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Incorporating patients’ characteristics in
cost-effectiveness studies with clinical trial data:
a flexible Bayesian approach
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Abstract

Most published research on the comparison between medical treatment options merely compares the
results (effectiveness and cost) obtained for each treatment group. The present work proposes the
incorporation of other patient characteristics into the analysis. Most of the studies carried out in this
context assume normality of both costs and effectiveness. In practice, however, the data are not always
distributed according to this assumption. Altervative models have to be developed.

In this paper, we present a general model of cost-effectiveness, incorporating both binary effectiveness
and skewed cost. In a practical application, we compare two highly active antiretroviral treatments
applied to asymptomatic HIV patients.

We propose a logit model when the effectiveness is measured depending on whether an initial purpose
is achieved. For this model, the measure to compare treatments is the difference in the probability
of success. Besides, the cost data usually present a right skewing. We propose the use of the log-
transformation to carry out the regression model. The three models are fitted demonstrating the
advantages of this modelling. The cost-effectiveness acceptability curve is used as a measure for
decision-making.
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1 Introduction

The frequentist approximation is the one most commonly atbfgi compare dlierent
treatment options (Laskat al, 1997, Stinnett and Mullahy, 1998, Tamboet al.
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1998, Van Houtt al,, 1994, Wakker and Klaassen, 1995, Willam and O’Brien, 1996)
However, clinical research is fundamentally a dynamic pssdn which any study must
be considered in the context of continual updating of theestithe art. The Bayesian
method is of a dynamic nature in which initial beliefs, detgred on the basis of a prior
distribution, are modified by new data, using Bayes’ theowtarge body of literature
has been published on Bayesian methods, chief among whadkxds by Berry (1996),
Box and Tiao (1973) and Gelma al. (1995).

Spiegelhalteret al. (1994) and Jones (1996) were the first to discuss Bayesian
approximation for statistical inference in the comparisbimealth technologies. Since
then, many studies have proposed the Bayesian approacmimace treatment options
by means of costftectiveness analysis (Al and Van Hout, 2000, Briggs, 1999120
Heitjan, 1997, Heitjaret al, 1999, O'Hagaret al., 2001, O’Hagan and Stevens, 2@01
2001, 2002).

Most studies carried out in this field compare tlikeetiveness and the costs of the
different treatment options analysed. This type of analysisnassuhat the patients
sampled and subjected to a particular treatment optioreptesmilar characteristics
or, at least, that the fferences between samples are not relevant to the analysistof ¢
and dfectiveness, and so the variations between the treatmempgere only caused
by the type of treatment applied. In the present paper, theeadissumption is not made
and so, in order to obtain the truffect of the type of treatment applied on costs and
effectiveness a regression model is proposed. The use of riegressdels in cost-
effectiveness analysis has recently been proposed by kloah(2002) and Willanet
al. (2004) under a frequentist point of view. This paper presgr@®ayesian solution,
offering a more flexible framework for fierent measures offectiveness and cost.

Sometimes fectiveness is not measured quantitatively but in a discneg,
depending on whether or not a particular objective has b&tamed. Therefore, we
have developed two alternative regression models, a nailiigear regression model to
be used when thefectiveness is measured by means of a continuous variallea an
logit discrete choice model whefffectiveness is defined by a categorical variable.

Most published studies on cosffectiveness analysis assume normality of the cost
generation distribution (Laska, 1997, Stinnet and Mulla®@8, Tambouet al., 1998,
Willam and O’Brien, 1996, Heitjaret al, 1999, O’Hagaret al., 2001). In practice,
however, costs usually present a high degree of skewnesssarthe normality
assumption is not valid. O’'Hagan and Stevens (2)Gletermined, from a practical
application, the importance of dealing with skewed cosadalbtaining diterent results
from those achieved under the assumption of normality.

The standard measure used to compare the costféextieeness of treatments is
the incremental costféectiveness ratio (ICER). Nevertheless, this measure piesen
severe interpretational problems, as well aSialilties in estimating the confidence
or credibility intervals. The incremental net benefit (INB)shiaeen proposed as an
alternative to ICER (Mullahy and Stinnett, 1998, among othdrise INB of treatment
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1 (new) versus treatment O (actual, or control) is defined as

INB(Re) = Re - (u1 — 1o) = (1 = 70) = Re - (Au) — (Ay), (1.1)

whereu’s andy’s are the meanfiectiveness and cost of the respective treatments. The
valueR; is interpreted by O’Hagan and Stevens (2001a) as the costebhision-makers
are willing to accept in order to increase thfeetiveness of the treatment applied
by one unit. Thus, analysing whether the alternative treatri'emore cost-gective
than the control treatment is equivalent to determiningtivaid NB(R;) is positive. In
practice, it is not a simple matter for the decision-maketdtermine a singl&;, and so

a cost-éfectiveness acceptability curve (CEAC) is constructditligren and Zethraeus,
2000). This curve provides a graphical representation gftbkability of the alternative
treatment being preferred (PNB(R.) > 0)) for each valu&.. This interpretation of the
CEAC, in terms of probability, is only possible when the Bagesapproach is adopted
(Briggs, 1999).

