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Asymptotic normality of the integrated square error
of a density estimator in the convolution model

C. Butucea

Université de Paris

Abstract

In this paper we consider a kernel estimator of a density in a convolution model and give a central limit
theorem for its integrated square error (ISE). The kernel estimator is rather classical in minimax theory
when the underlying density is recovered from noisy observations. The kernel is fixed and depends
heavily on the distribution of the noise, supposed entirely known. The bandwidth is not fixed, the results
hold for any sequence of bandwidths decreasing to 0. In particular the central limit theorem holds for
the bandwidth minimizing the mean integrated square error (MISE). Rates of convergence are sensibly
different in the case of regular noise and of super-regular noise. The smoothness of the underlying
unknown density is relevant for the evaluation of the MISE.
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1 Introduction

In this paper we consider the following convolution model:

Zi =X +8,
where X, i = 1,...,n are i.i.d. random variables of unknown densftywhich we
need to recover from noisy observatiovis i = 1,...,n. The noise variables, are

supposed i.i.d. of known fixed distribution, having a den&ityctionn in L; andL, and
a characteristic function (c. fd".
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10 Central Limit Theorem in the convolution model

We suggest here an estimatfy of f from noisy observations and study the
asymptotic normality of its integrated square error (ISE)

Bamﬁriﬂmm—um%x )

Let us suppose for the beginning thatbelongs to a Sobolev clas&/(r,L) of
densities, i.e.

W(r, L) = {f density : f € Ly, f |D(u)|ul* du < 2n|_}

where®(u) = fexp@ux)f(x)dx denotes its Fourier transform, for some fixed 1/2
and a constarit > 0. This roughly means these densities are continuouslyat#gewp
to orderr and theirr-th derivative has bounddd, norm.

It is known from estimation theory in the convolution modgiat the rates and
behaviours of estimators are sensiblffelient if the characteristic function of the noise
decreases polynomially or exponentially asymptoticaMg suppose in a first part that
the noise is “polynomial’, i.e.

|D"(u)| ~ |ul~®, as|ul — oo,

where~ means that the functions behave similarly @0 such that > s.

Let us denotgy = f »  the common density ofj,i = 1,...,nand®9 = ® - " its
Fourier transform.

In Section 3, we state our results forffdrent setups. In Section 3.1 we consider
classes of supersmooth densities in association with patyal noise. We say thdt is
a supersmooth density ffbelongs to the class

S(a,r,L) = {f density :f € Ly, f|cl)(u)|2 exp(2z|u])du < 27rL},

for somea,r,L > 0. In Section 3.2 we consider Sobolev densities in associatitn
exponentially decreasing noise. Exponential noise means

|D7(u)| ~ exp(y|ul®), as|ul — oo,

wherey, s > 0. We work here with a kernel estimator of the deconvolutiengity
1 n
— n V4
W00 = 5 2 KR o), )

whereh > 0 is small,K[' denotesk"(-/h)/h and the kerneK" is defined via its Fourier
transform
@ (u)

(I)K (U) = (I)’I(u/h)’

where®®(u) = Ijul < 1]. ()
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Since pioneering work by Carroll and Hall (1988), the decdution density was
already estimated in many setups. We shall cite here onlksvegry much related to
our framework and problems. Such kernel estimates were useldsses similar to the
Sobolev class by Fan (198)1 who computed the rates of convergence of the minimax
L, risk. Recently wavelet estimators were proven to attainsidn@e rates on Besov
bodies and these rates are known to be optimal in the minirppsoach, see Fan and
Koo (2002).

In the setup of Sobolev densities, Goldenshluger (1999) rgéned the minimax
rate for estimating with pointwise risk to adaptive (to the Sobolev smoothnes®s
when the noise is either polynomial or exponential (withtmgts of rate in this last
case). Efromovich (1997) computed exact asymptotic risem{pise and inL, norm)
for estimating Sobolev densities in the presence of expainecreasing noise.

The kernel estimator in (2) (with adequate bandwidth) wasgmdo be minimax for
estimating supersmooth densities with polynomial nois@urucea (2004) and with
exponential noise in Butucea and Tsybakov (2003). The samekestimator was
proven asymptotically normal when the noise is either potyial or exponential in
Fan (199b) and Fan and Liu (1997).

