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Local superefficiency of data-driven projection
density estimators in continuous time

Denis Bosq and Delphine Blanke

Université Pierre et Marie Curie, Paris

Abstract

We construct a data-driven projection density estimator for continuous time processes. This estimator
reaches superoptimal rates over a class #, of densities that is dense in the family of all possible
densities, and a «reasonable» rate elsewhere. The class ¥, may be chosen previously by the analyst.
Results apply to R%valued processes and to N-valued processes. In the particular case where square-
integrable local time does exist, it is shown that our estimator is strictly better than the local time
estimator over ¥.
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1 Introduction

We study a data-driven projection density estimaftoin a general framework where
data are in continuous time. The purpose is to reach a supesdpate on a clas$, of
densities that is dense A, the family of all possible densities, andeaeasonablerate
elsewhere. The clas® can be previously chosen by the analyst.

The results are, in some sense, extensions of those whiclewh&ined in the i.i.d.
case (cf Bosq 20Q2 2002), but in this new context the methods are ofteffiedent.

Section 2 contains notation and assumptions. In Section 3 wdy she estimator
over¥o. We obtain a%-rate with respect to the mean integrated square er(é‘ﬂl‘Tﬂé)” 2.
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38 Local superefficiency of data-driven projection density estimators in continuous time

rate with respect to uniform error, and a Gaussian limit striddution with codicient
of normalization VT. Results concerning the asymptotic behaviouf,obver # — %o

appear in Section 4. Finally, Section 5 is devoted to compan§dnwith the local time
estimatorf;, when this estimator exists. It is shown that, in a speciadapﬁs‘s strictly
better thanf;,. The proofs are postponed until Section 6.

2 Notation and assumptions

Let (E,B,u) be a measure space, with o-finite, and such that.?(u) is infinite
dimensional. The norm df?(x) will be denoted].|. Let (g, j > 0) be an orthonormal
system inL?(u).

We consider a stochastic process= (X;, t € R) defined on a probability space
(Q, A, P) and with values inE, 8). X is supposed to be measurable and such that the
X¢'s are identically distributed with densitlywith respect tqu.

Denotef the family of densitied such that

f :iajej, iaﬁ<oo. (2.1)
=0 j

j=0

The class of the observable processes will be dendtedNote that two dierent
processes may have the saifdn order to estimatd from the dataX;, 0 <t < T)
(T > 0) we use a data-driven projection estimator :

R |A(T 1 T
fr = ;ahej with &j_ = ?fo g(X)dt, j>0
and A
ke =max{j : 0< <k, |a,|2 ]
wherey; and the integek, are chosen by the analyst{If .} = 0 one set&; = k.
We always suppose that (unless otherwise stated)

k
ki — oo, ?T—>O, v = 0, asT — co.

If v+ = 0 one obtains the projection density estimator
S
f=> & (2.2)
=0
Now Fo(K) will denote the class of € # such that

K (&9
f = Z ajej, a #0, andfp = U Fo(K).
j=0 K=0
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and finally we put
F1=F - Fo.
In order to study the rates of convergencefbbver% and 71 we shall use strong
mixing codficients of the form
a(C,D) = sup |P(CnD)-P(C)PD)| (2.3)
CeC,DeD

whereC andD are sube-algebra ofA.

For a given procesy¥ = (Y;, t € I), wherel C R, one defines its strong mixing
functions as

dPU) = sup a(o(Yh), o(Ynw), u=0 and

hel ,h+uel

ay(u) = supa(oc(Y,t<htel), o(Y,t>h+utel)), u>0
heR

with the conventionx(.,.) = 0 if one of the two sulr-algebras is not defined. These
two classical coficients will be used in the sequel.
Now the main assumptions and conditions ldieandH; :

A1 1 PranXen = Pxox): St heR (2-stationarity)
Bi(r) : M =sup.ollej(Xo)||, < o, where2 <r < oo,
s Cur) fo m[af)(u)]‘r‘z)/ "du < oo,
i . y=T7 (y>0andk =T# (0<pB<1).
Ao . Xis strictly stationary
Bz =Bi(0) @ M =sup.ollej(Xo)||, < oo,
H, C, . ay(u) <ae® (a>0,b>0)

(X is geometrically strongly mixing, (GSM))

C2

_(InTInInT\"?
=~ :

Note thatA, andC, are satisfied as soon %sis an enough regular stationaryfdision
process (cf Doukhan, 1994). Note also in some situations, maay choosey, =
(1) with constant large enough.