Section 2 presents the regression models used in this stuégeTdre selected
depending on how thefiectiveness is to be measured (qualitatively or quanteébtjv
and on the cost patterns generated. Section 3 provides a osmpaf the diterent
models created by means of a practical application usirnigdega from a clinical trial
comparing two alternative treatments for asymptomatic pidtients. Section 4 presents
a discussion of the results obtained and draws some coon&isi

2 Bayesian cost-effectiveness regression models incorporating
covariates

2.1 Assumed normality of effectiveness and costs

Given a sample ofN individuals participating in a clinical trial, we obtained
effectiveness datd) and cost datad;) for each patient,i = 1... N. TheseN patients
were given two dferent types of treatment, termed the control treatment la@ahéw,
or alternative treatment.

The results of the clinical trial, in terms oftectiveness and costs, are not determined
only by the type of treatment receiveR(), and so it is necessary to consider a series
of possible covariates that may influence the above resulh Savariates include
the patient’s age, state of health at the time of the clintoal, gender and other
characteristics that depend on the type of clinical triademanalysis X). We define
X as am x (k + 1) matrix of covariates, where each colum)(refers to one covariate.
The first column is a column of ones referring to the constant.

We seek, therefore, to explain the results obtainEd dnd C;), as a linear
combination of thek covariates considered (the patient’s individual charésttes and
the type of treatment received). For this purpose, we p@pd3ayesian multiple linear
regression model in which the perturbation tenmdr v;) is assumed to be Gaussian,
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independent and identically distributed (i.i.d) with a med 0 and variances Qﬁ and
o3 respectively.

Ei=Bo+pf1-Xei+B2-Xoj + ...+ Pt Xeeri + B1 - X7 + Ui, (2.1)

Ci = 50 + 51 . X]_,i + 52 . Xz,i + ...+ 5k—l . Xk—l,i + 51' . XT,i + Vi, (22)

where the vectorg = (Bo,81.52,--.,Bk-1.B7) , 6 = (60,061,092, ...,0k1,071), and the
accuracy values; = 1/0% andr, = 1/cr§ are the parameters of the model.

The k covariates considered for which data are available neetiaekplicative of
both the €ectiveness and the costs, and so the above general modelbeobrrected
by eliminating those covariates that do not expldtieeiveness and cost.

The first step to be taken in estimating the parameters is tordiete the likelihood
function, both of the fectivenesd(E|B, 1) and of the cost$.(C|s, 12), whereE =
(Es,...,EN) andC = (C4,...,Cy\)’. In this stage both costs andfectiveness are
assumed to present a normal distribution, and so the like@tiiunctions are represented
by the following expressions:

f(E, CIﬂ? 67 71, TZ) = €E(E|ﬁ7 Tl) : gC(Clév T2)7 (23)

where N .
(BB, ) o 7 exp{ - (E - XB) (E - X)),

and N -
(e(CI6,72) o 73 exp{—Ez(C ~ X8)'(C - xa)} .

Assuming model (2.1)-(2.2) from a Bayesian point of view, mast specify the
prior distribution for the 2 k + 4 parameters of the model. The prior distribution
represents expert information about the set of model pamméefore the sample
observations are analysed. We propose a nggamama form for the base prior
and assume independence between théic@nts f3,6) and precision termse(, 7).
Obviously, the prior distributions used here are not thg poksible choices and indeed,
their independent conditional conjugate form is a suitgtperty to be considered by
an expert.

n(B,71) = me1(B) - me2(r1), (2.4)
(6, 72) = m61(6) - me2(72), (2.5)
where
me1(B) ~ N(B, Vi), and  mc1(6) ~ N(8°% V5,
and,

mea(t1) ~ Ga,br),  and  mea(r2) ~ G(az, by).
The symbolsV andG denote the normal and gamma distributions, respectivety, a
the parameteis’, V%, 6°, V1, ay, by, @, andb,, which determine the prior distribution,
are defined on the basis of the information available when tiadysis begins. Thus,
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the eliciting process plays an important role, by modellthg available empirical
or historical evidence by means of the prior distributionh&®ner and Duncan,
1983, Chaloner, 1995, Chaloner and Rhame, 2001, FreedmaBpeegelhalter, 1983,
Kadane, 1980, Kadane and Wolfson, 1995, Kadane and Wolt888, Winkler, 1967,
Wolpert, 1989).

The joint posterior distribution of the parametessd, 71, 72), given the data (E, C),
can be calculated from equations (2.3-2.5), using Bayesirdm.

