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On best affine unbiased covariance-preserving
prediction of factor scores

Heinz Neudecker
University of Amsterdam, The Netherlands

Abstract

This paper gives a generalization of results presented by ten Berge, Krijnen, Wansbeek & Shapiro.
They examined procedures and results as proposed by Anderson & Rubin, McDonald, Green and
Krijnen, Wansbeek & ten Berge. We shall consider the same matter, under weaker rank assumptions.
We allow some moments, namely the variance Q of the observable scores vector and that of the
unique factors, Y, to be singular. We require T"WY T > 0, where TA T’ is a Schur decomposition of Q.
As usual the variance of the common factors, ®, and the loadings matrix A will have full column rank.
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1 Introduction

We consider the factor modgl= p, + Af + &, wherey is ap x 1 vector of observable
random variables calledscores, f is anm x 1 vector of non-observable random
variables calledccommon factors, A is a p x m matrix of full column rank whose
elements are calledactor loadings ande is ap x 1 vector of non-observable random
variables calledunique factors. The usual moment definitions and assumptions are

E() =0, E(f)=0, E() =g, D() =¥, D(f)=d, C(f.&)=0.
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28 On best affine unbiased covariance-preserving prediction of factor scores

This yields the moment structure
Q=A0A + V¥,

whereQ = D(y) and¥ can be singulap andA have full column rank.
Notice that
M(A) ¢ M(Q). (1.1)

The followingadditional assumption is made:
T'¥T > 0.

It is inspired by the Schur decompositi@n= TAT’, with T'T = |, and diagonal > 0.
Obviouslyp=r > m.

In two recent publications Krijnen, Wansbeek & ten Berge9@Qand ten Berge,
Krijnen, Wansbeek & Shapiro (1999) studied the problem of besar prediction of
f giveny, subject to the constrairEff’ = Eff’, wheref = B’y is their predictor
function. Vectorsf andy have a simultaneous distribution. The two expectations are
taken with respect to this distribution.

The constrainEf f’ = Ef f’ is mistakenly referred to ascorrelation-preserving
We shall call itcovariance-preservingalthough at face value only the RHS expression
is a variance matrix. We shall use affime predictor functionf = a + B'y. It will be
shown thati+ B’y = 0. Hence the predictor function will beconfie= B'(y—wy) which
is linear and unbiased. Consequently the LHS expressiohggtlbme a variance matrix.

In their article ten Bergest al. (1999) examine three prediction procedures, due
to McDonald (1981) —who generalized a procedure proposednmerson & Rubin
(1956)—, Green (1969) and Krijnesh al. (1996), respectively.

We shall consider the same three procedures. The secondiahdrthbased on the
mean-squared-error matr = E(f - )(f - f)'. Where Green minimizes its trace,
tr M, Krijnen et al. minimize its determinantM|. McDonald uses a fterent though
related criterion t#~1E (y - uy — Af)(y - py - AfA)' which he minimizes. Note that
these authors assuiie> 0, henceQ2 > 0. ten Bergeet al. conclude that McDonald’s
and Krijnenet al.’s solutions forB coincide.

In the present paper we shall again consider the above-onetiprocedures, under
weaker rank assumptions. We shall show that the MSE mafris positive definite.
Minimization of the trace and the determinantMfyields immediatelya + B'uy = 0.
Minimization of McDonald’s criterion function yields these result. As mathematical
methods we use a Kristof-type theorem and a matrix mequdbt/eloped by Zhang
(1999). Finally we show that 1}(;, the Green predlctor andk, the Krijnenet al.
predictor coincide whe and A’Q*A commute, 2)fy, the McDonald predictor and
f coincide when? andA®A’ commute.