Here we study the asymptotic normality of the ISE in (1) and digcuss several
important applications of results issued from these coatprts. Such computations
can be found in Hall (1984) for a nonparametric density estim with direct
observations. His study is a direct application of a Centfirait Theorem of degenerate
U-statistics of second order. He motivates this by the pralcise in simulations of ISE
as a measure of the performance of a density estimator. Theguoal is to evaluate,
ando, such that

o YIS E(fy, f) — ¢,) = N(O, 1),

whenh — 0 andn — oo. This subject is strongly related to estimating tiienorm
of the densityf from noisy observations. Indeed, a natural estimafoof ||f||§ can
be decomposed such that one of the terms is the degeneratelsgder U-statisti&,
defined later in (8). For not too smooth densittess the dominating term and this gives
the rate of estimatingfll%. Estimating theL, norm of a density is furthermore useful
for nonparametric testing in the convolution model. Thes®lams will be soon the
subject of scientific communications.

Another related problem can be further investigated sigstiith these calculations,
namely that of bandwidth selection for the kernel decomvmtudensity estimatoff,
in (2), via cross-validation.

2 Results

As afirst step it is natural to replacg by E¢[IS E(f,, f)] also denoted bIS E(f,, f)
for mean integrated square error. From nowRyn E¢, andVs denote the probability,
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the expectation and the variance when the true underlyingityeof the model isf. We
may use constantsC,C’, ... which are diferent throughout the whole proof.
Note that the density of our observationgjis f x . We note next that

IS E(fn, f) f(fn(X) — E¢[fa(] + E¢[fa(x)] — f(x))?dx

f(fn(X) — Eq[fa(x)])%dx+ f(Ef[fn(X)] ~ f(x))*dx

Indeed, the cross product term is null, see Lemma 2. We refiaicenow onE;|[ f,(X)]
by its valueK;, x f. Then

MIS E(fy. ) = E¢[IS E(f. £))] = E; [ f (100 — Ex[ 200D 2d x|+ f (Ex[.00]— f ())2dx

and we write
IS E(fn, ) — E¢[ISE(fn, f))] = In — E¢[ln],

wherel, = [(fo(X) — E¢[fa(x)])?dx Computation ofE¢[l,] and of the biasB?(f,) =
f(Ef[fn(x)] — f(X))?dxis rather classical in minimax theory.

Lemmal Let f.(-, Ys,...,Yy) be the kernel density estimator defined in (2) based on
the noisy observations in our convolution model with a badttwh — 0 when n— co.
Then

1+0(1)
n(2s+ 1)nkest1’

If the underlying density belongs to a Sobolev smoothness e\(r, L) with r > 1/2,
then

Ef[ln] =

sup BX(f,) = sup (Ef[fn(x)]—f(x))zdx:Lhzr:o(l).
few(r,L) few(r,L)

In conclusion, MIS Ef,,, f) converges t®, if and only if N5 — co when n— oo and
the bandwidth minimizingup: ey 1) M1S E(fn, ) is

hwise = (La(2s+ 1)n) s

Proof. We present here only exact calculationExfl,], since the remaining results
are obvious or not entirely new. We have

el - 5[ ( | (Kﬂ(x—y)—Kh*f)z(x)dx)g(y)dy

n

- %(f(f(Kﬂ(x—y))de)g(y)dy—IIKh* f||§)~
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We know that||Ky % f||§ is equal to||f||§ plus some estimation bias which tends to 0
whenh — 0 on a smoothness class like the Sobolev cM4s, L). So, the main term is

f(f (Kp(x— Y))2 dX) g(y)dy. Use Lemma 2:

S ([ =97 oy

1 1 m2
b [ (K% g9x= 5 a0

= %@9(0)@(”)2(0): %f@K"(—u)d)Kn(u)du
1+0(1)
n(2s+ 1)h2st1’

O

Remark that in previous equations and in the following pspwafe compute integrals
like f(CDK")2 by actually replacing the c. f. of the noise hy 3, its asymptotic ex-
pression. We do this for simplicity, since calculation wibwctually need splitting
integration domain intqu < M and M < |ul < 1/h, for some large enough, but
fixedM > 0. If M is large enough®” is almostju|~® and the second integral is always
dominating over the first and gives the order of the whole esqiom. For a complete
and explicit computation qun||§ see Butucea (2004).

