the weighted estimators are more efficient as we expected. Of course for X = 1 the

weighted estimator and the complete case estimator are the same. �

This weighting approach can be used for estimating any conditional functional of the

survival distribution, e.g. the conditional hazard.

3.2 Maximum likelihood estimation

Under random censoring –in the sense of conditional independence of T and C given X–

the distribution of the observed data is given by

P{T ∧C ≤ t,1{T≤C} = δ,Y = y} = ∑
x∈y

P{T ∧C ≤ t,1{T≤C} = δ,Y = y|X = x}p(x)

Hence, if X is coarsened at random and the coarsening Y is independent of the survival

data given X , the likelihood for the observed data is

qy ·∑
x∈y

(
f (t|x)P{C > t|X = x}1{T≤C} + h(c|x)P{T > c|X = x}1{T <C}

)
p(x)
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where f is the density of T given X = x and h the density of C given X = x. The

assumption that the coarsening only depends on X may be dispensed with but we leave

this case to Section 5.1.

We observe that generally censoring will not be ignorable in the sense of dropping out

of the likelihood unless C is actually independent of X . Thus if C is only conditionally

independent of T given X , then we need to specify a model for the censoring in order to

maximise the likelihood of f when X is coarsened.

Assuming that C is independent of (X ,T) and Y is independent of (T,C) given X we

can maximise the likelihood using the EM algorithm. The E-step becomes

∑
x∈y

log LT∧C,1{T≤C}|x( f )p(x|y,T ∧C,1{T≤C})+ ∑
x∈y

log p(x)p(x|y,T ∧C,1{T≤C})

where

LT∧C,1{T≤C}|X ( f ) = f (t|x)1{T≤C} + P{T > c|X = x}1{T≤C}

and p(x|y,T ∧C,1{T≤C}) is the conditional probability of X = x given Y = y,T ∧

C,1{T≤C}. By the (conditional and unconditional) independence assumptions made we

see that

p(x|y,T ∧C,1{T≤C}) =






f (t|x)p(x)

∑x∈y f (t|x)p(x)
when 1{T≤C} = 1

P{T > c|X = x}p(x)

∑x∈y P{T > c|X = x}p(x)
when 1{T≤C} = 0

so that we may ignore the censoring mechanism as well as the coarsening mechanism

when estimating the marginal distribution of X . It must be stressed that the assumption

that C is independent of X in many practical applications will be an unreasonable

assumption. In that case we need to estimate the censoring mechanism as well in order

to find the maximum likelihood estimator of f .

It is tempting, though probably not fully efficient to estimate p by the marginal MLE

based on Y and use this estimator in the EM algorithm.

//
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(S∗)−1s = S(x, g)

x

g

+ +
y = Y (x, g)

Figure 1: Transformation of (X ,G) to S.
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Table 2: Complete case estimator and estimators derived from the EM algorithm: EM I
uses a plug-in estimator for p. Standard deviations in parentheses.

Method Complete cases EM I EM II

Mean 1.012 (0.1323) 1.008 (0.1057) 1.008 (0.1057)

Example 5 We apply these two versions of the EM algorithm to the data simulated in

the previous example. We fit a parametric model and include the complete case estimator

for comparison. As we expected there is (virtually) no difference between the two EM

algorithms (see Table 2). We also note that the efficiency of the complete case analysis

compared to the full maximum likelihood estimation is only 64%. In other words, using

a complete case analysis and thus discarding on average one third of the observations, we

loose a little more than one third of the available information even though the discarded

observations are incomplete.

That the loss of information is larger than the fraction of missing observations is due

to the differential missingness; the incompleteness only affects observations with X > 1.

As the incomplete observations are very informative about the true unobserved value

of the covariates a lot of information may be regained by a full maximum likelihood

estimation. In fact the efficiency of the maximum likelihood estimator based on the

observed data compared to the estimator obtained from the uncoarsened data (not

shown) is 97.6%. In other words, the coarsening results in an almost negligible loss

of information about the regression parameter. �

4 Coarsening at random–general case

4.1 Extending to general sample spaces

When discussing coarsenings with uncountable support, it seems to be useful to

introduce some extra structure on the coarsening. Hence we will assume that there is

a coarsening variable G deciding the degree of coarseness with which X is observed.

