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Abstract

In this paper we describe the so-called “indirect” method of inference, originally developed from
the econometric literature, and apply it to survival analyses of two data sets with repeated events.
This method is often more convenient computationally than maximum likelihood estimation when
handling such model complexities as random effects and measurement error, for example; and
it can also serve as a basis for robust inference with less stringent assumptions on the data
generating mechanism. The first data set concerns recurrence times of mammary tumors in
rats and is modeled using a Poisson process model with covariates and frailties. The second
data set involves times of recurrences of skin tumors in individual patients in a clinical trial.
The methodology is applied in both parametric and semi-parametric regression analyses to
accommodate random effects and covariate measurement error.
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1 Introduction

Methods of indirect inference (Gourieroux, Monfort and Renault, 1993) have been

developed and used in the field of econometrics where they have proved valuable for

parameter estimation in highly complex models. This paper recasts the basic technique

in a likelihood-flavoured approach and illustrates some applications in biostatistics, in

particular for survival and repeated events data.

We begin by illustrating the steps involved in the indirect method in the following

simple pedagogic example.
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Example 1: exponential survival with censoring. Consider lifetimes {T1, . . . ,Tn},

which are independent and identically distributed (i.i.d.) according to an exponential

distribution with mean θ. The data are subject to Type I single censoring after fixed

time c. Thus the observed data are {Y1, . . . ,Yn}, where Yi = min(Ti,c), (i = 1, . . . ,n).

We consider indirect inference based on the intermediate statistic ŝ = Y . This choice

can be considered either as the basis for a method of moments estimator or as the MLE

(maximum likelihood estimator) for a misspecified model M′ in which the presence of

censoring has been ignored. The naive estimator Y in fact consistently estimates not θ

but the “naive” or “auxiliary” parameter

s(θ) = θ [1− exp(−c/θ)], (1)

the expectation of Y . The equation (1) is an example of what may be termed as a “bridge

relation” (Jiang and Turnbull, 2001) or a “binding relation” (Gourieroux, et al., 1993).

We can see the obvious effect of the misspecification, namely that ŝ underestimates θ.

However a consistent estimator θ̂ of θ as n ∞ can be obtained by solving (1) for θwith

s(θ) replaced by ŝ =Y . That is, θ̂= s−1(ŝ). (Note that s(·) is strictly increasing on ℜ+ and

thus invertible). We note also that θ̂ is not the MLE of θ which is nY/[∑n
i=1 I(Yi < c)].)

More generally, a consistent estimator can be constructed based on an intermediate

statistic ŝ that does not need to have the interpretation of a ‘naive’ estimator. For example,

above we could have chosen perhaps ŝ = Y 2 = n−1
∑

n
i=1Y 2

i so that θ̂= s−1(ŝ) where s−1

is the inverse function of s(θ) ≡ E(Y 2|θ). In fact,the dimension of ŝ can be greater than

that of θ — e.g., we could take ŝ = (Y ,Y 2)T in the above example. Now a consistent

estimator θ̂ of θ can be found by using weighted least squares,

θ̂= argmin
θ
{ŝ− s(θ)}T A{ŝ− s(θ)},

where an optimal choice of A is the inverse of the estimated variance matrix of ŝ, as we

will discuss later. This is the principal idea of indirect inference– statistical inference

of θ based on an indirect data “summary” ŝ. The choice of ŝ is not unique, but in most

applications there will natural one to use as we shall see.

We will term θ̂ as the “indirect MLE”, since it can be viewed as the MLE using an

approximate likelihood based on the indirect data summary ŝ. We will also see how to

obtain the standard error for θ̂.

2 Indirect inference

In general, the indirect MLE has properties similar to those of the usual MLE:

consistency, asymptotic normality, and certain efficiency properties. In addition, chi-

squared goodness-of-fit tests can be based on the indirect likelihood.
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Advantages of the indirect method include ease of computation; robustness; and

informativeness on the effect of model misspecification. We will summarize the

framework of indirect inference below.

2.1 The basic approach

Suppose we have a data set consisting of n independent units. The essential ingredients

of the indirect approach, when reformulated in a likelihood-flavoured treatment, are as

follows.