Let us look closer alt,:

n 2
=2 (Z(Kﬁ(x—m ~Kn* f(x))] dx
i=1

1< 1<
= 5 D KRG =YD = Knx fIE+ = > (KRG = Y) = Kn % £ KRG = Y) = Kn % F),
i=1 i#j=1

where|| - || and(-, -) denote thd., norm and the scalar productlin, respectively. If we
denote by

Ui = Ui(x h, i) = KR(x = Yi) = K+ f(%), (4)
these variables are centred and independent. We get

n

n—lzZ (IUil5 = Ef[IUiIE]) + n—12 PRCAH

i=1 i#j=1
S+ S, say.
It is easy to see that variables$nand inS, are uncorrelated:

E¢[(IIUKlI3 — E[IIULIZD(U;, Uj)] = 0,

forall k,i,j = 1,...,nandi # j. It is necessary now to compute the variance of each
sum and compare. What we prove in the following is tBahas a larger variance (in

|n—Ef[|n]
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order) tharS,, for anyh — 0 andn — co. Then we prove its asymptotic normality and
deduce the asymptotic normality & E(f,, f) — E¢[IS E(f,, f)]. The main dificulty
comes from the fact th&, is an U-statistic of order 2 and degenerate. Indeed,

Ef[(Ui,Up/Y =yl = Ef[(Ki(- = Yi) = Knx f,KI( —yj) = Knx )]
<Ef[KR(~ - Y,)] — Kp % f, Kﬂ( _yj) — Kp % f> =0.

Nevertheless, each term of the sum depends and we apply a central limit theorem
for degenerate U-statistics by Hall (1984), which he alyeapplied in his paper for

the ISE of a nonparametric estimator with direct observatidtere, we have noisy
observations and a particular choice of the kernel (madivéty the minimax theory in

this field) giving sensibly dierent asymptotic behaviours and rates.

Theorem 1 Let f,(-, Y1,...,Y;,) be the kernel density estimator defined in (2) based on
the noisy observations in our convolution model and a badtdwh — 0 such that
Nkt — oo, when n— . Then

\/n(4s + 1)n2hdst1

2/l (IS E(fa. f) ~ Eq[IS E(fa. H)]) = N(0.1)

where the convergence is in law whepnco.

Corollary 2 Let f,(,Y1,...,Y,) be the kernel density estimator in (2) based on the
noisy observations with noise having polynomially dedreagourier transform and

a bandwidth h— 0 such that nf** — co, when n— co. Then }, is asymptotically
normally distributed with

1+ o(1) 2llgli3(1+0(1))
m(2s+ 1)nhest1 n(4s+ 1)n2his1’

if f belongs to the Sobolev class(k\L), the integrated square error IS, f) is
asymptotically normally distributed with

Ef[ln] = and V[lp] =

()

1+ o(1) 2llgli3(1 + o(1))
n(2s+ 1)nkestl n(4s+ 1)n2hdst1

and the MIS E becomes minimal (and of the order of the minimasisk) for h, =
(Lr(2s + 1)n)Y/(@r+9+1)

MIS E(f,, f) < Lh® + and VA[IS E(f,, f)] =

inf sup MIS E(fy, f) = Lz (1(25 + 1)n)” Z571.
h>0 few(r,L)

Notice that for constructing a confidence interval 8f&( f,,, f) using its asymptotic
normality, bothMIS E(f,, f) and V{[IS E(f,, f)] still depend on unknown quantities.
This was already noted by Hall (1984). The meah®E(f,, f) depends on unknowh
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via the bias off,: B%(f) = IE[f,] — fl|3 that we can bound from above hy*". The
variance ofiS E(f,,, f) depends on unknovwrgng. Neverthelesgy is the density of our
observations and can be directly evaluated at a fasterraie t(the same holds for the
other frameworks). Indeed, not only we have direct obs&mat moreoverg is more
regular thanf due to the convolution (which adds smoothness). The estmafithel,
norm of a regular enough density, having a smoothrekgt, can be doneficiently at
rate 1/ v/n, see e.g. Laurent (1996).