For instance, if X is censored, G could be the censoring time. If X is missing, G could be

a response indicator taking the value of 1 if X is observed, 0 if X is missing. Typically G

may not be completely observed either; if G is a censoring time, then it is only observed

if X is censored.

We assume that G is chosen so that there is no additional randomness in the

incompleteness mechanism, i.e. that what we actually observe is a non-random function

S∗ of (X ,G). Now, the possible values of (X ,G) will be the subset S = {(x,g) : S∗(x,g) =

S∗(X ,G)} of the joint sample space of (X ,G). The possible values of X are then

represented by the subset Y of X ’s sample space, E , obtained by projecting S onto E;

see Figure 1.
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We note that the extra structure introduced is not a restriction. If we only observe

Y , “the possible values of X”, then Y can be used as the coarsening variable G in which

case S =Y ×{Y}. And for S∗ we may without loss of generality use S, “what is observed

about (X ,G)”.

We shall in this paper focus on coarsenings S which takes the form of a product

set S = Y ×H , where H is a subset of Gs sample space. Gill et al. (1997) calls this a

Cartesian coarsening.

Extending the theory of CAR to a general sample space is not straightforward. To see

why, recall that in the discrete case, CAR was equivalent to a conditional independence

of the events {Y = y} and {X = x} given {X ∈ y}, not of Y and X given X ∈ y. Thus

in the discrete case CAR is a pointwise, distributional condition. With a general sample

space these events will typically have probability 0 making this condition difficult to

generalise.

A pointwise formulation is however easily obtained by replacing the condition on the

conditional probability (1) by a similar condition on the conditional density of S given

X = x:

Definition 2 S is a random coarsening of X if the conditional density, k(s|x), of S given

X = x can be chosen to be independent of x ∈ y, where y is the projection of s onto X’s

sample space.

A general expression for the conditional density, k(s|x), may be found in Nielsen (2000).

Densities require a reference measure, and it turns out that different reference

measures lead to different conditions. To avoid measure theoretic difficulties we will in

this paper use a reference measure, P0, which is a probability measure, and which makes

X and G independent. As shown by Jacobsen and Keiding (1995) in a slightly different

set-up any product reference measure leads to the same CAR-condition. Expectations

with respect to P0 are denoted E0.

Example 6 Consider a right censored variable X with censoring time C. Here

S =

{
]G;∞[×{G} if X is censored

{X}× [X ;∞[ if X is observed

It can be shown (see e.g. Nielsen 2000) that

k(s|x) =






dP{G ∈ ·|X = x}

dP0{G ∈ ·}
(g) if X is censored; here y =]g;∞[

P{G > x|X = x}

P0{G > x}
if X is observed; here y = {x}

.

We see that S is CAR if the conditional density of G given X = x (relative to P0) can be

chosen so that it does not depend on x > g. �
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As in the discrete case, CAR implies a factorisation of the likelihood.

Theorem 1 The density of a random Cartesian coarsening S is L f · k(s|x), where

L f = E0[ f (X)|Y = y] =






f (x) if y = {x}
∫

y f (x)dP0(x)

P0{X ∈ y}
if P0{X ∈ y} > 0

? otherwise

where f is the marginal density of the distribution of X with respect to the reference

measure P0.

The question mark is meant to convey the impression that unless y = {x} or P0{X ∈

y} > 0 no general expression for the conditional mean is available, not that one cannot

be calculated in concrete examples.

Notes

In general sample spaces Gill et al. (1997) distinguish between two type of CAR-

conditions, an absolute and a relative. The relative condition, CAR(REL), is formulated

in terms of densities as in Definition 2 whereas the absolute, CAR(ABS), is formulated in

term of probabilities. The absolute CAR condition is harder to formulate and understand

than the relative CAR condition used in this paper. It does however generalise the

conditional independence (2) to some extent: If S is an absolute random coarsening,

and s is a set such that its projection y has P{X ∈ y} > 0, then X is independent of S = s

given X ∈ y (Nielsen 2000, Lemma 4).