Heinz Neudecker 29

2 A Kristof-type theorem

Two of the three criterion functions can be seen to belongecctass tP’ X, whereP
and X have dimensiomp x m. The constant matri has rankg. The variable matrixX
satisfies the constrait’X = |,. The aim is to maximize #®’X subject toX’X = I,
Define then the Lagrangean function

@(X) = trP’X = 2trL(X'X = I;),

whereL is asymmetric matrix of multipliers. Symmetry of. is vital. It is justified, of
course, by the symmetry of the constraint.
The diterential of the function, namely

dp = trP’dX — trLX’dX = tr (P — XL)’ dX

has to be zero. This yields the equations

P=XL (2.1)
X'X = I (2.2)
From these we obtain
PP=L? (2.3)
P=X(PP): (2.4)

Which square root will be selected is still undecided. Cdesequation (2.4). As
P(P'P)"2 (PP)? =P

it is consistent. The symbaeh» denotes the Moore-Penrose inverse. The symbels
. . 1 . .
and«%» are interchangeable {®?’P)"2. The general solution of (2.4) is

X, =P(PP)'? + Q= Q(P'P): (P'P)*Z, Qarbitrary (2.5)
When we use the singular-value decomposiftor FlrfG’l, with F{F1 = GiGy = Iq
1
and (diagonal}’; > 0, we can write the solution as
X, = F1G1 + Q(Im = G1GY) (2.6)

It follows from (2.5) that
1
trP’X, = tr(P'P)2 . (2.7)

As we look for amaximum, we have to take thgositive definite square rodP’ P)%. The
solutionX, is not unique, unlesg = m. In that case it can be written as

X, =P(P'P): = F,G, (2.8)
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For the connaisseurs we shall examine the secdferdntial
d?p = —tr(dX)L(dX)’ (2.9)

When this expression isegative for all dX # 0 satisfying X)'X, + X/dX = 0, a
maximum has been found. The cholce- (P’ P)% > 0 guarantees this.

3 The Green procedure

As stated we use the MSE matit = E(f - f)(f- 1) = (a+Buy)(a+Bu) +
B'QB + ® — B'A® — ®A'B. Obviouslya + B'uy = 0, as we have to minimizeM. As
a consequencEf f’ = B’QB. Imposition of the constrainEff’ = Eff’ yields then
M = 20 — BA® — ®A'B. Green (1969) defines the problem:

mE!n tr (20 — B'A® — ®A'B) subject toB'QB = .

We introduceC’ = ®:B'Qz. ClearlyC’C = I,.. This yields the equivalent problem

max trd@’ AQ:C subject taC’C = Iy,

We usedA'Q*:C @7 = RQ:1Q2Q7B = RQzB = A'B, with A = QzRdue to (1.1).
Application of the Kristof-type theorem gives the solution

NI

Co = Q" AD? (DIAQTADE) 7,
from which follows the solution
_1
Bo = Q" AD: (0IAQTADE) T @% + (1,- Q*207) Q. Qarbitrary.

The arbitrary component disappears in the predictor exjores¥;(y — uy), because
(1p - Q2Q*%) (y — uy) = 0 with probability one (w. p. 1).
Hence we get as predictor

fo = @7 (P2 AQAD?) * DIAQY (y—pyy).

The reader can verify th&' Q*A > 0.
An alternative expression is
Ce = F2G),

where we have used the singular-value decomposition
1 3 1
Q" 2AD2 = FoI 3G,

with FF> = GGz = G2G), = Ir. Use was made of the fact that 2 A has full column
rank (m).
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For nonsingulaf the solution becomes that given by ten Beegal. (1999) in their
presentation, namely between (6) and (7).

4 The McDonald procedure

This approach is based on the weighted-least-squaresduancti
trWE (y -y — Af) (y - py - AfA)' .
Clearly
E(y—py—Af)(y-py - Af) = (1, - AB)Q(Ip - BA) +
+A(a+ Bpy)(a+ Buy) A.
Again we find that + B'uy = 0, now having to minimize

trWE (y -y — Af) (y -y — Af)

Notice thatA’¥"*A > 0. .
Imposition of the constrairE f f” = Ef f’ leads to the problem of minimizing

tr¥* (I, - AB')Q (I, - BA)  subject toB'QB = .
UsingC’ = ®~2B'Q: we define the problem:
max trdZAP*Q:C subject toaC’'C = Ip.
Application of the Kristof-type theorem yields the solutio
1 1.1, 13
Cw = Q2W AD? (D2 AV QYAD?) °,
from which follows the solution
11 101, 13 1 I .
By = Q72 Q2WAD? (D2 AVTQPTAD?) P @2 + (1,-Q72Q2)Q,  Qarbitrary.
Finally the predictor turns out to be
_1
fu = @2 (P2 AP QY ADZ) * DAY (y— ).

