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On-line nonparametric estimation*

R. Khasminskii
Wayne State University, USA

Abstract

A survey of some recent results on nonparametric on-line estimation is presented. The first result deals
with an on-line estimation for a smooth signal S(t) in the classic ‘signal plus Gaussian white noise’
model. Then an analogous on-line estimator for the regression estimation problem with equidistant
design is described and justified. Finally some preliminary results related to the on-line estimation for
the diffusion observed process are described.
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1 On-line estimation of a signal in a Gaussian white noise model
We consider an observation proceg$t) having the form

XE(t) = j: S(s)ds+ eW(t), t € [0, 1]. (1.2)
HereW(t) is a standard Wiener process and 0 is a small parameter. Denote {3, L)

a class of function$(t),t € [0, T] having k derivatives on (OT) with k-th derivative
S®(t) satisfying the Klder condition with the exponente (0,1](8 = k + «):

ISO(t + h) - SM(t) < Lihe.

* Address for correspondencBeepartment of Mathematics, Wayne State University, Detroit,48202, USA.
E-mail: rafail@math.wayne.edu

* Partially supported by NSF Grant DMS 9971608.

Received: October 2003

Accepted: January 2004



2 On-line nonparametric estimation

The following problem was considered by Ibragimov and Khaskii (1981): what
is the rate of convergence to O for the best estimatorS, &Y, ..., S® ase — 0,
and how can estimators with this rate be created? It was shiowbragimov and
Khasminskii (1980a, 1981) that the kernel and projectid'mrﬁorsi(t) for a suitable
choice of parameters have a property
L)
S,(t) = S(t) z+ Z s S2(1) - sO() 2) .c

T g2B-D/2B+1) (1.2)

St (e

and there are no estimators with uniformhigs, L) better rate of convergence to 0 risks
(here and below we denote KBy C; generic positive constants, which may bé&ealient
and do not depend o).

In some applications it is necessary to create a trackingr(dine) type of estimator
for S, that is estimators with the properi$;(t + h) is based orS,(t) and observation
process on the time interval, f + h] only. Unfortunately the well-known kernel and
projection estimators do not have this property.

The tracking estimator for the model (1.1) was proposed bynGital. (1997). This
estimator has the structure of a Kalman filter. Heuristictilig estimator is based on the
auxiliary filtering model

ds(t) SW(t)dt
ds) = sUmdt, j=1,...., k-1
ds®¥) = o.dwW(t)
dX = S(@)dt+edW). (1.3)

It is clear that the last equation in (1.3) is equivalent tdJ1Assuming that the standard
Wiener processe®V(t) and W'(t) are independent and choosing a constantin a
suitable way, we arrive at the following estimator ®¢t) = S©O(t),...,SM(t) (see
details in Chowet al. (1997))

Sy Qi+ g; A
dsVt = SUHydt+ 82(j+1)/(26+1)(dx (t) — S,(t)dt),
i = 01,....,k—1 (1.4)
Sm - % ayemy_ S
ng (t) - 82(k+1)/(2'8+1) (dx (t) Ss(t)dt)’

subject to the initial condition§(0) = S,,SW(0) = S!, j = 1,...,k, which reflect a
priori information onS(0), SW(0), j = 1,..., k.
Denote bypk (1) the polynomial
P(d) = A+ qoAX + ...+ Oerd + O

The following result was proven in Choet al. (1997):
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Theorem 1.1 For any choice g, ..., gk such that all roots of the polynomiak{) have
negative real parts, and for arbitrary bounded initial catidns S, . .., S the tracking
filter (1.4) has the property: there exists an initial boungdayer A, = Cys%/%+1
log(1/¢) such that for &= A, the inequality (1.2) is valid.

Remark 1.2 Itis proven in Chowet al.(1997) also, that the initial boundary layer of
the orders??#+! is inevitable for any tracking type estimator.

Remark 1.3 An analogous result was proven in Chetal.(2001) for the estimation of
atime dependent spatial signal observed in a cylindricali€aan white noise model of
the small intensity. It is proven in Chowet al. (2001) that outside of the inevitable
boundary layer the symbiosis of a projection estimator ia #pace variables and
tracking type estimator in the time variable also has an jli rate of convergence
of risks t00, ase — 0, for a suitable choice parameters of a tracking filter and a
projection estimator.