*(BrilE) ety exp{-3 [r1(E = XB)'(E - XB) + (8 - By Vi (B - B°) + 201}, (2.6)

7(8, 72|C) o TZNTZ - exp{—% [Tz(c = X8)'(C = X&) + (6 — 6°)' V516 — 6°) + 2b272]}. (2.7)

Inferences about quantities of interest must be based s fhesterior distributions.
Unfortunately, these are not straightforward, thus theb&kampling algorithm, in the
context of the Markov Chain Monte Carlo (MCMC) simulatioresss to be the most
appropriate (Gelmaet al,, 1995, Geman and Geman, 1984, Giksl., 1996, Tweedie,
1998).

The treatment received is defined by means of a dichotomousblarX;) that is
assigned a value of O for the control treatment and a valuewlidn the treatment
received is a new treatment. The parameters correspondirtbetdatter variable
are simple to interpret. The cfiieient of the treatment variable in théfectiveness
regression modep) is interpreted as the mean incrementfifeetiveness derived from
the new treatment in comparison with the control treatmEmbbtain the cost increment
corresponding to the new treatment, it is only necessargtimate the co@cientsy.

The posterior costffectiveness acceptability curve describes the probalufithe
net benefit presenting positive values, that is, the postgniobability of the new
treatmente being preferred to the control treatment, foh @ theR; considered:

Q(R;) = Pr(INB(R:) > OE,C).

2.2 Binary effectiveness

On many occasions, théfectiveness data are not determined by a quantitative Variab
An example of this is binary feectiveness, which is measured from a dichotomous
variable{0, 1} depending on whether or not a certain positive event hasieutu

Let us assumeN binary random independent variables and that.., Yy are
observed, wherd; follows a Bernoulli distribution with a probability; of the event
occurring. This probabilityp; depends on a series of covariates that may be continuous
or discrete. Let us define a binary regression model in a genasabsp; = H(X/5),
i =1,...,N, whereg is a vector of unknown parameters with dimensi&n(1) x 1,
andX; = (1, Xy, X2j, ..., %)’ is the vector of the known covariates. The logit model is
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obtained when we assume tldtis the logistic distribution. For a classical description
of binary models, see Cox (1971), Nelder and McCullagh (1J98@ddala (1983) and
McFadden (1974).

We now present the application of the logit model to caiaiveness studies. We
describe the model corresponding fteetiveness, the cost model being identical to that
analysed in Section 2.1.

We examined a sample bfindividuals who took part in a clinical trial involving two
alternative treatments, in which th&ectivenesskK,;) of each was known,=1,..., N.

E ~ Be(pi). (2.8)
where
X B
b= 1 e

The first step in the Bayesian analysis requires us to consililezldood function
for the data, which in this case is thextiveness. We apply the logit model, and so the
likelihood function is specified as follows:

N N E; 1-E
. £ expX/ -gl \~ exp[X/ - Al '
E|B) = S(l-p)tE = — 1- ——— . (2.
G0 =] |- D(1+GXD[X{'B]) [t o) @9
Having defined the likelihood function, we now propose a flexiblodel for the
prior distribution. The normal multivariate distributionrfthe parameters is flexible
enough to include a large number of possible prior situation

m(B) ~ N(B° V). (2.10)

Estimation of the above binary response model was carriedsing Gibbs sampling
(Carlin and Polson, 1992, Albert and Chib, 1993).

We propose the use of thefidirence in the probability of success between treatments
(Ap) as the measure to analyse tiietiveness. In a logit model th&ect of a covariate
on the probability of success depends on the level of thepiei@dents. Under the
assumption that the sample is representative of the papujate can estimate the
difference in probabilities of success between control and reatment for each patient.
The mean incrementalffectiveness is estimated as the mean of the increase in the
probability of success for the sample. The INB can be caledlas in the previous
section where the valug; is interpreted as the cost that decision-makers are witbng
accept in order to increase the probability of success in 1%

2.3 Skewed cost data: the log-normal model

The cost data obtained from the data of individual patientbaalth-care economic
studies present, for the most part, a strongly asymmetdesttibution. Another



F. J. Vazquez-Polo and M. A. Negrin-Hernandez 93

characteristic of many costfectiveness studies is the small sample size employed.
These circumstances frequently oblige us to reject the ridynaasumption described
in Section 2.1.

We now describe a model that reflects this skewed cost, usingnanormal
likelihood function. In this sense, Al and Van Hout (2000)sdébed a Bayesian
approach to costfectiveness analysis showing how costs can be modelled timeler
assumption of a log-normal distribution. Such a distribuigoa much more appropriate
way of reflecting possible cost asymmetries.

