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Abstract

This paper gives a generalization of results presented by ten Berge, Krijnen, Wansbeek & Shapiro.
They examined procedures and results as proposed by Anderson & Rubin, McDonald, Green and
Krijnen, Wansbeek & ten Berge. We shall consider the same matter, under weaker rank assumptions.
We allow some moments, namely the variance Ω of the observable scores vector and that of the
unique factors, Ψ, to be singular. We require T ′ ΨT > 0, where TΛT ′ is a Schur decomposition of Ω.
As usual the variance of the common factors, Φ, and the loadings matrix A will have full column rank.
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1 Introduction

We consider the factor modely = µy + A f + ε, wherey is a p × 1 vector of observable
random variables called«scores», f is an m × 1 vector of non-observable random
variables called«common factors», A is a p × m matrix of full column rank whose
elements are called«factor loadings» andε is a p × 1 vector of non-observable random
variables called«unique factors». The usual moment definitions and assumptions are

E(ε) = 0, E( f ) = 0, E(y) = µy, D(ε) = Ψ, D( f ) = Φ, C( f , ε) = 0.
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This yields the moment structure

Ω = AΦA′ + Ψ,

whereΩ = D(y) andΨ can be singular,Φ andA have full column rank.
Notice that

M(A) ⊂ M(Ω). (1.1)

The followingadditional assumption is made:

T ′ΨT > 0.

It is inspired by the Schur decompositionΩ = TΛT ′, with T ′T = Ir and diagonalΛ > 0.
Obviouslyp > r > m.

In two recent publications Krijnen, Wansbeek & ten Berge (1996) and ten Berge,
Krijnen, Wansbeek & Shapiro (1999) studied the problem of best linear prediction of
f given y, subject to the constraintE f̂ f̂ ′ = E f f ′, where f̂ = B′y is their predictor
function. Vectorsf and y have a simultaneous distribution. The two expectations are
taken with respect to this distribution.

The constraintE f̂ f̂ ′ = E f f ′ is mistakenly referred to as«correlation-preserving».
We shall call it«covariance-preserving», although at face value only the RHS expression
is a variance matrix. We shall use an affine predictor functionf̂ = a + B′y. It will be
shown thata+B′µy = 0. Hence the predictor function will becomêf = B′(y−µy) which
is linear and unbiased. Consequently the LHS expression willbecome a variance matrix.

In their article ten Bergeet al. (1999) examine three prediction procedures, due
to McDonald (1981) —who generalized a procedure proposed byAnderson & Rubin
(1956)—, Green (1969) and Krijnenet al. (1996), respectively.

We shall consider the same three procedures. The second and third are based on the
mean-squared-error matrixM = E

(

f̂ − f
) (

f̂ − f
)′

. Where Green minimizes its trace,
tr M, Krijnen et al. minimize its determinant,|M|. McDonald uses a different though
related criterion trΨ−1E

(

y − µy − A f̂
) (

y − µy − A f̂
)′

which he minimizes. Note that
these authors assumeΨ > 0, henceΩ > 0. ten Bergeet al. conclude that McDonald’s
and Krijnenet al.’s solutions forB coincide.

In the present paper we shall again consider the above-mentioned procedures, under
weaker rank assumptions. We shall show that the MSE matrixM is positive definite.
Minimization of the trace and the determinant ofM yields immediatelya + B′µy = 0.
Minimization of McDonald’s criterion function yields the same result. As mathematical
methods we use a Kristof-type theorem and a matrix inequality developed by Zhang
(1999). Finally we show that 1)̂fG, the Green predictor and̂fK, the Krijnen et al.
predictor coincide whenΦ and A′Ω+A commute, 2)f̂M, the McDonald predictor and
f̂K coincide whenΨ andAΦA′ commute.
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2 A Kristof-type theorem

Two of the three criterion functions can be seen to belong to the class trP′X, whereP
andX have dimensionp × m. The constant matrixP has rankq. The variable matrixX
satisfies the constraintX′X = Im. The aim is to maximize trP′X subject toX′X = Im.
Define then the Lagrangean function

ϕ(X) = tr P′X − 1
2 tr L

(

X′X − Im
)

,

whereL is a symmetric matrix of multipliers. Symmetry ofL is vital. It is justified, of
course, by the symmetry of the constraint.