Actually for Cartesian coarsenings, independence of X and G implies CAR(ABS).

Moreover, any measure which has a density fulfilling Definition 2 with respect to a

measure which is CAR(ABS), is in itself CAR(ABS). Thus, even if we have chosen a

relative or pointwise formulation in this paper, our choice of reference measure implies

the stronger CAR(ABS).

It is clear that by using Y as a coarsening variable, any coarsening may be turned into

a Cartesian coarsening. But as X ∈ Y with probability 1, a product reference measure

seems out of the question if G = Y . Furthermore, if S is not a Cartesian coarsening, then

reducing the observation to Y may not only reduce the available information significantly

but it may also make a random coarsening non-random; see Nielsen (2000) for an

example.

Extending results of Jacobsen and Keiding (1995), Nielsen (2000) shows that given

a statistical model for (X ,G) any dominating measure chosen in the model leads to the

same CAR(REL) condition. In this sense, choosing a reference measure inside the model

is a canonical choice.
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4.2 Survival data with coarsely observed covariates

We can view survival data with incomplete covariates as a joint coarsening of the survival

time T and the covariate X . For instance we could let S∗(T,C,X) = (T ∧C,1{T≤C},Y )

where C is the censoring time and Y is the coarsening of X . Suppose for simplicity that

the sample space of X is finite and that Y is a random coarsening of X and independent

of (T,C) given X . Thus we observe

S = Ỹ ×Y ×H =

{
]C;∞[×Y × {C} if T is censored

{T}×Y × [T ;∞[ if T is observed
,

i.e. a Cartesian coarsening. S is a random coarsening if there exists functions, K and k,

such that

K(t,y) = P{C > t|X = x,T = t}P{Y = y|X = x} for all x ∈ y

and

k(c,y) = h(c|t,x)P{Y = y|X = x} for all x ∈ y, t > c

where h is the conditional density of C given T and X . Thus

K(t,y)

P{Y = y|X = x}
= P{C > t|X = x,T = t} = 1−

∫ t

0

k(c,y)

P{Y = E|y = x}
dc

for all t ≥ 0 and all x ∈ y, and hence

∫ t

0
k(c,y)dc = P{Y = y|X = x}−K(t,y) for all x ∈ y, t ≥ 0.

Thus, P{Y = y|X = x} cannot depend on x ∈ y, which is equivalent to Y being an

random coarsening of X . Moreover, it follows that C may only depend on X through

Y . In particular, if Y = {X} almost surely, CAR is just random censoring in the sense

that T and C must be essentially independent given X whereas if Y = E almost surely,

C must be independent of X given T . In the smoking status example, censoring may

depend on whether the person is a smoker or not but not on whether the person is a light

or a heavy smoker.

If we allow Y to depend on the survival data, it may be possible to allow censoring

to depend on X but this dependence must be balanced with the coarsening mechanism

in a rather unintuitive way. Thus generally, if the censoring depend on the covariate

we cannot expect it to be ignorable. Obviously, if some of the covariates are always

completely observed, then censoring may depend on these covariates and still be

ignorable. We get similar results for coarsenings in general sample spaces by replacing

P{Y = y|X = x} by k(s|x).
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5 Estimation with coarsely observed covariates

In the following subsections we will indicate how some of the existing methods for

handling survival data with missing covariates may be extended to handling survival

data with coarsened covariates.