• There is a hypothesized true model M for data generation, with distribution P(θ)

which depends on an unknown parameter θ of interest which is of dimension p.

• One first computes an intermediate or auxiliary statistic ŝ of dimension q ≥ p,

which is asymptotically normal with mean s(θ), say, under model M.

• An indirect likelihood L(θ|ŝ) is then constructed based on the normal

approximation, so that, apart from an additive constant,

−2log L(θ|ŝ) = {ŝ− s(θ)}T v−1{ŝ− s(θ)} = H(θ), say, (2)

where v is a consistent estimate of the asymptotic variance v̂ar(ŝ). A typical choice

might be the ‘robust’ or ‘sandwich formula’, when ŝ solves an estimating equation

(see e.g. Carroll, Ruppert and Stefanski 1995, Section A.3).

• This indirect likelihood is then maximized to generate an indirect maximum

likelihood estimate (indirect MLE) or adjusted estimate θ̂(ŝ) for θ. In the case when

the dimension (q) of the intermediate statistic equals that (p) of the parameter θ

and s(θ) is invertible, it can be seen from (2) that maximization of the indirect

likelihood is equivalent to solving the “bridge” or “binding” equation s(θ) = ŝ for

θ, because then (2) can be made zero.

In the “indirect” analysis of the pedagogic example of Section 1, M is the i.i.d.

exponential model with censoring: Yi = min(Ti,c) and P(θ)(Ti ≤ t) = 1 − e−t/θ, for

t ∈ [0,∞), i = 1, . . . ,n. In the initial approach, the intermediate statistic was ŝ =

n−1
∑

n
i=1Yi, which is asymptotically normal as n − ∞ by the central limit theorem,

with asymptotic mean s(θ) = θ [1− exp(−c/θ)]. The indirect likelihood L(θ|ŝ) is given

by

−2logL(θ|ŝ) = {n−1
n

∑
i=1

Yi − s(θ)}T v−1{n−1
n

∑
i=1

Yi − s(θ)}

where one can substitute the robust estimate v̂ = {n(n − 1)}−1
∑

n
i=1(Yi −Y )2 for the

asymptotic variance v = var(ŝ). Finally the adjusted estimate (or indirect MLE) is

θ̂= s−1(ŝ).
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In summary, in this indirect approach, the data are first summarized by the

intermediate statistic ŝ. Its asymptotic mean s is referred to as the auxiliary parameter.

The auxiliary parameter is related to the original parameter by a relation s = s(θ), termed

the bridge relation or binding function.

The starting point is the choice of an intermediate statistic ŝ. This can be chosen as

some set of sample moments, or the solution of some estimating equations, or the MLE

based on some convenient model M′, say, termed the auxiliary (or naive) model. If the

last, then the model M′ is a simpler but misspecified or partially misspecified model.

As stated previously, the choice of an intermediate statistic ŝ is not necessarily unique;

however in any given situation there is often a natural one to use.

2.2 Intermediate statistics arising from estimating equations

Most intermediate statistics can be defined implicitly as a solution, s = ŝ, of a (q-

dimensional) estimating equation of the form G(W,s) = 0, say. [Clearly this includes

any statistic ŝ = ŝ(W) that has an explicit expression as a special case, by taking

G = s− ŝ(W).] The estimating equation could be the normal equation from a least-

squares analysis, or the score equation based on some likelihood function.

In such situations there is a parallel formulation of indirect inference in ‘implicit

form’. For instance, one can state the ‘bridge relation’ s(θ) implicitly as F(θ,s) = 0

where F(θ,s) ≡ EW|θG(W,s), which is the limiting version of the estimating equation

G(W, ŝ) = 0. Correspondingly, in the definition of the indirect likelihood L, H can

be (asymptotically) equivalently defined by H(θ, ŝ) = F(θ, ŝ)T v−1F(θ, ŝ). Here v is (a

sample estimate of) the avar of F(θ, ŝ), which can be evaluated by the delta method (e.g.