ConcerningB,, it is satisfied in many classical cases, for exampleej) (s a
trigonometric system on a compact interval or the Hermitecfions overR. In the
particular case wher& = N and u is the counting measure, the natural system
(135, j = 0)is, of course, uniformly bounded.

Finally some special assumptions concerning local timeapifiear in Section 5.
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3 Rates of ﬁ over Fo

If f € Fo we shall denote(f) the only integeK such thatf € %o(K). The following
proposition shows that is actually a consistent estimator I6{ f).

Proposition 3.1 If f € o, then
1) if Hy holds, A
Pk, # K(f))= O(TF21) (3.1)

thus, if8 + 2y < 1, k — K(f) in probability.
2) If Hz holds, A
P(k; # K(f)) = o(T™), (3.2)

for eaché > O, in particular, if T = T, T oo with ZnT,;‘S < oo, for somes > 0, then

k:, = K(f) almost surely for n large enough. (3.3)

These results show that the adaptive estimdtohas asymptotically the same
behaviour as the pseudo-estimator

K(f)

O = Z aj.ej. (3.4)
=0
The following lemma makes this fact explicit :
Lemma3.1 If M = sup.|ej(Xo)||, < =, one has

E ||f, - go|]" < M3 P(k, # K(F)). (3.5)

We now indicate the rates df on %o, we begin with the mean integrated square
error (MISE).

Proposition 3.2 If f € g, then
1) If H1 holds, we have

~ 2 1
E|lf - 1| =0z (3.6)
2) If H, holds,
- K() oo
TE|f - f| — 22[0 Cov (g (Xo). €j(X,)) du. (3.7)
i=0

The next statement gives a uniform result.
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Corollary 3.1

2
limsup sup T.E|fi- f||2 < BaoMKo

(3.8)
Tooo XeXo(@obo.Ko) bo

Here Xo(ao, bo, Ko) denotes the family of processes that satidfywith f € Fo(K),
K < Ko anday(u) < ae® wherea < ag andb > by,.
We now turn to thd.||..-error :

Proposition 3.3 If f € 9 and H, holds, then
(Ve>0)(V5>0) P(fi-f|. e =0T, (3.9)
andif T=T,=nh(h>0),n— oo,

I - 1] = 0(('”'%1-)1/2), almost surely. (3.10)

Finally the limit in distribution appears in the followingasement:

Proposition 3.4 If f € Fo, H, holds and T= nh(h > 0) then
VT(f,-f)=N (3.11)

where«=» means weak convergence if(k) and N is a zero-mean GaussiaA(k)-
valued random variable with () + 1-dimensional support.

Proposition 3.2(2), 3.3 and 3.4 exhibit superoptimal rdtdsd 7. In general these
rates appear if the Castellana-Leadbetter condition hekls Castellana and Leadbetter
(1986), Bosq (1998)). Here this conditiomistneeded; this means that local irregularity
of the sample paths is not necessary for obtaining thesengdria rates ovefy.

4 Asymptotic behaviour of ﬂ over ¥,

In order to study consistency df when f € #; we need results concerning the
behaviour of the truncation inddx asT tends to infinity.

Below the first statement expresses the fact khat> o in some sense when the
second one shows thfe.t is not far from ancoptimalk; ».