5.1 Likelihood based estimation

We will first discuss maximum likelihood estimation. Consider a general transformation

model:

P{T > t|X} = 1−Fγ(logΛ(t)+βX)
def
= F̄γ(logΛ(t)+βX)

where Fγ is a known distribution function (on R) except possibly for a finite dimensional

parameter γ; with Fγ(t) = exp(−e−t) we obtain the Cox regression model. Assuming

random censoring, the interesting part of the likelihood of the survival data given X is

LT∧C,1{T≤C}|X (Λ,γ,β) =

{
F̄γ (logΛ(T ∧C)+βX) if 1{T≤C} = 0

F̄ ′
γ (log Λ(T ∧C)+βX)dΛ(T ∧C) if 1{T≤C} = 1

To calculate the likelihood based on the survival data and the coarse observation of X , we

need to choose a reference measure. The simplest choice is to use a reference measure

which makes the survival data and the covariate independent. Thus we let

L̄T∧C,1{T≤C}|X(Λ,γ,β) =
LT∧C,1{T≤C}|X (Λ,γ,β)

LT∧C,1{T≤C}|X(Λ0,γ0,0)

for some suitable choice of Λ0 and γ0 in the model. When X is coarsened at random and

independent of C, the likelihood of the observed data becomes

LT∧C,1{T≤C},Y (Λ,γ,β, f )

=E0

[
L̄T∧C,1{T≤C}|X(Λ,γ,β) f (X)

∣∣∣∣∣T ∧C,1{T≤C},Y = y

]
(5)

where the conditional expectation is taken with respect to the chosen reference measure,

and f is the density of the marginal distribution of X with respect to this reference

measure. As the marginal distribution of X is unknown, f is an unknown parameter

either in a finite dimensional space (a parametric family) or an infinitely dimensional

space (a semi- or non-parametric model). As in Theorem 1 we see that the likelihood (5)

may be written

LT∧C,1{T≤C},Y (Λ,γ,β, f ) =






∫
y LT∧C,1{T≤C}|x(Λ,γ,β) f (x)dP0(x)

P0{X ∈ y}
if P0{X ∈ y} > 0

L̄T∧C,1{T≤C}|X (Λ,γ,β) f (X) if Y = {X}
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When maximising the likelihood function (5) we replace Λ by a step function with steps

at observed deaths.

If C is not independent of X , the censoring mechanism must be included in (5) as

discussed in Section 3.2.

An alternative to this full maximum likelihood approach is the conditional profile

likelihood approach suggested for survival data with missing covariates by Chen and

Little (2001). The idea here is to reparameterise:

(γ,β,Λ, f ) (γ,β,R, f )

where

R(t) = τγ,β, f (Λ)(t) = E0 [F̄γ(log Λ(t)+βX) f (X)]

is the marginal survival function of T . As above the expectation is with respect to the

reference measure. Assuming again that C is independent of X , censoring is ignorable

and R may be estimated from the observed survival data by the usual Kaplan-Meier

estimator. Let Λ̂γ,β, f be the result of applying τ−1
γ,β, f to this estimator. Then the remaining

parameters may be estimated from the conditional profile likelihood

LT∧C,1{T≤C},Y (Λ,γ,β, f )

LT∧C,1{T≤C},E(Λ,γ,β, f )

Simulations reported by Chen and Little (2001) in the missing covariate case indicate

that the loss of efficiency compared to full maximum likelihood estimation is negligible.

Note however that if the censoring is not independent of X , then specifying a model for

the censoring will not help: We need censoring to be ignorable in the marginal model of

the survival data.

In both cases the EM algorithm may be useful for the actual maximisation as may Monte

Carlo methods. As in subsection we may estimate f from Y if Y is independent of (T,C)

given X and plug it into the likelihood or the profile likelihood.

Both approaches has some clear disadvantages. Firstly, it requires independence of C

and X , which in applications may be unreasonable. Alternatively, in the full maximum

likelihood approach the censoring mechanism must be specified and estimated too, but

this will not help us in the conditional profile likelihood approach. Secondly, it requires

the marginal distribution of X which is a disadvantage unless X is discrete. Usually

we are not interested in this part of the model and would therefore prefer to leave it

unspecified. Furthermore, as X is coarsely observed, specifying and checking a model

for the marginal distribution of X may be difficult. Finally for the conditional profile

likelihood approach we need to be able to invert τγ,β, f . The advantage of these methods

is that we would expect a high degree of efficiency of both methods.