Note also that if we use another bandwiltbatisfyingnh?+2st1 — oo, whenn — oo,
the associateMIS Eis (1 + 0(1))/(r(2s + 1)nk?sY). Indeed, whatever the bias of the
estimatorf, is, it is smaller tharLh* = o(1/(nh?$*1)). In this case, the confidence
interval IC1_s of risk 6 > 0, writes

ICo - — 1 . ligll2 2
07 r(2s+ 1nhest — 1012 ppst1/2 n(4s+1)

wherez; is thed-quantile ofN(0, 1), a gaussian law.

: (6)

Proof. Convergenceof $;

n

= = > (UIZ - EdlIViZ]).

i=1

Let us compute an upper bound of the varianc&o0f\e have

Vilsi] = n—ﬁz ¢ | (103 - B0V ]
i=1
E¢[lU4]12
- G A E %

In order to evaluate an upper bound of this, we develop tharseqaf sums irEf[||U1||‘2‘]
and conclude by saying that the dominant term is given by dipositive terms (this
expectation being a positive real number):

(KROx—y) = Kn % F())”dx gy
U )

[/ (KR(x—y))zdx)z a(y)dy
+2|[Kn * 3 f ( f (Kﬁ(x—y))zdx) g(y)dy
+4f(f Kh(x — y)Kn % f(x)dx)2 g(y)dy.

E¢[llU1]l5]
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Note that, by Cauchy-Schwarz and previous evaluations:

f ( f Kn(X = Y)Kp * f(x)dX)zg(y)dy

1/2
< ([ (kaoc-w)ax) 1Ko e iy < 5

2
It remains to compute an asymptotic upper boungf()f(KQ(x— y))zdx) g(y)dy. As
previously,

2
f(f(KH(X—y))ZdX) g(y)dy < %IIK“IE‘S e

Then, for allh > 0 small such thath?s*! — o,

2h4s+1
v | [FésH 1)2 M < © 2 o(1), whenn — o ()
2ligli3 nh
and then
2h4s+1
n{4s+ 1)r12 M S —p 0, whenn — co.
2l(all3
Convergence of S;:

1 n
S= _lei, Uj). (8)

i#]=

The variables inS, are centred and, moreovei;[(U;, Uj)(Uy, Uj)] = 0 as soon as
@, )) # (k1)and{, j) # (I,k). Then

P

i#j=1

1

Vi[S] = FEf 2+ 0ol)

n2

2
= Fn(n - 1)Ef[<U1, U2>2] = Ef [<Ula U2>2]

If we develop this, we get
Ef[(U,U2)?] = Ef[(KI(X= Y1), KP(X = Y2))?] = IIKn x flI3.

We use again the fact thiKp » f||§ is equal to||f||§ plus some estimation bias which
tends to 0 wheiln — 0 on the clas®V(r, L). So, the main term is the first one. Indeed:

2
ff(fKQ(x—u)Kﬂ(x—v)dx g(u)g(v)dudv

s [ [ - uggmdudy

E¢[(KD(- = Y), K(- = Y2))7]
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where we puM"(x) = [ K"(z+ x)K"(2)dz Note that

n 1 N(xa) KN(- 2 1 n n 2
f (M"(9)Pdx = — f [ CO W du= o~ f [ (" (~u)|" du
1 du ~1+0(1)
21t Jy<r |07(u/h)2 |7(—u/h)?  (4s+ 1hts”

Since densitieg are continuous functions, even+{ s— 1/2) - Lipschitz continuous,
see Lemma 3, they are uniformly bounded of¥@n the Sobolev clas#/(r, L) with any
noise density; under our assumptions. Then for any snea#t 0, such that/h — oo,
whenn — oo:

‘ff(M”)ﬁ(v— ug(u)g(v)dudv— f(M")legH%

‘ f f ((M“)ﬁ(v— W) - gv) f (M”)Z)dug(v)d%

< f | f (M"Y((@(v + 1) - g giav
< LN<E(M”)2(X)|h>qr+S’1/2dx+ 25;37p||g||‘x, fll;xlx(Mn)Z(X)dXS o(f(M”)z).
This means L L
E LK (X = Ya), KI(x = Yol = —— 00 e

n(4s+ 1)hts+l
which implies that

(2+o(1))ligli5
n(4s+ 1)n2h(452+1) - 9)