Bickel and Doksum (2001), Sec. 5.3.2), and found to be the same as var(G) evaluated at

s = s(θ) (the auxiliary parameter). Then we define the adjusted estimator (or the indirect

MLE) θ̂ to be the maximizer of L, or the minimizer of H .

2.3 Properties of indirect MLE

In general, the indirect MLE has a set of properties analogous to those of the usual MLE.

These include, under appropriate regularity conditions:

(i) (Indirect Score Function). The asymptotic mean and variance of the indirect

likelihood score function satisfy the usual relations E(∇θ logL) = 0 and

var(∇θ logL)+ E(∇2
θ logL) = 0.

(ii) (Asymptotic Normality). The adjusted estimator θ̂ is asymptotically normal (AN)

with mean θ, and with asymptotic variance (avar) estimated by −(∇2
θ logL)−1 or

2(∇2
θH)−1 where consistent estimates are substituted for parameter values.
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(iii) (Tests). Likelihood-ratio statistics based on the indirect likelihood for testing

simple and composite null hypotheses have the usual asymptotic χ2 distributions.

(iv) (Efficient use of indirect data). The adjusted estimator has smallest avar among all

consistent AN estimators f (ŝ) of θ, which are constructed from the naive estimator

ŝ by continuously differentiable mappings f .

These results can be found in the references cited in Section 2.5, and are summarized in

Jiang and Turnbull (2001, Proposition 1).

When different intermediate statistics are used, the asymptotic efficiency can be

different. In general the indirect MLE is not as efficient as the MLE based on the true

model M; although there are situations that can be identified where the efficiency will be

high, as in the example of Section 3.1.

In a special case when the dimension of the intermediate statistic (q) equals that

(p) of the parameter θ, and s(·) is a diffeomorphism on the parameter space Θ of

θ, maximization of L is equivalent to the bias correction θ̂ = s−1(ŝ) (from solving

F(θ, ŝ) = 0), which is AN and consistent for θ. See, e.g., Kuk (1995), Turnbull et al.

(1997) and Jiang et al. (1999) for biostatistical applications.

When q < p, there are more unknown true parameters than ‘naive parameters’. In this

case the bridge relation is many-to-one and does not in general permit the construction of

adjusted estimates. It is mainly of interest for investigating the effects of misspecification

when the naive estimators are constructed under misspecified models. However, in

such situations it may be possible to construct consistent estimates for a subset of

true parameters, which may be of interest. In other situations, some components of the

higher-dimensional true parameter are known or can be estimated from other outside data

sources. This enables the other components to be consistently estimated by inverting the

bridge relation. Examples of this kind arising from errors-in-variables regression models

are given in Sections 3.2 and 3.3.

2.4 Why consider the indirect method?

This indirect approach offers the following advantages:

1. Ease of computation. The indirect method is typically computationally simpler and

more convenient. For example, when ŝ is based on some simplified model M′, it

can often be computed with available standard computer software.

2. Informativeness on the effect of model misspecification. When ŝ is a ‘naive estimate’

obtained from a naive model M′ neglecting certain model complexities, the

approach is very informative on the effect of model misspecification — the bridge

relation s = s(θ) provides a dynamic correspondence between M′ and M. For

example, in errors-in-variable regression, such a relation is sometimes termed an
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‘attenuation relation’ (see e.g., Carroll, Ruppert and Stefanski 1995, Chapter 2),

and tells how regression coefficients can be underestimated when neglecting the

measurement error in a predictor.

3. Robustness. The validity of the inference based on an intermediate statistic essentially

relies on the correct specification of its asymptotic mean. This is typically a less

demanding assumption than the correct specification of a full probability model,

which would be generally needed for a direct likelihood inference to be valid.

Therefore inferences based on the adjusted estimate θ̂ can remain valid despite

some departure of the data generation mechanism from the hypothesized true

model M.