With a parametric model for the survival data (i.e. with Λ either known or known

up to a finite-dimensional parameter) the full maximum likelihood approach can still
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be applied. The conditional profile likelihood approach, however, will typically not be

useful as the corresponding marginal survival function, R, will now be restricted by the

parametrisation and therefore difficult to estimate directly.

Notes

The EM algorithm for Cox’s proportional hazards model with missing covariates has

been discussed by a number of authors. Martinussen (1999) and Chen and Little (1999)

consider the full likelihood function as done in this paper, whereas Lipsitz and Ibrahim

(1998) and Herring and Ibrahim (2001) apply the EM algorithm to the partial likelihood

function. The latter two papers also consider the use of Monte Carlo methods in

connection to the EM algorithm. See Zhou and Pepe (1995) and Zhou and Wang (2000)

for a non-parametric approach. The presentation given here is mainly based on Chen and

Little’s (1999, 2001) work.

5.2 Weighted estimating equations

Another approach to inference in survival analysis is to use martingale estimating

functions, i.e. functions like

Ms(θ) =
∫ s

0
Ws(X ,θ)d

(
N −Λ(X ;θ)

)
(s), s ≥ 0 (6)

where N is the counting process generated by the data, Λ(X ;θ) is the integrated hazard,

and Ws(X ;θ) is a predictable process (see e.g. Gill (1984) for an introduction). Many

popular regression models can be handled in this way. Chen and Newell (2001) consider

models with hazards given by

λ(t|x) = α
(
t · exp(γX)

)
· exp(βX).

Cox regression (γ = 0) and accelerated failure time (β = 0) models are obtained as

special cases. With α, β and γ unknown, θ= (α,β,γ).

If Y is independent of the survival data, (T ∧C,1{T≤C}), given X , then a complete

case analysis works. This corresponds to using the estimating function

∆Ms(θ), s ≥ 0,

where ∆ = 1 if X is completely observed, 0 otherwise. Another option is to weight this

estimating equation by the “inverse probability” of X being completely observed:

∆

q{X}
Ms(θ), s ≥ 0, where q{X} = P

{
Y = {X}

∣∣X
}

= E[∆|X ] (7)

The weighted estimating function (7) is unbiased and should therefore yield consistent

estimators of the parameters of interest. Generally q{X} will be unknown and must be
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estimated from the data. It is a part of the coarsening mechanism and may be estimated

from the conditional likelihood of S (or Y ) given X , which is given by qy in the discrete

case or generally by k(s|x) for any x ∈ y.

Example 7 To show the effect of CAR on the estimation of q{X} we will consider two

examples.

• Suppose that X is right censored with censoring variable G. Then q{x} = P{X >

G|X = x} = 1−
∫ x

0 h(g)dg where h is the conditional density of G given X = x

which does not depend on x when we consider g < x. One should note that G is not

necessarily censored at random; to have both X and G censored at random would

require independence of X and G. Note also that h is not the marginal density of

G, unless X and G are independent. In fact h may not even be a density function;

it is possible that
∫ ∞

0 h(g)dg < 1. To estimate q{X} observe that the conditional

likelihood of S given X = x can be written

h(g)1−∆

(
1−

∫ x

0
h(g)dg

)∆

= (−dq{g})
1−∆q{x}

∆

In a non-parametric setting, it would be natural to estimate q{x} by a decreasing

step function with jumps at the observed values of X ∧G.