The differential of the function, namely

dϕ = tr P′dX − tr LX′dX = tr (P − XL)′ dX

has to be zero. This yields the equations

P = XL (2.1)

X′X = Im (2.2)

From these we obtain
P′P = L2 (2.3)

P = X
(

P′P
)

1
2 (2.4)

Which square root will be selected is still undecided. Consider equation (2.4). As

P
(

P′P
)+

1
2
(

P′P
)

1
2 = P

it is consistent. The symbol«+» denotes the Moore-Penrose inverse. The symbols«+»

and«
1
2» are interchangeable in(P′P)+

1
2 . The general solution of (2.4) is

X◦ = P
(

P′P
)+

1
2 + Q − Q

(

P′P
)

1
2
(

P′P
)+

1
2 , Q arbitrary (2.5)

When we use the singular-value decompositionP = F1Γ
1
2
1G′1, with F′1F1 = G′1G1 = Iq

and (diagonal)Γ
1
2
1 > 0, we can write the solution as

X◦ = F1G′1 + Q
(

Im −G1G′1
)

(2.6)

It follows from (2.5) that
tr P′X◦ = tr

(

P′P
)

1
2 . (2.7)

As we look for amaximum, we have to take thepositive definite square root(P′P)
1
2 . The

solutionX◦ is not unique, unlessq = m. In that case it can be written as

X◦ = P
(

P′P
)− 1

2 = F1G′1 (2.8)



30 On best affine unbiased covariance-preserving prediction of factor scores

For the connaisseurs we shall examine the second differential

d2ϕ = −tr(dX)L(dX)′ (2.9)

When this expression isnegative for all dX , 0 satisfying (dX)′X◦ + X′◦dX = 0, a
maximum has been found. The choiceL = (P′P)

1
2 > 0 guarantees this.

3 The Green procedure

As stated we use the MSE matrixM = E
(

f̂ − f
) (

f̂ − f
)′
=

(

a + B′µy

) (

a + B′µy

)′
+

B′ΩB + Φ − B′AΦ − ΦA′B. Obviouslya + B′µy = 0, as we have to minimize trM. As
a consequenceE f̂ f̂ ′ = B′ΩB. Imposition of the constraintE f̂ f̂ ′ = E f f ′ yields then
M = 2Φ − B′AΦ − ΦA′B. Green (1969) defines the problem:

min
B

tr
(

2Φ − B′AΦ − ΦA′B
)

subject toB′ΩB = Φ.

We introduceC′ = Φ−
1
2 B′Ω

1
2 . ClearlyC′C = Im. This yields the equivalent problem

max
C

trΦ
3
2 A′Ω+

1
2 C subject toC′C = Im

We used:A′Ω+
1
2 CΦ

1
2 = R′Ω

1
2Ω
+

1
2Ω

1
2 B = R′Ω

1
2 B = A′B, with A = Ω

1
2 R due to (1.1).

Application of the Kristof-type theorem gives the solution

CG = Ω
+

1
2 AΦ

3
2

(

Φ
3
2 A′Ω+AΦ

3
2

)− 1
2
,

from which follows the solution

BG = Ω
+AΦ

3
2

(

Φ
3
2 A′Ω+AΦ

3
2

)− 1
2
Φ

1
2 +

(

Ip −Ω
+

1
2Ω

1
2

)

Q, Q arbitrary.

The arbitrary component disappears in the predictor expression B′G(y − µy), because
(

Ip −Ω
1
2Ω
+

1
2

) (

y − µy

)

= 0 with probability one (w. p. 1).
Hence we get as predictor

f̂G = Φ
1
2

(

Φ
3
2 A′Ω+AΦ

3
2

)− 1
2
Φ

3
2 A′Ω+

(

y − µy

)

.

The reader can verify thatA′Ω+A > 0.
An alternative expression is

CG = F2G′2,

where we have used the singular-value decomposition

Ω
+

1
2 AΦ

3
2 = F2Γ

1
2
2G′2,

with F′2F2 = G′2G2 = G2G′2 = Im. Use was made of the fact thatΩ+
1
2 A has full column

rank (m).
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For nonsingularΩ the solution becomes that given by ten Bergeet al. (1999) in their
presentation, namely between (6) and (7).

4 The McDonald procedure

This approach is based on the weighted-least-squares function

trΨ+E
(

y − µy − A f̂
) (

y − µy − A f̂
)′
.

Clearly

E
(

y − µy − A f̂
) (

y − µy − A f̂
)′
=

(

Ip − AB′
)

Ω

(

Ip − BA′
)

+

+A
(

a + B′µy

) (

a + B′µy

)′
A′.

Again we find thata + B′µy = 0, now having to minimize

trΨ+E
(

y − µy − A f̂
) (

y − µy − A f̂
)′
.