Proposition 4.1 If f € #; then
1) If H; holds A
Pk < A)=O(T™h), A>0, (4.1)

2) If H, holds
Pk, < A) = O(exp(-c, VT)), (c,>0), A> 0. (4.2)
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Now we specify the asymptotic behaviouriof For this purpose we set
q() = min{ge N, |aj| <nforall j > g}, n>0. (4.3)

Note thatq(n) does exist since; — 0, and that, ifg(n) > O, then|aq(,,)| > n. On the
other hand; < n” impliesq(r’) < q(n).
We putgr(e) = g((1 + &)yr), & > 0; (") = q((1 - &)yr), 0 < & < 1 and we
consider the event A
Er = {a(e) <k < (&)}

Then:
Proposition 4.2 If f € 71 and g (¢) < k;, we have
1) Under H;,
P(ES) = O(TA+2r71, (4.4)
2) Under H,
P(ES) = o(T ) forall 6 > 0. (4.5)

We indicate two applications of these results:

Example4.1 UnderHy, if |aj| ~ | (7 > 1) one hagy, () = T*7, then % < j ensures
O(e) < k; for T large enough and < % yields P(ES) — O.

Example 4.2 UnderHy, if |aj| ~ ap! (@ > 0, 0 < p < 1) andk > [1+(2In1/p)]In T,
one hagy, (&) ~ 5oL

ANODL
P(| I:TT -@2In1/p) Y >¢) =0T7°), é>0,6>0. (4.6)

In particular, ifT = T, with 3, T;° < oo for somes > 0, then
Ir:(tFn — (2In1/p)~* almost surely 4.7)

__ 1 .
Note that, from (4.7), one may deduce an estimatqs,afamelyp; = T 27+t which
converges almost surely.

We now may state results concerning the MISE.of

Proposition 4.3 If f € 77 and g(¢) < k; then

1) Under H,
Ef - | =0Tty 3 a2 (4.8)
>ar(e)
2) Under H, ©)
f 2 o (€
Eff -t =07+ ) af. (4.9)

>ar(e)
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Thus if H; and conditions in Example 4.1 hold then, takphg 2—177 yields

2y

5), (4.10)

Elf - flI?=0(T"

-1

when E|f; - | = o(T~ 5 ),
Suppose now that conditions in Example 4.2 &hdhold. Then, if InT = O(k;), we
have

Ef - f|f = O(M) (4.11)
when, ifk; ~aln T witha > (2In1/p) %,
Elf, - |2 = 0('”%). (4.12)

In some special cases one may construct a process for wisichtis (4.10) and (4.12)
are the true rates fdf.. For example, if ;) is the trigonometric basis ové&f[0, 1], one
may consider the process

Xe=VYy, teR

where {¥,, n € Z) is a sequence of independent IPpvalued random variables with
common densityf. For this process the rates arel@-1/21 and'”TT respectively. This
trick has been used previously in Blanke and Bosq (2000) arsd 8.998) for the kernel
density estimator.

Finally, at least in this special case, the loss of rateffds a logarithm. Thud; has
a 1/T-rate onFy and acgood» rate on.

We now turn to uniform rate. We have the following propositio

Proposition 4.4 Under H, if aj| = ap’ (@ > 0,0 <p < 1), j>0andk > InT, if

T = To where¥, "1 < oo for somes > Othen for fe 77 :

: VTn 2 [2a5 M2
|Imfng“an— fll, <2 B D) (almost surely) (4.13)

Note that the rate in (4.13) is almost optimal since the lavihef iterated logarithm
shows that the rate cannot be better tH&87)"2.

5 Comparison with the local time estimator

We now suppose tha¢ admits anoccupation densitfor local time with respect tqu.
More precisely we make the following assumption:

Hy :VT >0, 34 € L?(u®P):

i
f o(X) dt = f oG (). @ € M(E.EY), (5.1)
0 E
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where M(E, R*) is the family ofB-8r measurable positive real functions defined on E
(Br is the Borelo-algebra onR).
In such a situation one defines the local time density estinaato

12
m:%,T>o (5.2)

f;, is then the density of the empirical measpuyedefined by

1 T
1e(B) = = f L(X)dt, Bes.
T Jo

Example5.1 If E = N andy is the counting measure theny $ satisfied and

1 T
fa =7 [ LGt xen (5.3)
0
Example5.2 If E = R, andu is Lebesgue measureglis equivalent to
liminf Ef P(Xi— X <e)dsdt <o, T>0 (5.4)
el0 & [0,T]2

(cf Geman and Horowitz, 1980).