• If Y is a heaping then q{x} may be estimated by the fraction of unheaped

observations with bX/cc = bx/cc, as

q{x} = 1−P{Y = y|X = x} = 1−P

{
Y = y

∣∣∣∣X
∗ = c

⌊
x

c

⌋}

for y =
{

cb x
c
c,cb x

c
c+ 1, . . . ,cb x

c
c+ c−1

}
. �

There is no guarantee that this weighting will lead to improved estimators. As such we

are still only using complete cases to estimate the parameters of interest even if all the

data is used to estimate q{X}. Dividing by q{X} will typically improve the precision of

the estimating function but also increase its variance. There appears to be no known

sufficient condition to decide if weighting improves the estimator or not. However,

estimating the weights, q{x}, may actually improve the estimator of θ. In fact, the

asymptotic variance of θ will not increase but may well decrease as more parameters are

included in the specification of q{x}. Indeed, letting q{x} depend also on the survival data

T ∧C and 1{T≤C} may improve the estimation of θ as the following example shows. We

should however keep in mind that the complete case estimator may perform better still.
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Table 3: Inverse probability weighting. Efficiency is calculated with respect to the MLE
from Table 2.

Method Mean StDev Efficiency

Complete cases 1.012 0.1323 64%

True weights 1.014 0.1376 59%

Estimated weights I 1.014 0.1378 59%

Estimated weights II 1.030 0.1186 79%

Example 8 Consider again the censored exponential survival times. In Table 3 we

compare the complete case estimator of θ to various estimators of θ obtained from

weighted estimating equations with weights either known (“True weights”) or estimated

using a model only depending on X (the “true” model; “Estimated weights I”) as well as

using a model with dependence on X and the survival data (T ∧C,1{T≤C}) (“Estimated

weights II”). We see that in this example complete cases do as well as –if not better

than– weighted estimating functions with weights known or estimated using the true

model. However using the larger model there is a considerable gain of efficiency. �

A further advantage of this inverse probability weighting approach is that if the

coarsening mechanism depend on T and/or C, we can incorporate this by allowing q{X}

to depend on the survival data (T ∧C,1{T≤C}):

q{X} = q(X ,T ∧C,1{T≤C}) = E
[
∆|X ,T ∧C,1{T≤C}

]

= P
{

Y = {X}|X ,T ∧C,1{T≤C}

}

Using these weights, the weighted estimating function (7) is still unbiased and should

therefore yield consistent estimators.

Still it is not quite satisfactory that the estimation is based on complete cases only

even if some improvement due to the estimation of q{X} may be expected. Some

improvement may be obtained by finding the optimal estimating function (7), where the

optimisation is performed over the predictable function W . The optimal W will typically

depend on the coarsening mechanism and may therefore be unobtainable in practice.

Even for the original estimating function (6) the optimal W may be difficult to obtain;

see Chen and Newell (2001).

A further improvement on (7) is to add terms of mean 0 to the estimating functions:

∆

q{X}
Ms(θ)+ (1−∆)φs(θ)−

∆

q{X}
E
[
(1−∆)φs(θ)|X ,T ∧C,1{T≤C}

]
(8)

for some function φs(θ) = φs(Y,T ∧C,1{T≤C};θ). By construction the added term has

expectation 0 regardless of θ so that the estimating function (8) will be an unbiased

estimating function with the same precision as the simpler weighted estimating function
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(7) but lower variance if the added term has a small variance but a large negative

correlation with ∆
q{X}

Ms(θ) (see Nielsen (1998) for details). Nielsen (1998) discuss

optimal choice of φ for semi-parametric regression models with coarsely observed

regressors; it seems likely that his results may be generalised to the problem and the

estimating functions considered here. If so, optimal choices of φ and W exist (leading

to efficient estimates), but they depend on the coarsening mechanism as well as the

distribution of X given (Y,T ∧C,1{T≤C}); thus in practice the optimal choices of φ and

W will hardly be possible to obtain.

It may still be a good idea to add a term, though. One suggestion would be to simply

replace the coarsened X in the original estimating function by a suitably chosen value

X∗ in the coarsening Y , i.e. use

φs(θ) =
∫ s

0
Ws(X

∗,θ)d(N −Λ(X∗;θ))(s)

For instance, if X is censored we could use X∗ = X ∧G. Still, it should be noted that

E[(1−∆)φs(θ)|X ,T ∧C,1{T≤C}] in most cases will be extremely hard to find.