Asymptotic normality of S,. We apply here the following Proposition by
Hall (1984):

Vi[S] =

Proposition 1 (see Theorem 1, Hall (1984)) Assume K(x,y) is a symmetric function
such that EHp(X1, X2)/X1] = 0 almost surely and EH2(Xy, Xp)] < oo for each n.
Denote by

Gn(X’ y) = E[Hn(xl, X)Hn(Xl,y)]-

(EIGE(Xw. Xo)] + N EIHA(. Xo)]) / (EIH2(X0. X2)]) — O, (10)

as n— oo, then

n
Wh= > Ha(X, X;)
i<j=1

is asymptotically normally distributed with zero mean aadance FE[H2(Xy, X2)]/2.
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We apply this result to
n
PS/2= ) (U, Uy)).

i<j=1
We have seen already that this U-statistic is degeneratéhand

llgli + o(1)

In order to check (10) we evaluate and bound from ab&w§G2(Y1,Y,)] and
E¢[(U1, Uo)4. First, if we replaceU; andU, and we keep the dominant term in the

expectation:
_—Kkn n
f ( f K ( h )K ( H )) g(yD)g(y2)dysdy,

i } n Y2 = Y1)\ n 4
S e f h(K (Z+ h )K (Z)dZ) 9(y1)9(y2)dyrdy,

< h—13 f Rz — y1)a(y2)g(y2)dyidys.

Ef[(U1, U2

IA

whereR'(2) = ([ K"(z+ u)K"(u)du)* = (M"(2))*. As in the previous part of this proof,
we need to evaluate

fR”(z)dz:f(M”)“(z)dz: %fchM”*cD'V'”(u)|2dus(fjd)“""(u)fdu)zs %

Thus, bera
c/h™= _C
Er[(Us, U/ (1 (U U P)?) < T < =
and this proves the first part of (10).

Now, recall (4) and write

= o(1) (11)

Galy1.Y2) = f (Us( Y1), Us( . ys))(Us(, h,y2). UsC b, ya))a(ys)dys.

We have

(Ui, hoya), Us(, hyys)) = th u Y1 ( y)du

thh*f(u)[K”( hy1)+|<“(%)]du

+|Kn * 15

By changing the variable, the first term on the right-hand belomes

n
AR

) K(du = MA(ys - ya)
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where againM"(2) = fK”(u + 2K"(u)du. Then, when we replace this into
Ef[G2(Y1, Y2)], we keep only the dominant term:

2
E([G2(Y1. Ya)] < f f ( f M2y - Y2 ME(Y3 —y2>g(y3)dy3) g)a(ys)dyadys
<& [ [F (w2 222 ) @t + hadz) oatednoy:

sﬁffﬁf(M”)22+ 2

< c% f f Qh(Y2 — y1)a(y1)a(y2)dyidys,

) (M72(ay2 + h)dzgygly)dysdys

where we used Jensen inequality, the fact that dengjtae uniformly bounded by a
constantC depending only om, s, L. We denoted by

Q'@ = (f(M”)Z(Z+ X)(MM)*(x)dx)?.

Similarly to previous calculation d&[(U, U5)?]

2 44
an(Z)dZ = ff(M”)z(z+ X)(MMZ(x)dxdz= (f(M”)Z(x)dx) < %,

Thus,

Ef[G2(Y1, Y2)]/(Ef[(U1, U2)?])? < C”’h = o(1). (12)

Inequalities (11) and (12) imply verification of (10) and theogf of asymptotic
normality. Thus, together with (9), we get the theord®E(f,, f) — MIS E(f,, f) is
asymptotically normally distributed with mean 0 and vac@g|g||5/(r(4s+ 1)n?h*st1).
If we take in consideration Lemma 1, plus simple computatiarsget the Corollary.
i

3 Other frameworks

We study here the same problem in the framework of supersnumisities observed
with polynomial noise (Section 4.1) and that of Sobolev dégsitith exponential noise
(Section 4.2). As it is known from deconvolution density mstiion, the bandwidth
minimizing MISE provides much slower rates for smoother noise distribution
Smoother is the noise, harder is the deconvolution problech slower is the
convergence rate to the asymptotic gaussian law.
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3.1 Supersmooth densities and polynomial noise