Notice thatA′Ψ+A > 0.
Imposition of the constraintE f̂ f̂ ′ = E f f ′ leads to the problem of minimizing

trΨ+
(

Ip − AB′
)

Ω

(

Ip − BA′
)

subject toB′ΩB = Φ.

UsingC′ = Φ−
1
2 B′Ω

1
2 we define the problem:

max
C

trΦ
1
2 A′Ψ+Ω

1
2 C subject toC′C = Im.

Application of the Kristof-type theorem yields the solution

CM = Ω
1
2Ψ
+AΦ

1
2

(

Φ
1
2 A′Ψ+ΩΨ+AΦ

1
2

)− 1
2
,

from which follows the solution

BM = Ω
+

1
2Ω

1
2Ψ
+AΦ

1
2

(

Φ
1
2 A′Ψ+ΩΨ+AΦ

1
2

)− 1
2
Φ

1
2 +

(

Ip −Ω
+

1
2Ω

1
2

)

Q, Q arbitrary.

Finally the predictor turns out to be

f̂M = Φ
1
2

(

Φ
1
2 A′Ψ+ΩΨ+AΦ

1
2

)− 1
2
Φ

1
2 A′Ψ+

(

y − µy

)

.

Again we used
(

Ip −Ω
1
2Ω
+

1
2

) (

y − µy

)

= 0 w.p.1.

The reader can verify thatA′Ψ+ΩΨ+A > 0, using

A′Ψ+ΩΨ+A = A′Ψ+
(

AΦA′ + Ψ
)

Ψ
+A = A′Ψ+AΦA′Ψ+A + A′Ψ+A.
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An alternative expression is
CM = F3G′3,

where
Ω

1
2Ψ
+AΦ

1
2 = F

1
2
3Γ

1
2
3G′3,

with F′3F3 = G′3G3 = G3G′3 = Im.

For nonsingularΩ the solution becomes that given by ten Bergeet al. (1999) in their
presentation, namely between (4) and (5).

5 The Krijnen et al. procedure

Like Green’s this approach uses the MSE matrixM of f̂ . Instead of tr(2Φ − B′AΦ−
ΦA′B), Krijnen et al. use |2Φ − B′AΦ − ΦA′B| which has to be minimized. The first
thing to do is to prove that 2Φ − B′AΦ − ΦA′B > 0.

We have

2Φ − B′AΦ − ΦA′B = Φ
1
2

(

2Im − Φ
− 1

2 B′AΦ
1
2 − Φ

1
2 A′BΦ−

1
2

)

Φ

= Φ
1
2

(

2Im − Φ
− 1

2 B′Ω
1
2Ω
+

1
2 AΦ

1
2 − Φ

1
2 A′Ω+

1
2Ω

1
2 BΦ−

1
2

)

Φ
1
2

= Φ
1
2 (2Im −C′V − V ′C)Φ

1
2

= Φ
1
2
[

(C − V)′ (C − V) + (Im − V ′V)
]

Φ
1
2

where
V = Ω+

1
2 AΦ

1
2 and hence V ′V = Φ

1
2 A′Ω+AΦ

1
2 .

We shall show that all eigenvalues ofV ′V are positive and less than unity. Pre-(post-)
multiply the moment structureΩ = AΦA′ + Ψ by Φ

1
2 A′Ω+

(

Ω
+AΦ

1
2

)

. This leads to

Φ
1
2 A′Ω+AΦ

1
2 =

(

Φ
1
2 A′Ω+AΦ

1
2

)2
+ Φ

1
2 A′Ω+ΨΩ+AΦ

1
2 , hence

Φ
1
2 A′Ω+AΦ

1
2 >
(

Φ
1
2 A′Ω+AΦ

1
2

)2
,

asΦ
1
2 A′Ω+ΨΩ+AΦ

1
2 > 0, andλi > λ

2
i whereλi is any eigenvalue ofΦ

1
2 A′Ω+AΦ

1
2 . This

proves the property. HenceIm − V ′V > 0. As (C − V)′(C − V) > 0 we have shown that
2Φ − B′AΦ − ΦA′B > 0.

Hence|2Φ − B′AΦ − ΦA′B| > 0. Consider then the positive definite matrix 2Im −

C′V − V ′C. We use (7.18) in Zhang (1999) which yields

C′V + V ′C 6 2U′
(

V ′CC′V
)

1
2 U

whereU is an orthogonal matrix.
As C′C = Im we haveCC′ 6 Ip. This in its turn leads toV ′CC′V 6 V ′V. The latter

inequality gives (V ′CC′V)
1
2 6 (V ′V)

1
2 . See Theorem 2.5.5 in Wang & Chow (1994).
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Finally, we have
C′V + V ′C 6 2U′

(

V ′V
)

1
2 U

or equivalently

2Im −C′V − V ′C > 2
[

Im − U′
(

V ′V
)

1
2 U
]

.