2.5 Bibliography and notes

The above very brief exposition of the indirect method of inference represents a summary

of results that have appeared in the econometric and statistical literature in varying forms

and generality and tailored for various applications. Examples include: the generalized

method of moments (GMM: Hansen 1982); the method of linear forms and minimum

χ2 (Ferguson 1958); the regular best asymptotic normal estimates that are functions of

sample averages (Chiang 1956, Theorem 3); simulated method of moments and indirect

inference [McFadden (1989), Pakes and Pollard (1989), Gourieroux et al. (1993),

Gallant and Tauchen (1996, 1999) Gallant and Long (1997)]. Newey and McFadden

(1994, Chapters 6 and 8) discuss two-stage parametric and nonparametric estimation in

the GMM context, where some ‘nuisance’ parameter, possibly infinite dimensional, is

estimated from a preliminary consistent method.

Applications of GMM in the settings of generalized estimating equations from

biostatistics are discussed in Qu, Lindsay and Li (2000). McCullagh and Nelder (1989,

p. 341), as referred to by Qin and Lawless (1994, p. 315), consider optimal linear

combination of estimating equations, as is traditionally done in GMM literature. Qin

and Lawless (1994) also provide an alternative but asymptotically equivalent way of

combining estimating equations using empirical likelihood.

The theory of estimators obtained from misspecified likelihoods goes back at least

as far as Cox (1962), Berk (1966) and Huber (1967) and is summarized in the

comprehensive monograph by White (1994). The use of ŝ (based on an auxiliary model

M′) in indirect inference about θ (under model M) appears recently in the field of

econometrics to treat complex time series and dynamic models, see, e.g., Gourieroux

et al. (1993) and Gallant and Tauchen (1996, 1999); as well as in the field of biostatistics

to treat regression models with random effects and measurement error, see e.g., Kuk

(1995), Turnbull, Jiang and Clark (1997), and Jiang et al. (1999). This bibliography is far

from exhaustive. A thorough review and synthesis of the methods of indirect inference

are given in Jiang and Turnbull (2001).
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3 Three applications with survival data

In this section we discuss three applications with recurrent event data which use models

of increasing order of complexity:

3.1 A Poisson process regression model with random effects (“frailties” or “unexplai-

ned heterogeneity”);

3.2 A Poisson process regression model with random effects and covariate measure-

ment error;

3.3 A semi-parametric intensity rate regression model with random effects and mea-

surement error.

The first example uses mammary tumor recurrence times from a rodent carcinogenicity

experiment. The remaining two examples use data on skin cancer recurrences in the

Nutritional Prevention of Cancer (NPC) trial — a long-term randomized clinical trial for

cancer prevention (Clark et al. 1996).

3.1 Animal carcinogenicity data: multiple times to tumor

Gail, Santner and Brown (1980, Table 1) present data on multiple mammary tumor

incidence times from an experiment conducted by Thompson et al. (1978). Forty-eight

female rats which remained tumor-free after sixty days of pre-treatment of a prevention

drug (retinyl acetate) were randomized with equal probability into two groups. In Group

1 they continued to receive treatment (Z = 1), in Group 2 they received placebo (Z = 0).

All rats were followed for an additional 122 days and the time of any newly diagnosed

mammary tumor was recorded. The numbers of tumors diagnosed in individual rats

ranged from 0 to 13. The objective of the study was to estimate the effect of the

preventive treatment (Z) on tumor recurrence.

Suppose we consider a model in which the tumors occur over time in a given

subject (rat) according to a Poisson process with a constant intensity rate which depends

on treatment Z, a fixed effect, and on subject, a random effect. If we define Y to

be the number of tumors diagnosed in a particular rat during the 122 day followup

time, the model M specifies that, given Z and ε, Y is Poisson distributed with mean

exp(α + Zβ+ ε). Here the assigned treatment Z is observed, but ε represents an

unobserved random effect modeled as normally distributed with zero mean and constant

variance σ2, independent of Z. This random effect or “unexplained heterogeneity”

could be considered to be caused by omitted covariates. We observe n = 48 i.i.d. pairs

Wi = (Yi,Zi), i = 1, . . . ,n. The likelihood for the observed data involves integration

over ε and is difficult to compute. (However it is possible – see below.) Instead, we

start by taking the indirect approach with an auxiliary statistic ŝ = (â, b̂, t̂2)T , where
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(â, b̂) are the regression coefficient estimates maximizing a naive log-likelihood R =