2 On-line estimation of a smooth regression function

It is well known that the model (1.1) is a natural approxiroatifor the regression
estimation model with equidistant design. In more detailnsider the following
statistical model. Lef (t) € R, t € [0, 1], be a function fronk(s, L), tin = lnl =1...,n,
and the observation model has the form

Xin = f(tin) + o (tin)in, (2.1)

where £in)i<n IS @ sequence of i.i.d. random variables Wik, = O, Egizn =1 and
o?(tin) < C. The natural analogy of an estimator (1.4) is the trackinigregor (hereafter
we write for brevityt; instead otj, andX; instead ofX,)

100 = 1000+ 190 + 5506~ 10-0)
n 2+1
j = 01,...,k-1 (2.2)
W) = 100 + o (%~ 19-0))
n +1

subject to some initial condition§®(0), f{2(0),..., f¥(0).The following theorem,
analogous to Theorem 1.1, was proven by Khasminskii and Lif26©2):

Theorem 2.1 Let @,...,0« are chosen so that all roots of the polynomial(.
have negative real parts. Let an observation model has tha f@.1), f € 2(3,L)
and o?(t) < C. Then the estimator (2.2) with arbitrary bounded initialnditions
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frﬁo)(O), f,ﬁl)(O), ce f,fk) (0) possesses the property: forst Cln‘ﬁ logn := 6,

sup_ 3 (10 - 1P <co 2.3)
fex(B.L) 429

Remark 2.2 Similar the proof an analogous property of the estimatod)it is easy

to conclude from the results in Stone (1980) and Ibragimay ikhasminskii (1980b)
that the rate of convergence of risks to zero fornoo in (2.3) is unimprovable. The
boundary layer of order T+ is also inevitable for any on-line estimator.

Remark 2.3 It is easy to apply the estimator (2.2) for the estimation thwhe best
rate of convergence of risk t0 for all t € [6,,1]. It is enough to set, for instance,

fD1) = £0t) forty <t < ti.s.

Proof of Theorems 1.1 and 2.1 are similaMaking use of the choice parameters
Jo.- ..,k and the recursive form of estimators (1.4), (2.2) one can fidsuitable
upper bounds for the bias and variance of these estimateranAllustration, consider
the simplest case of the estimation problem (2.1) wita X(1,L) (8 = 1). Then the
estimator (2.2) takes the form

falte) = fate-) + 2/3(X€ Talte-1)); Ta(0) = fo (2.4)

with arbitrary boundedy and positive boundedo. Making use of (2.1) and notations
An(0) = fo(ty) — T(ty), Af(ty) = f(ter1) — f(ty), one can rewrite (2.4) as

A0 = = yante -1 - - Loareoy + ELEL 25
It follows from (2.5) that
M) = (1= %) An(0) - Z(l o) AT ) (2.6)

2/3 Z( - 2/3)[I (t)fl

It follows from the assumptiog = 1 that|Af(t)| < L/n. Thus we have from (2.6) that
IEAR(E)] < |An(O)] exp{—ﬁ +CnY3,

SO |EAL(6)] < Cn Y3, ast > Cin?2logn, or, equivalently, a = I/n > Cin"Y3logn.
Analogously one can obtain

-

VarAn(¢) < 4/32 r]2/3)2(5 V<cn?l
i=0
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These upper bounds ftEEAL(¢)], VarAn(¢) imply the assertion of the Theorem 2.1 for
the cases = 1. |

3 On-line estimation for the diffusion observed process

Recently we started (together with Y. Golubev) to study tmebjem of on-line
estimation of an unknown sign&i(t) for the case of a diusion observed process. A
preliminary result concerns estimating a signal of the simoessy, 0 < @ < 1 only.

Assume that an observed process is a solution of the stock#Etrential equation
onR?!

dXs(t) = F(t, Xe(t), S(M)dt + eo(t, Xo(t))dw(t); X:(0) = Xo. (3.1)

(It is a natural generalization of an observation model)jlHere S(t) : R! — Rl is
an unknown function, and the problem is to estimate thistian@n the interval (0T)
making use ofX.(t),0 <t < T. Let the following conditions hold:

Al. The functionsF, o are Lipschitzian with respect to all variables, amdis
bounded.
A2. The functionS(t) satisfies the Elder condition

IS(t+h) - S() < LI, 0<a <1
A3. For some positiveC; and all 0 < t < T,x € RLS e R! the inequality

C1 < |89 < C; holds.