Example 5.3 If (E, B, u) C (Eq, By, o) Withu = g.uo and0 < m< g < m' < oo then if
Hs holds foru, with local timec?, it holds foru with local time¢, = ¢9/g.

Note that, ifE = R, the Castellana-Leadbetter condition, 1986 (cf also Bo3g38)L
impliesH3 under mild regularity conditions, X is strictly stationary.

Results and references concerning the local time estinegipear in Bosq and
Davydov (1999) and Bosq (1998). Note that, in particufay,is an unbiased estimator
offiEf,=f (a.e.).

Now we need a result concerning the MISEfef. For this purpose we denofg,
the local time ofX on ]k — 1, K], k € Z and make the following assumption :

Hs : X is strictly stationary and the series E kzl f Cov(£)(X), Lo (X)du(x)
=21lE

converges.
Note that the Davydov’s inequality shows that &fgient condition forH, is
H; : Xis strictly stationary and there exists>2 such that

L[E{’El)(X)]Z/r du(x) < oo andz [a/x(k)](r‘z)/f < oo,

k>1
Now the following statement exhibits supéteiency off;, :

Proposition 5.1 If Hz and H,; hold, then
TE|fo-fF->L feF. (5.5)
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Concerningf; we have

Proposition 5.2 If Hz and H, hold, then

E|f -t =0 )+E(Za2) (5.6)

]>kT

_Note that the key of the proof of Propositign 5.2 is the fact tha= Tk ;o where
1% is the orthogonal projector of (0 < j < k;). A similar property forf; has been
noticed in Frenay (2001). Thus

1% f

| <|[fro - f|| and (5.7)

1% f

F<Effe- 1= 0(%). (5.8)

Consequently theflciency of f; depends on thepseudo-bias E 2jskr aJ?. Under
conditions in Proposition 4.3 this pseudo-bias may be regldyy ;.4 )a and the

rates (4.11) and (4. 12) do not change. Howeveis better thanf, over7-‘o because
= X206, when f; has the same asymptotic behaviouigas- Z a,TeJ and
more precisely :

Proposition 5.3 If f € F9 and H,, Hsz, H4 hold then

liminf T.E [ fro — f||2 > zi foo Cov(ej(Xo), & (Xy)) du (5.9)
—00 j:O 0
when
K(f)
TE|f - f” —’ZZf Cov(ej(Xo), & (X)) du. (5.10)

00

It is easy to construct examples whefe Cov(gj(Xo), €j(Xy))du > 0 for some
0

j > K(f);inthat casefT is strictly better tharf;, on %o.

6 Proofs
6.1 Proof of Proposition 3.1

SetB, = {3j : 0<j<k,

K(f), B¢ = |au| < » < & = |ag -a&,| > & thusP(BY) <

a,| = :}. then, we have fofl large enough ant =
4AVara,

IaKIZ . Now,
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2-stationarity yields
2 (T u
Varae =+ | (1- ?)COV(@(Xo),eK(Xu)) du, (6.1)
0

using Davydov's inequality, see Bosq (1998, p. 21), oneinbta

2 (T U, 2r _ie -2

Varay, < $f0 (1= 2)-=527 [62W] 7 lle X0l du

andH; implies

Vara,; < $ (6.2)

wherec, = M2 [*[oP(u)] 7 duthus

4c. 1
P(BS d :
)< 57 (63)
Now, as soon ak; > K andy, < &,
~ kT
{kT > K, BT} = U {|é]T’ > yT} (6.4)
j=K+1
and
r Ia<l
(k <KB}= | —al> 5 =@ -al>n (6.5)
thus
. 1w
P(k: # K, B) < = > Vara,, (6.6)
7T ix
again using Davydov’s inequality one obtains
o ki +1
P(k # K, B,) = O(- =) = O(TF*21), 6.7)
T
Now, since (6.3) implies
A 1
P(k # K. BY) = O(3). (6.8)
(3.1) follows. O