Example 9 We apply this idea to the censored exponentials of the previous examples

using X∗ = 2, 2.5 and 3. The results are reported in Table 4; the first row uses estimated

weights depending on X only, the second row weights depending on X and the survival

data (T ∧C,1{t≤C}). We see that adding a term leads to a considerable improvement

over the complete case estimator (see Table 3); in fact the efficiency is very close to the

efficiency of the maximum likelihood estimator. Furthermore, the choice of X∗ does not

seem to matter very much. Also the benefit of using a large model for q{X} appears to be

almost negligible when a term is added to the estimating function. �

Table 4: Estimation with added terms: First row uses weights estimated from the
correct model, the second row weights estimated from an extended model. Efficiency
is calculated with respect to the MLE from Table 2.

Estimated weights I Estimated weights II

Method Mean StDev Efficiency Mean StDev Efficiency

X∗ = 2 1.009 0.1067 98% 1.009 0.1065 99%

X∗ = 2.5 1.008 0.1066 98% 1.008 0.1066 98%

X∗ = 3 1.008 0.1084 95% 1.008 0.1070 98%

The obvious disadvantage of this approach is that it requires modelling of the

coarsening mechanism, at least to the level of modelling the probability, q{X}, of X

being completely observed. Also, as indicated by the simulations it may be as inefficient

as the complete case analysis unless additional terms, which depend on the coarsening

mechanism, are added to the simple estimating function. Furthermore, we need q{X} > 0

for all values of X ruling out application to e.g. a covariate that is unobserved due to
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a fixed detection limit. The advantage of this approach is that it actually allows us to

estimate the parameters of interest even if the censoring depends on the covariate X

without modelling the censoring mechanism or the marginal distribution of X .

Notes

Inverse probability weighting for Cox regression with missing covariates is considered

by Pugh, Robins, Lipsitz and Harrington (1993); see also Robins, Rotnitzky and Zhao

(1994). Nielsen (1998) considers inverse probability weighting for regression models

with coarsely observed covariates.

5.3 Bias-variance trade-off

In many cases a complete case analysis will yield consistent but inefficient estimates.

The two approaches discussed in the previous subsections improve the efficiency of the

estimators but do this at the cost of much additional work. Moreover they both need

specification and estimation of nuisance parts, either the marginal distribution of the

covariate or the coarsening mechanism. Another option would be to allow a certain

amount of bias in the estimators if the decrease in variance is sufficiently large. Thus

in some cases it may be worth considering simply to replace the coarsened value of X by

X∗ suitably chosen in the observed coarsening Y . Unlike the case of missing covariates,

the coarsening Y may give a very precise idea about the unobserved value of X . Of

course, we should expect this imputation approach to lead to biased estimators but also

in a reduction of variance compared to the complete case analysis since we are now using

all cases. Furthermore, it will be a lot simpler than the methods discussed in the previous

subsections. In small samples the reduction in variance may be enough to reduce the

mean squared error. However, as the sample size increases the variance will decrease

but the bias will not disappear. Hence in large samples the bias will dominate the mean

squared error making this approach unacceptable. We illustrate the potential benefits by

a simulation example.

Example 10 Again we consider the censored exponentials. If we impute either 2 or 3

when we observe Y = {2,3}, we get an bias but also a reduction of variance. When

we impute 3, the reduction is sufficient to make the mean squared error smaller for the

biased estimator than for the complete case estimator; see Table 5. If we impute 2.5 there

is no bias and the mean squared error is similar to the mean squared error of the MLE

reported in Subsection 3.2.