∑
n
1{Yi(a + Zib)− ea+Zib}, and t̂2 = n−1

∑
n
i=1Y 2

i is the second sample moment. Here the

auxiliary parameter is s = plim(â, b̂, t̂2)T , whereas the true parameter to be estimated

is θ = (α,β,σ2)T . The use of the naive log-likelihood R corresponds to a simplified

model M′ in which the presence of the random effect ε is neglected. The second sample

moment is included in the intermediate statistic to provide information for estimation of

the variance parameter. Therefore ŝ is solved from the estimating equation G(W,s) = 0,

where (formally) G = (n−1∂aR, n−1∂bR, t̂2 − t2)T , i.e.

G = n−1
n

∑
i=1

(Yi − ea+Zib, Zi(Yi − ea+Zib), Y 2
i − t2)T = n−1

n

∑
i=1

gi, say.

The solution ŝ = (â, b̂, t̂2)T can be computed easily. For the rat carcinogenicity data we

obtain the auxiliary estimates â = 1.7984; b̂ = −0.8230; t̂2 = 31.875. The asymptotic

variance var(ŝ) can be estimated by the sandwich formula (see e.g. Carroll, Ruppert and

Stefanski 1995, Section A.3)

v = (∇sG)−1v̂ar(G)(∇sG)−T |s=ŝ

where v̂ar(G) = n−2
∑

n
i=1 gig

T
i |s=ŝ, ∇sG is a 3×3 matrix with elements (∇sG) jk = ∂sk

G j,

j,k = 1,2,3, and A−T = (A−1)T for a generic matrix A.

The indirect likelihood L(θ|ŝ), up to an additive constant, satisfies

−2logL(θ|ŝ) = {ŝ− s(θ)}T v−1{ŝ− s(θ)},

where s(θ) is the asymptotic mean or large sample almost sure limit of ŝ. Since ŝ solves

the estimating equation G = 0, its limit is the solution of the limiting estimating equation

F(θ,s) = EW|θG(W,s) = 0, which can be explicitly solved to obtain s = s(θ). This yields

the bridge equation:

s = plim(â, b̂, t̂2)T

= s(θ) =



α+σ2/2, β,
1

2
(1+ eβ)e

α+
1

2
σ2

+
1

2
(1+ e2β)e2(α+σ2)




T

.

Because dim(s) = dim(θ) = 3 and s(θ) is a smooth invertible mapping, the indirect

MLE θ̂ = argmaxθL(θ|ŝ) can be obtained by solving ŝ = s(θ), which gives the

adjusted estimates θ̂ = (α̂, β̂, σ̂2) = s−1(ŝ). Thus β̂ = b̂, and α̂ = â− σ̂2/2 where σ̂2 =

log

{
2t̂2−eâ(1+eb̂)

e2â(1+e2b̂)

}
. For the rat data, this leads to adjusted estimates α̂= 1.6808(0.1589);

β̂= −0.8230(0.1968); σ̂= 0.4850(0.1274).

The estimated standard errors shown in parentheses are obtained using the delta

method formula: v̂ar(θ̂) = (∇θs)
−1v(∇θs)

−T |θ=θ̂, and then taking the square roots of

the 3 diagonal elements of this matrix. It is noted that this delta method expression is

equivalent to deriving the variance by
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{−∇2
θ logL(θ|ŝ)}−1|θ=θ̂

based on the ‘indirect likelihood Fisher information’, where ∇2
θ represents the Hessian.

This follows because the jkth element of the Hessian is, for j,k = 1,2,3,

{−∇2
θ logL(θ|ŝ)} jk|θ=θ̂ = −∂θ j

∂θk
logL(θ|ŝ)|θ=θ̂

= (∂θ j
sT )v−1(∂θk

s)|θ=θ̂− (∂θ j
∂θk

sT )v−1(ŝ− s)|θ=θ̂

= (∂θ j
sT )v−1(∂θk

s)|θ=θ̂ + 0

= {v̂ar(θ̂)−1} jk.