The proof of (3.2) is similar. It uses the following exponahtnequality:
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Lemma6.1l LetY = (Y;, 0 <t < T) be a real measurable stationary strong mixing
process such thaﬁ)‘x’ ay(U)du < coand M, = supy.t [Iill < co. Thenforallre [1, %]
and all positive constantg, x one has

T T 2 M2
P(|—f —EYidi| > n) < dex - :7/ )+ “Marr) (6.9)
Cl+C2f +C;:,|\/|Y nr n

with ¢ = 32(1+ &)? [~ () du, & = 4cy, C3 = (1 + k), ¢4 = 16E,

Proof of Lemma 6.1. For g, r such that r = T, we consider blocks of variables
Vi()),i=1...,2[q -1, defined by

2qr

jr
Va(j) = f(] M EYodtandv i) - f (Y~ EY)

(2[a]-1)r
So, for anynp > 0,

1 [a] T
P(|?f0 Y, - EY.dt| > ) < P(|ZV(2])I > —)+P(IZV(21 1> —)

=1

The two terms may be handled similarly. Consider the first one,ekample: we
use Rio’s (2000) coupling result recursively to approxien®t(2),...,V:(2[q]) by
independent variables. For any 1, there exists a random variabM&(2j), measurable
function of V;(2),...,V;(2]) such thatVv;(2)) is independent o¥;(2),...,V;(2] — 2)
and with same law ag;(2j). Moreover :

< 2|IV+(2))ll(sUpIP(AB) - P(A)P(B))

where the supremum is taken over all s&tand B belonging too-algebras of events
generated by respectively;(2), ..., V(2] — 2)} andV;(2)).
For any positive;, one may write

[q]
P( Zv ()l > —) < P(|Zv*(2m

2(1+ ))

+ P<|Zv (2)) - Vi @) > 5)

2(1 X)

Since theV;(2j) are independent, Bernstein’s inequality (written as ind?dl(1984))
implies

ex( — My

C1 + CoF + CsMytyr

P(IZV*(ZJ)I 2(1
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with the help of Billingsley’s inequality (1979), and coastsc; as stated as in Lemma
6.1. Moreover, Markov’s inequality yields
[d]

ORI 240

2(1+ )) Tnk

Z EIV:(2]) - V7 (2))]

and the result follows from Rio’s coupling result. m|

Now the proof of (3.2) consists in applying (6.9) to the pEBEs €;(X;)—a;, 0 <t <
T) for j = K,..., k. This allows to bound the quantiti®|a;, — a;| > ») for suitables.
In particular, one obtains

P(B°) = O(exp-AVT)), (A>0) (6.10)
Technical details are omitted.
Finally (3.3) comes from Borel-Cantelli lemma. |

6.2 Proof of Lemma 3.1

AT
. o 2 o 2 —
It suffices to writef|fr — gi[|” = || fr — &r||" Ly, ) < (Z ajf)l{mK}
=1
< MZle{RthK}’ hence (3.5) by taking expectations. |

6.3 Proof of Proposition 3.2

First we have,

E||f, - f|]" = E(Z(ah —a)?) + E(Z &%) (6.11)
j>kT
then, by Davydov’s inequality' EZ kr o(@j; — a) ) < Z oVargj, < cr"%. On the other
hand, if f € Fo(K), 2.t & Zka ajl{kT<K} hence EE ¢, @) < [IfI°P(k < K).
Now from (6.5) and (6.8) it follows theR(k. < K) < P(|az, - a | > &) + O(2). Using
Davydov’s inequality one obtains the bound

E (Z a?) = Oz ) (6.12)
j>kr
and (6.11) gives (3.6). Concerning (3.7) first note that, & Fo(K), P(k; # K) = o(T %)
for eachs > 0 (cf (3.2)), thus Lemma 3.1 entails ||, - g;|| = o(T~%). Thus it is only
necessary to study

K
Ellgr - fIP = ) Vara,, (6.13)
=0
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but using Billingsley’s inequality one obtains
2

f |Cov (g (Xo). &j(Xu))| du < 4M2f ae™ < % < oo. (6.14)
0 0

Now since
.
TVargj, =2 f 1- %)Cov (€i(X0). (X)) du, (6.15)
0
the dominated convergence theorem gives