Again we used
(Ip- Q20" 2)(y-py) =0 wip.1.
The reader can verify th& VY*Q¥*A > 0, using

APHQPA = AP (ADA + )P A = AP ADA WA + APTA,
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An alternative expression is
Cwu = RG;,
where . . )
Q2P AD? = F, TGS,
with F4F; = G4G, = GG =
For nonsingulaf the solution becomes that given by ten Beggal. (1999) in their
presentation, namely between (4) and (5).

5 The Krijnen et al. procedure

Like Green’s this approach uses the MSE mawhof f. Instead of tr(2® — B'A®—
®A'B), Krijnen et al. use|2® — B'AD — ®A’B| which has to be minimized. The first
thing to do is to prove that® - B'A® — PA'B > 0.

We have

20 - B/AD - DA'B = 0 (21— D IBADE — DIABO:) @

_d)z(ZIm—CD’?B’QzQ*zA(Dz DINQTIQIBOE) 03
®2 (21— C'V — V'C) d2

= 02 [(C—- V) (C=V)+(In—V'V)] 0z

where
1 1 1 1
V =Q"Adz andhence V'V = O2A'Q"AD:z.
We shall show that all eigenvalues 6fV are positive and less than unity. Pre-(post-)
multiply the moment structur€@ = ADA" + ¥ by DIAQF (Q*A(D%). This leads to

2
OINQAD? = (cD%A'Q+A<D%) + DIANQTYQTAD?, hence
2
O:ANQAD? > (®%A’Q+Aq>%) ,

as®:AQ'WQAD: > 0, andd; > 12 wherey; is any eigenvalue ob: A Q*A®:. This
proves the property. Hendg — V'V > 0. As C - V)’(C - V) = 0 we have shown that
20 - BAD - PA'B > 0.

Hence|2D — B'AD® — ®A'B| > 0. Consider then the positive definite matrik,2-
C’'V - V'C. We use (7.18) in Zhang (1999) which yields

C'V +V'C < 2U’ (V'CC'V)? U

whereU is an orthogonal matrix.
AsC'C = I, we haveCC’ < | This in its turn leads t&’CC’V < V'V. The latter
inequality gives‘(/’CC’V)% < (V’V)%. See Theorem 2.5.5 in Wang & Chow (1994).
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Finally, we have .
CV+VC<g2U' (V'V)zU
or equivalently
2= C'V-VC > 2[|m _U (V)2 U] .
From this we derive

2lhb-C'V-V'C

>

2[|m _U (VW) u” - ’2[|m _ (va)%]

It is easy to see thdlk = V(V’V)‘% leads to the equality

[21m — ClV - V/Cy| = ‘2[|m - (V)|

HenceCg solves the problem. It is not clear whether the solution igug
In fact, Ck also solves the related problem

mcax trV'C subjecttaC’C = Iy,

The (unique) solution i€k by the Kristof-type theorem.
Application of Zhang’s (7.18) yields

2trV'C = tr (C'V + V'C) < 2trU’ (V'V)? U = 21tr (V'V)?,
which again has solutio@x. We then get the solution
Bk = Q" Ad? (cD%A'grAcD%)_% o7 +(1,-Q*20%)Q, Qarbitrary.
From this follows theunique predictor
f = @3 (QD%A’Q*A(D%)_% OIAQ" (y - py).

For nonsingulag the solutionCy coincides with that given by ten Bergeal. (1999),
namely in (9).

6 Equality of fs and fx when ® and A’Q*A commute

ten Bergeet al. (1999) showed tha€s = Ck under their assumptions when and
A'Q~1A commute. We shall prove thsf@ = ﬁ< under our milder conditions.