If we wish to obtain the MLE of θ = (α,β,σ2) based on model M, then it can be

found by a somewhat tedious iterative numerical maximization of the true likelihood

which involves numerical integration over the distribution of ε. These estimates are:

α̂ML = 1.6717 (0.1560); β̂ML = −0.8125 (0.2078); σ̂ML = 0.5034 (0.0859). For the

MLEs, the estimated standard errors are based on the inverse of the Fisher information

matrix, evaluated at the corresponding estimate values.

The estimated standard errors suggest that the efficiency of indirect estimation of the

treatment effect parameter β is high here in this example. Related results (Cox, 1983;

Jiang et al., 1999) show that such high efficiency is achievable if the follow-up times

are about the same across different subjects (which is true here), or if the overdispersion

is small. Also it should be noted that the adjusted estimator β̂ is robust, in the sense

that it remains consistent, essentially as long as the mean function E(Y |Z,ε) is correctly

specified and ε and Z are independent. (Its standard error estimate from the sandwich

formula is also model-independent and robust.) In particular, the consistency property

does not depend on the specification of a complete probability model, namely that Y is

Poisson and ε is normal. Thus the indirect estimator enjoys a robustness advantage over

the MLE.

The indirect approach, although formulated from the different perspective of using

naive model plus method of moments, is intimately related to the work of Breslow

(1990) based on quasi-likelihood and method of moments. Breslow used a different

linear combination of Yi’s based on quasi-likelihood (Wedderburn, 1974; McCullagh

and Nelder, 1989), which enjoy general efficiency properties among linear estimating

equations. However, (i) our approach can be interpreted as basing inference on the

simple moments n−1
∑Yi, n−1

∑ZiYi and n−1
∑Y 2

i (which can be easily seen from

the estimating equation G = 0), and (ii) our approach shows clearly, by the use of

bridge relations, the sensitivity and robustness of parameter estimates to the omission

of over-dispersion in modeling. Also note that here we used a log-normal distribution

to model the random effects and the variance parameter also enters the mean model

(unconditional on ε), whereas Breslow (1990) focused on the examples such as ones

with gamma multiplicative random effects in which the mean model does not change.
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For the only comparable parameter β (the treatment effect), the Breslow method (from

his equations (1), (2) and (7)) gives exactly the same answer as our adjusted analysis:

β̂Breslow = −0.8230(0.1968). This is because, for this special two-group design, both

methods essentially use the log(frequency ratio) to estimate the treatment effect.

3.2 Skin cancer recurrence data from the NPC trial: parametric modeling

Clark et al. (1996) have described the results of the “Nutritional Prevention of Cancer”

(NPC) trial. This trial, begun in 1983, studied the long-term safety and efficacy of a

daily 200µg nutritional supplement of selenium (Se) for the prevention of cancer. It

was a double-blind, placebo-controlled randomized clinical trial with n = 1312 patients

accrued and followed for up to about ten years. Here we shall consider a particular

primary endpoint — namely squamous cell carcinoma (SCC) of the skin. The results

for this endpoint are of particular interest because Clark et al. (1996) found a negative

(but not statistically significant, P = 0.15) effect of selenium (Se) supplementation. This

was opposite to previous expectations, and contrasted sharply with findings of highly

significant positive benefits of the selenium supplementation in preventing a number of

other types of cancers. However in their analysis, Clark et al. used only data on the

time to first occurrence of SCC in each subject and employed a Cox model that ignored

patient heterogeneity (i.e. that assumed a common baseline hazard) and ignored that

some explanatory covariates were measured with error.

We consider the recurrences of SCC over time, measured from date of randomization,

for patients i = 1, ...,n as n i.i.d. discrete point processes {Yi(t)}. Here Yi(t) is the

observed number of recurrences for patient i on day t (usually zero or one). Time t

is measured in days on a discrete time scale t = 1, . . . ,K, where K = 4618 days, the

longest followup time. The indicator variable Hi(t) is one if patient i is still on study (“at

risk”) on day t and zero otherwise. For illustration purposes, we will consider only two

explanatory variables, namely treatment assignment indicator a and baseline Se level x.