We consider the following on-line estimat8g(t)

dX:(t) — F(t Xs(1), Ss(B))dt,
YeFs(t Xo(0). So(1))

dS.(t) = S.(0) = S©. (3.2)

Theorem 3.1 Under conditions A — A3 the estimator (3.2) withy, = kez (k is an
arbitrary positive constant) has the property

EIS,(t) — S(t)? < Cez (3.3)
ast> Cezm log(1/¢) (here C is large enough, but independentpf

Proof. IntroduceS;(t) = (26)7* le exp{—%}S(u)du. It is easy to see from A2 that
S5(t) — S| < 367, [S(t)] < ca6™ ™t (3.4)
Introduce a new process(t) = S,(t) — Ss(t). Then we have from (3.1) and (3.2)

B 1 SG'(t, Xa(t))
Do(0) = 5 A0 X 0, S.0)

dw(t) — S;(t)dt. (3.5)
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Here we denote

F(t, Xe (1), S(1) — F(t X (1), Ss(t) + Xs(t))
Fo(t, Xa (1), Ss(t) + x5(1))

Ae(t) = (3.6)

The equation (3.5) and Ito formula imply

2 exs(t)or(t, X (1))
A1 = 3 %00+ 207 656 S.0)

eo(t, Xs(1)) /
IO X0, 5. Ot 260Si(dt

It follows from A3 and (3.4) that

dw(t) (3.7)
+

F(t, Xe(1), S(1)) — F(t, Xe(t). Ss (1))
Fo(t, Xeo(t), Ss(t) + x5(1))

F(t, Xe(t), Ss(t)) — F(t Xe(), Ss(t) + X5(1))

Fs(t, Xe(1), Ss(t) + x5(1))

< g—ilx(s(t)lls(t) = Ss(t) - g—gx@(t)l2 < Calxs(®)l6” - g—i|x5(t)|2. (3.8)

X5 (DA() = Xs(t)

Xs(t)

DenoteVs(t) = E[xs(t)]2. Then it is clear from (3.7), (3.4) and (3.8) that

’ kl 520{ 82 2a—2
Vi) < ——Vs(t) + Ko(— + — +7:677) (3.9)
Ye Ye Ve
for small enough positive constdatand large enough constadat(both independent of
£,6,v:). Now choose the parametetg/, asé < ez, Ve < ez+1. Then we obtain from
(3.9) for some positive constarkg k4 independent of the inequality

V/(t) < —kae V() + kge 2ot (3.10)

It follows from (3.10) that

Vs(t) < Vs(0) exﬁ—kg,e_Tzﬂt} + k%sﬁ (3.11)

The initial valueVs(0) = S© — S4(0) is bounded. Thus we can conclude from
(3.11) thatVs(t) < Cez'1, ast > Cezs log(1/e). Note now thatE|S,(t) — S <
2V (t) + 2/Ss(t) — S(t)[2. The theorem follows from these upper bounds and (3.4)a

Remark 3.1 It follows from the s.1 that the rate of convergence in TheoBinis
unimprovable: it is unimprovable even for the cagg, &k S) = S, o (t, X) = 1.
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5 Concluding remark

The estimators (1.4), (2.2), (3.2) can be used for extrajpoldbo. For instance, the

expression
k

IR0

=0

can be used for estimation &ft; + h) on the basis of observatiols,, . .., Xi,. It is not
hard to check with help of Theorem 2.1 that

Effa(t + h) - f(t + h)? < Cmaxth,n"77)%,

and better rate of convergence of risk is unattainable.
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Resum

Es presenta un recull d’alguns resultats recents en estimacié no-parametrica en linia. El primer resultat
tracta d’una estimacio en linia per a un senyal suau S(t) en el model classic “senyal més soroll blanc
Gaussia (GWN)”. Aleshores es descriu i justifica un estimador en linia analeg pel problema d’estimacio
de regressio amb disseny equidistant. Finalment, es descriuen alguns resultats preliminars en relacio
a I'estimaci6 en linia pel procés de difusio observada.
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