T.Varaj, — Zfoo Cov (gj(Xo), €j(Xy)) du (6.16)
0

and (6.13) yields (3.7). |

6.4 Proof of Corollary 3.1

It suffices to apply Billingsley’s inequality in (6.15) and to vegrthat the other bounds
are uniform oveXy(ag, bo, Ko) ; details are omitted. O

6.5 Proof of Proposition 3.3

FirstA, puttingK([) = K one has
' | _Ong ; |(”fT - gT)l{&TiK}I < ZIJ(Ll Ié'\JTl |ej|1{QT¢K} < MZle{ﬁT;tK}’ one obtains, for
alle > 0andalls > 0,

P(|fr - gr||, = &) < P(k # K) = o(T ™). (6.17)

Now, P(lig; - fllo > &) < X', P(|a), - aj| > &), then, using (6.9) fol; = e;(Xy),
0<t<T;0<j<K,withr =BInT one arrives at the bound
T 3¢/KM?B

. €
P(la), - a| > 77) < dexp— = 16(1+ 9L+ o))

1+xKM?
+ 64l<—aexp(—bBIn T)
K &

For a givers > 0 and choosin® = éb™* one obtains (3.9).

Concerning (3.10), note thag;(X;), t € R) satisfies the law of the iterated logarithm
(LIL) : actually using the LIL for strongly mixing discrete timgrocesses (cf Rio,
2000) one obtains the LIL for the process&s( = %fl”jl (&%) — a)dt, i > 0)
since these processes are bounded and geometrica(lly gtrangng. It follows that
llgr — fll, = O((H7)"?) almost surely, hence (3.10) by using (6.17)Toe nh. o

InT
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6.6 Proof of Proposition 3.4

Since VT(f; - f) = VT(f; = g;) + VT(g; - f) and VT |jg: - f|| , — 0 in probability
(see (6.17)), Theorem 4.4 in Billingsley (1979) shows thsatfiices to study asymptotic
normality of

K
VT(g - f) = ) (@, - ae;.
j=0

This is equivalent to asymptotic normality of the finite dimiensl random vector
VT (85, —ao, . . ., a: —a,) Which in turn is equivalent to this of the real random valéasb
VT X0 4)(@,-a)) ; 1. & € R. Finally using the processe& [, i > 0),0< j < K
and Rio (2000), the desired result follows. |

6.7 Proof of Proposition 4.1

1) Let jo such tha;, # O, similarly as in the proof of Proposition 3.1 one obtains

{ke < jo} = [a)5, —ay| > (6.18)

as soon ak; > jo, henceP(k; < jo) = O(T™1). Sincef € F1, jo may be taken arbitrarily
large, hence (4.1).
2) (6.18) and the exponential inequality (6.9) lead to (4Btails are omitted. |

6.8 Proof of Proposition 4.2

For T large enough we havag, )| > (1 + £)y-.
1) From Davydov’s inequality we g&(k: < ¢ (e), B;) < P(ra}h(g),T - aqT(8)| > gy;) <

Now, if ¢f.(¢') > k; one hasP(k, > g;(¢’)) = 0O, if not, since|a,-| < (1 - &)y, for
j> (&), we have{kT > G (), Br} = Uk, ) |8y — @] > €
thusP(k: > g;(¢'), B) < %52 and (4.4) follows,
2) For proving (4.5) we may and do suppose tfi§t’) < k;. Then
P(ES N By) < P(By (s — Bqrwl 2 &7+ Y P&, - ajl 2 &'y),
o (e)<iskr

Choosing = cInT in (6.9) one arrives at

P(ES N B;) = Ok T~ "Dy 4 O(kry; 1 T7)
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for some constant’ and the choice > (% +6)b7! leads to (4.5) sinc®(BS) = o(T )
forall s > 0. O