The latter is an important predictor, measured prior to randomization in each patient,

but is contaminated with measurement error so that the observed value is recorded as z

not x. In the parametric approach, we postulate an independent Poisson process model

with constant baseline mean event rate as the underlying data generating mechanism:

for i = 1,2, . . . ,n; t = 1, ...,K, Yi(t) are independent Poisson random variables with mean

E[Yi(t)] = Hi(t)ψiλexp(aiγ+ xiβ).

Here the {ψi} represent subject-specific random effects or “frailties”, which modulate

the constant baseline mean rate λ. In this framework, the sufficient statistics is Yi ≡

∑
K
t=1 Hi(t)Yi(t) which follows Poisson distribution with mean τiψiλexp(aiγ+ xiβ), with

τi = ∑
K
t=1 Hi(t) being the length of follow-up for patient i.

When a conjugate distribution Gamma(mean 1, variance ν) for ψi is used, the

integration over the unobservable ψi can be carried out analytically, so that unconditional
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on ψi:

Yi follows a negative binomial distribution with mean µi and variance µi +

νµ2
i ,

where µi = τiλexp(aiγ+ xiβ). We refer to this as our base model “M(para)”.

In Turnbull et al. (1997), the intended xi is the long-term average of the baseline

Se level (in log-scale), which is subject to measurement error and temporal fluctuation.

An error-contaminated version zi = xi + ui is observed, where xi and ui are assumed to

be independent normal with zero means (after centering) and respective variances σ2
x

and σ2
u. A naive analysis ignoring measurement error would involve a negative binomial

regression of Yi on (ai,zi), instead of on (ai,xi). The auxiliary model is then:

M′(para): Yi is negative binomial with mean qi and variance qi + vq2
i ,

where qi = τimexp(aig + xib) and s = (g,b,m,v) is the naive / auxiliary parameter

corresponding to the parameter θ= (γ,β,λ,ν) used in M(para).

Table 1: Statistical analyses for several models of NPC trial SCC data.

Model Treatment Baseline Se

estimate (s.e.) estimate (s.e.)

1) Parametric: Constant Intensity

1) a) Naive (Model M′ (para)) ĝ=0.122 (0.059) b̂=−0.725 (0.145)

1) b) Adjusted (Model M (para)) γ̂=0.122 (0.125) β̂=−2.181 (0.963)

2) Semi-parametric

2) a) Naive (Model M′ (semi-par)) ĝ=0.117 (0.059) b̂=−0.690 (0.146)

2) b) Adjusted (Model M (semi-par)) γ̂=0.117 (0.125) β̂=−2.076 (0.963)

Such a naive analysis based on M′(para) was run and the resulting estimator ŝ for

s forms our intermediate statistic. Computer packages for negative binomial regression

can be used for this task, e.g. the procedure nbreg in STATA 5.0 (StataCorp 1997). The

bridge relation s(θ) as a consistent limit of ŝ when the true parameter is θ was shown

(Turnbull et al., 1997) to include an implicit equation for solving for v, as well as the

following explicit formulae:

g = γ, b = πβ and m = λexp(0.5β2σ2
x|z),

where π = σ2
x/(σ

2
x +σ2

u) is the attenuation coefficient, and σ2
x|z = πσ2

u, which were

obtained from an internal validation study (Turnbull et al., 1997).

This bridge relation is then inverted to obtain a consistent adjusted estimator θ̂ for the

true parameter θ = (γ,β,λ,ν). Robust sandwich variance estimates were used to obtain

standard errors. Details of the calculations are given by Turnbull et al., (1997). Inference
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on the regression parameters of interest, (γ,β), are summarized in lines 1a and 1b of

Table 1 and compared with the results from the semi-parametric approach described

next.

3.3 Skin cancer recurrence data from the NPC trial: semi-parametric modelling

Jiang et al. (1999) consider a semi-parametric approach to analyze the NPC study, for

the purpose of removing the following assumptions used in the parametric approach: (i)

Constant mean rate λ; (ii) Poisson distribution assumption on Yi(t) conditional on the

random effects; (iii) Gamma distribution assumption on the frailties ψi.