When® and A’Q*A commute we hav®d = SMS’ andA’Q*A = SNS’, whereM
andN are positive definite diagonal matrices & orthogonal. Hence

_1
2

o3 (cD%A'mAcD%)‘% = SM3S (SM%S'SNS'SM%S') 2

_ _1
2

= SM3%/ (SMNs') t_ SM§S’S(M3N) s

- SN3S' = (ANQ*A) 2.
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_1
Further (I)% ((D%A/Q+A(D%) 2 _ (A,Q_'_A),% ‘
This yields fg = fx = @2 (A’Q*A)*% ANOF (y—uy).

7 Equality of fM and fK when ¥ and A®A’ commute

ten Bergeet al. (1999) showed thaCy = Ck under their assumptions whéb is
nonsingular. Essential is the expression

-1
Ql-wl_glpp: (|rn + @%A'\P-lA@%) DAY L

Under our assumptionls, + ®2A'¥*Ad: is nonsingular becaus&’¥*A > 0 which
follows from T'"?T > 0 and (1.1). When we additionally assume tHagnd AOA
commute we can establish the equality

-1
QF =" —¥AD? (I + cD%A'\IﬁAcD%) DIAPT.
Proof. When¥ and AOA’ commute we hav® = SMS’ and AGA’ = SNS’ where

M andN are positive definite diagonal matrices && = I, FurtherAd®z = SNzT’,
with orthogonalT, a singular-value decomposition. Hence

P - W ADE (I + DEAWADE) T DB A
= SM™1S’ - SMIS'SNET/ (I + TN%S’SM‘ls’SN%T’)_lTN%S/SM‘ls’
= SM71S’' - SMINT/ (I + TM-lNT/)‘lTlvl-lN%s'
= SM71S' - SMIN:T'T (I + M-lN)‘lT'Tlvl-lN%s'
= SM™1S" - SM7IN: (I, + M‘lN)_l M-IN:zS’.
FurtherQ = AOA’ + ¥ = S(M + N)S’, andQ* = S(M + N)™1S'. Itis easy to see that
(M +N)™ = M= M7INE (1 + M7IN) T MOINE,
This yields the result. |

Recall that 1
fu = 0F (0EAw QY ADY) 7 OEAW (y - )
and 1
f = 0% (DIAQ ADE) > DIAQT (Y — uy).
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Consider
DINQTADE = DIAPFADE — DIAPTADE (I + <1>%A'\P+Ac1>%)_l
X OIAPTAD?
= (Im+ DEAWADE) T DIA W ADS
= (Im+E)'E,
DAY QPTAD? = Pz AV ADAPTAD? + DAY AD?

DEAWADE + (DEAPADE)’
=E+E?

DINQ" = DIAY - DIAPADE (I + @éA'\P+Aq>%)‘1q>%A/\P+
= (ln+ D} APADE) " DEAWP

= (Im+ E) T o2 AP+,
A _1
fc = @ (Im+ E) T E| * (Im+ E) T QEAWH (y— 1),

fu = o} (E+E) 7 0baws (y—p).
Clearly
1
[ (Im+E) " E| *(In+E) ™ = (E+ EZ)‘% asE > 0.

This establishes the equality 6f and fy.

8 Comments

1. ten Bergeet al. (1999) claim that the McDonald method is undefined wheis
singular. This is unjustified. What matters is the nonsingtylaf T"PT. We make
that assumption. It implies th&'¥?*A > 0 which we use several times.

2. Application of Zhang’s result shows immediately th@at and Cy, yield the
maximum. The Kristof-type theorem shows tir@city of the solutions.
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to zero in all three procedures is due to Albert Satorra. kajyif =B (y—,uy), an
unbiased predictor.
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Resum

Es dona una generalitzacio dels resultats presentats per ten Berge, Krijnen, Wansbeek and Shapiro .
Aquests autors examinen metodes i resultats basats en Anderson i Rubin. Mc Donald, Green i Krijnen,
Wansbeek i ten Berge. Considerarem el mateix plantejament pero sota condicions de rang més débils.
Aixi suposarem que alguns moments, com les matrius de covariancies Q del vector de mesures
observades dels factors comuns i ¢ dels factors Gnics, siguin singulars. Imposem la condicié T’y T > 0,
essent TAT' la descomposicio de Schur de Q. Com és usual, suposem que tenen rang maxim per
columnes les matrius de covariancies @ dels factors comuns i la matriu A del model factorial.
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