If the sample size increases to 1000 then we get worse results. We get roughly the

same bias as before but as the variance is smaller, the mean squared errors of the biased

estimators (imputing 2 or 3) are now larger than the mean squared error of the complete
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case estimator. Imputing 2.5 is still a good idea, though. This is due to 2.5 being the

conditional mean of X given Y = {2,3}; results by Schafer and Schenker (2000) suggest

that the resulting estimator is consistent. �

Table 5: Imputation.

n = 200 n = 1000

Method Mean StDev MSE Mean StDev MSE

Complete cases 1.012 0.1323 0.0176 1.000 0.0591 0.0035

Impute X∗ = 2 1.084 0.1128 0.0198 1.075 0.0501 0.0081

Impute X∗ = 2.5 0.999 0.1041 0.0108 0.991 0.0463 0.0022

Impute X∗ = 3 0.927 0.0975 0.0148 0.920 0.0434 0.0083

Of course this example is “nice” as fairly little information is lost in the coarsening.

How this approach will work more generally is difficult to predict but given its simplicity,

it should be considered as an option in small data sets with “small” coarsenings –i.e.

coarsenings where Y is a small set–, where a good idea of the true value of X is available

and modelling of nuisance parts may be problematic.

Notes

Imputation has a long tradition as a tool for handling missing or incomplete data; see e.g.

Little and Rubin (1987) for an overview. The imputations suggested in this section are

naı̈ve and as a consequence they introduce bias. It is possible to construct imputations

which will lead to consistent estimators but this will of course make the method more

computationally complicated. One possibility is to impute conditional means; this is

considered for Cox’s proportional hazards model with missing covariates by Paik and

Tsai (1997). Another is to generate random imputations for instance by resampling

complete cases as done by Paik (1997).

6 Conclusions

In this paper we have considered inference for survival data with incompletely observed

covariates. We have discussed how ignorable incompleteness may be modelled using

random coarsenings and looked at various methods of estimation in these models.

Throughout the paper we have illustrated the estimation methods by a simple

simulation example: Exponential regression with independent censoring and a simple

coarsening mechanism affecting on average one third of the observations. In this simple

example, we have seen that even though a complete case analysis leads to consistent
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estimators, the loss of information is considerable, and there is a lot to be gained by

incorporating cases with incomplete covariates.

All the methods discussed have their own advantages and disadvantages. Most

involve some degree of modelling of nuisance parts, either the coarsening mechanism or

the marginal distribution of the covariates. Some are very inefficient or yield inconsistent

estimators. Which method to use depends on which –if any– nuisance part is easier/safer

to specify balanced with the need for efficiency and consistency.

We have also seen how incompleteness in the covariates affect the ignorability of

the censoring: If censoring depends on incompletely observed covariates, then it is not

(generally) ignorable. This has consequences for most of the methods of estimation

we discuss: If the censoring is not ignorable, it needs to be modelled and estimated

in order for us to estimate the parameters of interest. The only exception to this rule

is the inverse probability weighted estimating equations discussed in Section 5.2. In its

simplest form, however, this method may be as inefficient as a complete case analysis,

and the conditional expectation needed for the possibly more efficient version (8) will

be very difficult if not impossible to calculate in practice.

7 Details on the simulations

All simulations in this paper are done using the statistical programming language R

(Ihaka, R. and Gentleman, R. (1996), www.r-project.org), version 1.5, running on a 1133

MHz Intel Pentium III computer under Suse Linux. The simulations for n = 200 were

all done in a single function (CPU-time: 13 minutes, 28.65 seconds). More user-friendly

functions can be found on www.stat.ku.dk/˜feodor/publications/survival.R.

Approximate CPU-times for the results in Tables 1-4 are respectively 4′58.76′′, 6′33.24′′,

5′43.71′′, 4′58.76′′, and 2′42.47′′ using the user-friendly but less efficient programs and

simulating new datasets for each table.
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Resum

En aquest treball considerem anàlisis de supervivència amb informació incompleta sobre les
covariàncies. Proposem un model per a les covariàncies com una agrupació aleatòria (random
coarsening) de la covariància complet, i donem una panoràmica de la teoria de l’agrupació
aleatòria (random coarsening). Diverses formes d’estimar els paràmetres del model per a les
dades de supervivència donades les covariàncies es discuteixen i es comparen.
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Paraules clau: Algorisme EM; dades incompletes; eficiència; funció d’estimació de martingala;

ponderació inversa de la probabilitat