Specifically, now we assume a model M(semi-par) for the observed mean response:

E[Yi(t)] = Hi(t)ψiλ(t)exp(aiγ+ xiβ), for all i = 1,2, . . . ,n, t = 1, . . . ,K. (3)

Without loss of generality we may take E[ψi] = 1. Note that only the mean responses are

modeled (not the higher moments) and the Poisson assumption is removed. Instead of

the constant baseline mean rate λ, we use a nonparametric baseline mean rate λ(t). There

is no distributional assumption on frailties {ψi} either. The semi-parametric approach is

therefore considerably more flexible.

Here the parameter of interest is θ = (γ,β,λ(·)), where λ(·) = (λ(1), . . . ,λ(K)).

This is clearly a complex model, particularly because the frailties {ψi} are unobserved,

and only the surrogate zi is observed in place of xi. Jiang et al. (1999) proposed

an indirect inference approach based on the auxiliary model M′(semi-par) given by

nonhomogeneous Poisson process model with multiplicative intensity m(t)exp(aig +

zib). Note M′(semi-par) is simpler; it ignores the presence of frailties and measurement

error. This leads to consideration of the intermediate statistic ŝ = (ĝ, b̂,m̂(·)). Here (ĝ, b̂)T

is the Cox (1972) partial likelihood estimate and m̂(t) is a discrete intensity estimate

for λ(t) that corresponds to the Nelson-Aalen estimate of the cumulative intensity (see

Andersen et al. 1993, Sec.VII.2.1). Standard computer software can be employed to

compute these estimates — e.g. in Splus Release 6 (Insightful Corp. 2001). The auxiliary

or ‘naive’ estimator ŝ is computed ignoring both the random effect (by taking ψi to be its

mean 1) and the measurement error (by taking xi to be zi). The dimensionality of ŝ and θ

are equal and so the θ̂ can be obtained from the bridge relation s = s(θ). Under the same

Gaussian additive model for the measurement error as described in the last section, they

go on to find the auxiliary or ‘naive’ parameter s = (g,b,m(·)), the asymptotic mean of

ŝ, leading to the bridge relations:

g = γ, b = πβ, m(t) = λ(t)exp(0.5β2σ2
x|z).

This bridge relation is then inverted to obtain a consistent adjusted estimator θ̂ for the

true parameter θ = (γ,β,λ(·)). Robust sandwich variance estimates were used to obtain

standard errors. Details of the calculations are given by Jiang et al. (1999). The results

are summarized in lines 2a and 2b of Table 1.
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Note that there is a qualitative difference between the estimates of treatment effect:

in the general model M(semi-par), the treatment is no longer statistically significant.

The results based on model M(semi-par) (line 1b) are robust against misspecifications

of models on the response {Yi(t)}– only a very general model for the mean need

be postulated (cf. Lawless and Nadeau 1995). Assumptions on higher moments, such

as those that might be imposed by the Poisson distribution, are not needed for valid

inference.

When we compare the results of the previous parametric analysis described in Section

3.2 as displayed in lines 1a and 1b of Table 1, we find that the results are similar. This

suggests that the much simpler constant intensity function model may well be adequate

here.
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Resum

Es descriu en aquest treball l’anomenat mètode indirecte d’inferència. Aquest mètode es va
desenvolupar inicialment en la literatura econòmica i nosaltres l’apliquem a l’anàlisi de la
supervivència de dos conjunts de dades amb esdeveniments repetits. Aquest mètode acostuma
a ser més convenient computacionalment que el mètode de màxima versemblança quan el model
inclou, per exemple, complexitats tals com efectes aleatoris i errors de mesura, i també pot servir
com a base per a inferències robustes sota hipòtesis menys estrictes sobre el mecanisme que
ha generat les dades. El primer conjunt de dades conté temps de recurrència de tumors mamaris
en rates i es modela fent servir un procés de Poisson amb covariàncies i fragilitats (frailties). El
segon conjunt de dades involucra temps de recurrència de tumors de pell en individus d’un assaig
clı́nic. S’aplica la metodologia a anàlisis de regressió, tant paramètrics com semiparamètrics, que
acomoden efectes aleatoris i errors de mesura en les covariàncies.
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