In the previous context, conditiam?s** — co was necessary to ensure consistency of
the MIS E, but we only need the more classical, less restrictive ¢mmdnh — oo in
order to haves, converging in probability to O (see (7)) and for the asymiptobrmality

of the ISE, see (11) necessary to get (10). The fact thatas in the Sobolev class
allowed us to evaluate the bias termNH S E and to minimize oveh > 0 the MISE

If we consider instead of Sobolev smoothness classes, alflass L) of supersmooth
densitiesf as defined in the Introduction. We know (see Butucea (2004j}) th

B2(f,) = f(Ef[fn(x)] - f(x)) du< Lexp( ir)

Theorem 3 Let f,(-, Y1,...,Yy) be the kernel density estimator in (2) based on noisy
observations with noise having polynomially decreasingiriey transform and a
bandwidth h — 0 such that nf! — o, when n — co. Then Theorem 1 holds.
Moreover, }, is asymptotically normally distributed with mean and vaGa given by5)

in Corollary 2; if f belongs to the class(&,r, L), the integrated square error | (E,, f)

is asymptotically normally distributed with

1+0(1)
m(2s+ 1)nkest1
and the MIS E becomes minimal for

2/gI5(1 + o(1))
n(4s+ 1)n2histl

MIS E(f,, )<Lexp( 2‘”) and VA[IS E(f,, )] =

h*:(Iogn_ZS—r+1

-1/r
2a 2ar loglog n)

giving

inf  sup MISKEf, f)=

h>0 fes(ar.L) n(2s+1)n

1 logn\& "
=)

The main density being here much smoother than the variareeaw at the same
time choose a bandwidth that minimizes theM IS E(f,, f) and makes the bias term
exp(2a/h") negligible. Indeed, consider,

=1/r
h= (% _ Jlog n) . (13)

=2 g0 - o[ Z])

1+0(1) 3 1+0(1)
m(2s+ nhestl (25 + 1)nhestt
and the confidence interval can be written as in (6) for the Wwadtt hin (13).

Thenh/h, — 1, whenn — oo,

exp( i?) exp( = )exp( 2a+/logn +

and thus

MIS E(f,, f) =
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3.2 Sobolev densities and exponential noise

The situation changes completely if the noise is exponéytsahooth. From Butucea
and Tsybakov (2003) we know

s-1
Ef[ln] M Xp(hs)

2ysn

and this has to be(1) as a necessary condition for thHS Eto be consistent.

Theorem 4 Let f,(-, Y1,...,Y;,) be the kernel density estimator defined in (2) based on
noisy observations with noise having exponentially desirepFourier transform in our
convolution model and a bandwidth & 0 such that ! exp(2/h%)/n — 0, when

n — co. Then

2rysr?
\/hHexp(4y/hS)||g||§ (IS E(f. 1) - E4IS E(f. D) ~ NO.1)

where the convergence is in law whernoo. Moreover, }, is asymptotically normally
distributed with

h e/"(1 + o(1)) and V[l,] = a1 et/
2rysn = orys?

if f belongs to the class W, L), the integrated square error |S(E,, f) is asymptotically
normally distributed with

E¢lln] = (1+0(1));

MIS E(f,, f) < Lh2r+h—He27/hs(l+o(1)) and VA[IS E(f,, f)] = (1+0(1))
2rysn

and the MISE becomes minimal (and of the order of the minimaxidk, see
Efromovich (1997)) for hof order (logn/(2y))~/s

2r/s

inf sup MISE(fy, f) = ('Oﬂ) .
h>0 few(r.L) 2y

In this case the bias term, the bias tetrh? is dominating in the expression of

MIS E(f,, f).

Proof. Indeed, we can see that

IK"I13 h2s-2 4y
V < < 7
(18] < Coas < Clor 9 eXp( hs)’

for some constar® > 0, and

S 2
Vs = TIGE om) (4)/)

2y SIé hs )
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We can see thats[S;]/V¢[S] < h¥1/n = 0o(1) and thusS; is still the dominating term
in the weak convergence to the normal law.
Moreover f(M”)2 (1 + o(1))h®exp(4dy/h3)/(4rys) and finally

0(1)

(EIG3(X0. X)] + M E[HAXw, Xo)1) / (ETH2(%0, X1)T < O(h%) + == = of2).