6.9 Proof of Proposition 4.3

We start from (6.11) and write

ke e
E (2o @z, )< IFIPPED), E(Z g, 81erne) < Zjsar( @ E(TILo(@E, -
a))*1e; ;) < Xj<q () Vara;,. Finally, underH; we write

E(ZY (@, — a))%1ezne,) < 47, Varaj,, when undeH;,

E(Z]I-(lo(é.\h - aj)zlEEI:_mBT) < 4M?k; P(E®), using the above bounds, (6.10) and (6.11)
one obtains (4.8) and (4.9). |
6.10 Proof of Proposition 4.4

Let¢ be a positive constant, for any positimei = 1, 2 one obtains

&K1

PUIE = il > ©) < PUIF - fllley > 7o)+ PUIf, - flldes > 175)
<P1+Py+P3
with Pu = S PMG(e) &), ~E&) | 2 i) Po = PED and P =

00 &k
P(M ZJ:qT(«s)+1 |al| = (1+K1)(21+K2))

ConcerningP;, the assumptions imply in particular that(¢’) is of the same order
as InT/(2In(1/p)). Now (6.9) and the choice¥; = €;(X), My = M, r = RInT,

2In( - InT T,
n = m with ¢2 = ¢ andT = T, yield ¥, Py = O(*2) as soon as

_ /1 1 8M*(1+k )2(1+/<2)2(1+:<)2a6
R=(5+06)b™"andc = 1b|n2(1/p)

Now noting thaty:$2, y.1 [aj| < C(a.p)yr, it is easy to see that foF, large enough,

Pz = 0 with previous choices of; and&. Moreover, Proposition 4.2 implies also
= o(T.?). Finally, collecting these results, one obtains Propasiigt with the help

of Borel-Cantelli's lemma sincg, = '“T“

< 00, O
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6.11 Proof of Proposition 5.1

(7]
. L , s 14 1 t .
Using additivity of local time one may erteIE = {?0} + T E Ly + ][TIJ’T]. Since
=1

2
2 _ Elleoll

bo < =L = o(2) it suffices to study

-

1 n
o f12 =
nE |1~ j§:1€m fI2 =

n-1
Ellcy - 12 +2 ) (1 1) [ Cov (. leen(®) et (619
k=1

E

= o(%) and E| dul
=07 T

wheren = [T]. A classical trick allows to prove that the second membg6ai9) tends
to L, hence (5.5). |

6.12 Proof of Proposition 5.2

Let TT¢ be the orthogonal projector of sp( 0 < j < k.), we have
A N 2 2 . .
f, — 1% f | < E|fro - f||” and (5.5) implies

ik (£ = )| < [[fro = ] thus E

~ 2
lim supT.E ||f, — 11* f \ < L hence (5.6) from (6.11) and the fact tHe(ES U B)

Tooo

o(3). O

6.13 Proof of Proposition 5.2

This is clear from (6.11), (5.7) and (5.8). |

6.14 Proof of Proposition 5.3

(5.10) has been proved in Proposition 3.2. Concerning (58)rfote that (5.1) implies
%fOT e(X)dt = 1 [L e (x) dx thusd), = [o fro(X)ej(X) du(x), j > 0, hencef;, =
¥204),€ andy &7 < oo (almost surely); then we haviee ||f;, - £ = YR TVara,
but Hy yields [7”|Cov (j(Xo). &j(X.))| du < e and (6.16) holds. This implies (5.9) by
using Fatou lemma for the counting measure. O
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Resum

Construim un estimador de projeccio conduida per les dades per a processos en temps continu. Aquest
estimador assoleix taxes super-optimes sobre una classe #, de densitats que és densa en la familia
de totes les densitats, i assoleix, a la vegada, taxes “raonables”. La classe ¥, pot ésser escollida
préviament per I'Estadistic.

Els resultats s’apliquen a processos a valors RY i a valors N. En el cas particular on existeix un temps
local de quadrat integrable, es demostra que el nostre estimador és estrictament millor que I'estimador
temps local sobre Fy.

MSC: 62G07, 62M

Paraules clau: estimacio de densitats, conduit per les dades, processos a temps continu