From this we derive
∣

∣

∣2Im −C′V − V ′C
∣

∣

∣ >

∣

∣

∣

∣

∣

2
[

Im − U′
(

V ′V
)

1
2 U
]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

2
[

Im −
(

V ′V
)

1
2

]

∣

∣

∣

∣

∣

.

It is easy to see thatCK = V(V ′V)−
1
2 leads to the equality

∣

∣

∣2Im −C′KV − V ′CK

∣

∣

∣ =

∣

∣

∣

∣

∣

2
[

Im −
(

V ′V
)

1
2

]

∣

∣

∣

∣

∣

.

HenceCK solves the problem. It is not clear whether the solution is unique.
In fact,CK also solves the related problem

max
C

tr V ′C subject toC′C = Im.

The (unique) solution isCK by the Kristof-type theorem.
Application of Zhang’s (7.18) yields

2 trV ′C = tr
(

C′V + V ′C
)

6 2 trU′
(

V ′V
)

1
2 U = 2 tr

(

V ′V
)

1
2 ,

which again has solutionCK . We then get the solution

BK = Ω
+AΦ

1
2

(

Φ
1
2 A′Ω+AΦ

1
2

)− 1
2
Φ

1
2 +

(

Ip −Ω
+

1
2Ω

1
2

)

Q, Q arbitrary.

From this follows theunique predictor

f̂K = Φ
1
2

(

Φ
1
2 A′Ω+AΦ

1
2

)− 1
2
Φ

1
2 A′Ω+

(

y − µy

)

.

For nonsingularΩ the solutionCK coincides with that given by ten Bergeet al. (1999),
namely in (9).

6 Equality of f̂ĜfĜfG and f̂K̂fK̂fK when ΦΦΦ and A′Ω+AA′Ω+AA′Ω+A commute

ten Bergeet al. (1999) showed thatCG = CK under their assumptions whenΦ and
A′Ω−1A commute. We shall prove that̂fG = f̂K under our milder conditions.

WhenΦ andA′Ω+A commute we haveΦ = S MS ′ andA′Ω+A = S NS ′, whereM
andN are positive definite diagonal matrices andS is orthogonal. Hence

Φ
3
2

(

Φ
3
2 A′Ω+AΦ

3
2

)− 1
2
= S M

3
2 S ′
(

S M
3
2 S ′S NS ′S M

3
2 S ′
)− 1

2

= S M
3
2 S ′
(

S M3NS ′
)− 1

2
= S M

3
2 S ′S

(

M3N
)− 1

2 S ′

= S N−
1
2 S ′ = (A′Ω+A)−

1
2 .
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Further Φ
1
2

(

Φ
1
2 A′Ω+AΦ

1
2

)− 1
2
= (A′Ω+A)−

1
2 .

This yields f̂G = f̂K = Φ
1
2 (A′Ω+A)−

1
2 A′Ω+

(

y − µy

)

.

7 Equality of f̂M̂fM̂fM and f̂K̂fK̂fK when ΨΨΨ and AΦA′AΦA′AΦA′ commute

ten Bergeet al. (1999) showed thatCM = CK under their assumptions whenΨ is
nonsingular. Essential is the expression

Ω
−1
= Ψ

−1 − Ψ−1AΦ
1
2

(

Im + Φ
1
2 A′Ψ−1AΦ

1
2

)−1
Φ

1
2 A′Ψ−1.

Under our assumptionsIm + Φ
1
2 A′Ψ+AΦ

1
2 is nonsingular becauseA′Ψ+A > 0 which

follows from T ′ΨT > 0 and (1.1). When we additionally assume thatΨ and AΦA′

commute we can establish the equality

Ω
+
= Ψ

+ − Ψ+AΦ
1
2

(

Im + Φ
1
2 A′Ψ+AΦ

1
2

)−1
Φ

1
2 A′Ψ+.