By Proposition 1 we deduce the asymptotic normality. |

4 Auxiliary results

Lemma?2 Let f, be the kernel estimator defined in (2) with the particularickmf the
kernel and for arbitrary h> 0 small. Then

Ef[fn(X¥)] = K f(X).

Moreover, due to the choice of the kernel the cross term in(fg E) is null

(809~ ECa091) (E4L091 - £9) dx= 0

Proof. For the first part, we use the Fourier inversion formula, theression of the
Fourier transform of the kernel and the fact thdt= @ - ®":

[ s (55 ) ey =5 [ e muesae
x f & MK (hu)d(u)du = f 1 (22 )y = K x £,

Ef[fa(X)]

Next,
(809 = ET091) (L1091 - £9) dx
= [ (109 - B0 Elfdx- [ (00 - EQR(]) FRex (19

Now, the first term of the dierence, we use again Plancherel formula (saying that
[p-q= [®P- @"/2x for any functionsp andgq in L; andL,):

| (809 - B0 Er 01l

_ %Zn:f(KQ(x—Yi)—Kh*f)Kh*f(x)dx
i=1
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- 27mZ f 'X“(QKéT(J)?M —d’K(hU)@(u))@K(hu)mdu

e

(£ = E¢[£(3]) f(x)dx

I
%

where®K(u) is the complex conjugate @"(u) = I[|ul < 1] and we use the fact that
(@K)? = ®X. Then the diference in (14) is null. m

Lemma3 1) If f belongs to a Sobolev class(¥\L) with r > 1/2, then g= f x 5, with

n the density of a polynomial noise,(is+ s— 1/2)- Lipschitz continuous function. If f
is a supersmooth density i&r, L), then g is at least Lipschitz continuous.

2) If f is either Sobolev or supersmooth density then f and §§ x n are uniformly
bounded densities, whether the noise is polynomial or expiied. That means, there
exists a constant G 0, depending only on s, L, such that

supl| fll < C and suplgll. < C.
f f

3) If the noise is polynomial then the deconvolution kerrmdirekd in(3) has
K7 = oD

n(2s+ 1)hzs
if the noise is exponential, then it has

hs(1 + o(1))
K= o el
Proof. 1) If fisinthe Sobolev clas#/(r, L) andn is the density of a polynomial noise,
we have:

l9(x +y) — 9(x)I ‘ f (e7HO) ‘i“X)CDQ(u)du‘

elUy_l
< 5 [ e e@id ey
e — 12 2P udu]
= (f WEGE) duflcb(u)l U [D7(u)llul~du
~ 1/2
s (e - a2 2 g (U)RUe+
< 2r f |V|2(r+s) dv LSM POFRPWFu o

1/2
. f |d>(u)|2|u|2fdu)
u>M
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and all the integrals are finite, for ahy > 0 large enough but fixed. Then there exists a
finite constanC > 0 that does not depend oror y, such that

lg(x +Y) — g(X)| < Cly"*s/2,

We omit the similar proofs in the cases where either the nisisxponential or the
densityf is supersmooth.
2) Probability density function$ in the Sobolev class are such that:

% ‘ f e‘iXUQD(u)du'
%(flcb(u)lz(u |uI2r)duf(1+ IUIzr)_ldU)l/z’

which is less than some const&ahtlepending only om andL. Similarly forg.
3) For this we refer to Butucea (2004) and Butucea and Tsybg@ng). |
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Resum

En aquest article considerem un estimador nucli de la densitat en un model de convoluci6 i donem
un teorema central del limit pel seu error quadratic integrat. Lestimador nucli és forca usual en teoria
minimax guan la densitat subjacent es recupera a partir d'observacions amb soroll. El nucli esta fixat
i depéen fortament de la distribucié de I'error, la qual se suposa totalment coneguda. Lamplada de
banda no esta fixada, els resultats es verifiquen per qualsevol seqliéncia d’amplades decreixents cap
a 0. En particular, es pot aplicar el teorema central del limit per 'amplada de banda que minimitza
I'error quadratic integrat mitja. Les velocitats de convergéncia son forca diferents en el cas de sorolls
regulars i de sorolls super-regulars. La suavitat de la densitat subjacent és rellevant en I'avaluacio del
I'error quadratic integrat mitja.
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