Proof. WhenΨ andAΦA′ commute we haveΨ = S MS ′ andAΦA′ = S NS ′ where
M andN are positive definite diagonal matrices andS ′S = Im. FurtherAΦ

1
2 = S N

1
2 T ′,

with orthogonalT , a singular-value decomposition. Hence

Ψ
+ − Ψ+AΦ

1
2

(

Im + Φ
1
2 A′Ψ+AΦ

1
2

)−1
Φ

1
2 A′Ψ+

= S M−1S ′ − S M−1S ′S N
1
2 T ′
(

Im + T N
1
2 S ′S M−1S ′S N

1
2 T ′
)−1

T N
1
2 S ′S M−1S ′

= S M−1S ′ − S M−1N
1
2 T ′
(

Im + T M−1NT ′
)−1

T M−1N
1
2 S ′

= S M−1S ′ − S M−1N
1
2 T ′T

(

Im + M−1N
)−1

T ′T M−1N
1
2 S ′

= S M−1S ′ − S M−1N
1
2

(

Im + M−1N
)−1

M−1N
1
2 S ′.

FurtherΩ = AΦA′ + Ψ = S (M + N)S ′, andΩ+ = S (M + N)−1S ′. It is easy to see that

(M + N)−1
= M−1 − M−1N

1
2

(

Im + M−1N
)−1

M−1N
1
2 .

This yields the result. ¤

Recall that

f̂M = Φ
1
2

(

Φ
1
2 A′Ψ+ΩΨ+AΦ

1
2

)− 1
2
Φ

1
2 A′Ψ+(y − µy)

and

f̂K = Φ
1
2

(

Φ
1
2 A′Ω+AΦ

1
2

)− 1
2
Φ

1
2 A′Ω+(y − µy).
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Consider

Φ
1
2 A′Ω+AΦ

1
2 = Φ

1
2 A′Ψ+AΦ

1
2 − Φ

1
2 A′Ψ+AΦ

1
2

(

Im + Φ
1
2 A′Ψ+AΦ

1
2

)−1

× Φ
1
2 A′Ψ+AΦ

1
2

=

(

Im + Φ
1
2 A′Ψ+AΦ

1
2

)−1
Φ

1
2 A′Ψ+AΦ

1
2

= (Im + E)−1 E,

Φ
1
2 A′Ψ+ΩΨ+AΦ

1
2 = Φ

1
2 A′Ψ+AΦA′Ψ+AΦ

1
2 + Φ

1
2 A′Ψ+AΦ

1
2

= Φ
1
2 A′Ψ+AΦ

1
2 +

(

Φ
1
2 A′Ψ+AΦ

1
2

)2

= E + E2,

Φ
1
2 A′Ω+ = Φ

1
2 A′Ψ+ − Φ

1
2 A′Ψ+AΦ

1
2

(

Im + Φ
1
2 A′Ψ+AΦ

1
2

)−1
Φ

1
2 A′Ψ+

=

(

Im + Φ
1
2 A′Ψ+AΦ

1
2

)−1
Φ

1
2 A′Ψ+

= (Im + E)−1
Φ

1
2 A′Ψ+,

f̂K = Φ
1
2

[

(Im + E)−1 E
]− 1

2 (Im + E)−1
Φ

1
2 A′Ψ+

(

y − µy

)

,

f̂M = Φ
1
2

(

E + E2
)− 1

2
Φ

1
2 A′Ψ+

(

y − µy

)

.

Clearly
[

(Im + E)−1 E
]− 1

2 (Im + E)−1
=

(

E + E2
)− 1

2 asE > 0.

This establishes the equality off̂K and f̂M.

8 Comments

1. ten Bergeet al. (1999) claim that the McDonald method is undefined whenΨ is
singular. This is unjustified. What matters is the nonsingularity of T ′ΨT . We make
that assumption. It implies thatA′Ψ+A > 0 which we use several times.

2. Application of Zhang’s result shows immediately thatCG and CM yield the
maximum. The Kristof-type theorem shows theunicity of the solutions.
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to zero in all three procedures is due to Albert Satorra. This yields f̂ = B′
(

y − µy

)

, an
unbiased predictor.
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Resum

Es dóna una generalització dels resultats presentats per ten Berge, Krijnen, Wansbeek and Shapiro .
Aquests autors examinen mètodes i resultats basats en Anderson i Rubin. Mc Donald, Green i Krijnen,
Wansbeek i ten Berge. Considerarem el mateix plantejament però sota condicions de rang més dèbils.
Aixı́ suposarem que alguns moments, com les matrius de covariàncies Ω del vector de mesures
observades dels factors comuns i ψ dels factors únics, siguin singulars. Imposem la condició T′ψT > 0,
essent TΛT′ la descomposició de Schur de Ω. Com és usual, suposem que tenen rang màxim per
columnes les matrius de covariàncies Φ dels factors comuns i la matriu A del model factorial.
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