It is now necessary to reformulate the cost model using antmgaal likelihood
function, by which the cost model described in Section 2. Xjgessed as follows:

log(Ci) = 6o + 01 - xl,i + 05 - X2,i + ...+ 0k Xk—l,i + 0T - XT,i + Vi, (2.11)

where the vectos = (5o, 51,62, ...,0k1,01) andr, = 1/cr§ are the parameters to be
estimated.
The likelihood function of the logarithm of the cogiglog(C)|s, 1) is:

t(log(C)1s. 72) o 7 exp{—T—Zz(Iog(C) — XY (log(C) - xa)} .

A conditional-conjugate prior distribution is thus the mal-gamma distribution
defined above:

(6, T2) = mc1(6) - me2(T2), (2.12)

where
e1(6) ~ N(8°, V5 1) and  mco(r2) ~ G(ag, by).

Under the assumption of lognormality, the paramétecannot be interpreted as the
incremental cost and it is necessary to search for anothansnagf comparing the two
treatment options. In this case the ratio of the costs of #ve theatment and those of
the control treatment can be described by a simple expressi@ that does not depend
on the patients’ individual characteristics,

ct

—5 = expeT) (2.13)
G

whereC! is the cost of a patieritwho has received the new treatment, &1ds the cost

of the same patientwhen the control treatment is applied.

Therefore, values greater than 1 for exg(indicate that the new treatment is more
costly than the control treatment. Thus, (exp(— 1) - 100% shows the percentage
increase in costs arising from the new treatment.

In comparison with the model described in Section 2.1, the [NBsents the
following expression:

INB = (Rc) - Bt — (expfr) - 1), (2.14)



94 Incorporating patients’ characteristics in cost-effectiveness studies with...

whereR; is interpreted as the proportion of the cost increase tleatléitision-maker is
willing to accept in order to increaséectiveness by one unit. Positive INB values show
a preference for the alternative treatment. As in the pre/gections, we can construct
a posterior costféectiveness acceptability curve for each valu®of

3 Practical application

The data used in this section were obtained from a real clinica in which a
comparison was made of two highly active antiretrovirahtneent protocols applied
to asymptomatic HIV patients (COSTVIR study, Pirtoal., 2000).

We obtained data on the direct costs (of drugs, medicabwasitl diagnostic tests), on
the dfectiveness, based on clinical variables (percentage @mpatwith no detectable
virus load) and on health-related life-quality variablesing EuroQol-5D.

EuroQol-5D is an instrument for the self-evaluation of peeddealth, consisting of
five questions that investigate five aspects of healthadliéfe quality, based on a visual
analogue scale (VAS) (Brooks, 1996).

In this exercise we compared two three-way treatment podgod he first of these
(d4T + 3TC + IND) combines the drugs estavudine (d4T), lamivudine (3TQJ an
indinavir (IND); the second treatment protocol (d4™dl + IND) combines estavudine
(d4T), didanosine (ddl) and indinavir (IND).

Two alternative measures offectiveness were employed. The first of these was
the improvement in the patient’s life quality, measuredrasitnprovement on a visual
analogue scale (VAS). This scale simulates a thermometeranitimimum of 0 and a
maximum of 100. The O represents the worst health state irablginand the 100, the
best.

The second fectiveness measure considered was the percentage oftpatien,
at the end of the treatment programme, presented undeietaabls of viral load. The
effectiveness, therefore, can only be expressed as one of tuesyaither 1 if the viral
load is undetectable, otherwise O.

Table 1 summarises the statistical data obtained. The+dddl + IND treatment
is more costly than the d4F 3TC + IND treatment, by an average of 182 euros.
When the VAS variation is used as the measurefidativeness, the d4¥F ddl + IND
treatment is moreféective because, on average, the patients who receiveddahtatent
experienced an improvement in their life quality 094 units, while those who were
given the d4T+ 3TC + IND treatment only experienced a VAS improvement di64
units. However, if the percentage of patients experienairgguction of the viral load to
undetectable levels is used as the measurfetteness, then a better result is obtained
for the d4T+ 3TC + IND group (68%) than for those who received the alternative
treatment (66%).
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Table 1: Statistical summary of costs (in euros) arffeetiveness (change in VAS and
percentage of patients with undetectable viral load).

d4T+ 3TC+ IND d4T + ddl + IND
Statistical measure Cost | Change in % with Cost | Changein % with
VAS undetectable VL VAS undetectable VL
Mean 7142.44) 4.56 0.68 7307.26] 4.94 0.66
Stan. Devn. 1573.98] 15.17 0.47 1720.96| 13.98 0.48
N No = 268 N; =93

3.1 Assumption of normality in effectiveness and in costs

In this section, the increase in the VAS is used as the meaduhe efectiveness of
each treatment protocol. For this purpose, we applied thgetndescribed in Section
2.1, taking into account thefectiveness and cost of the treatment given to each patient,
the individual characteristics of each patient andhgsclinical situation at the moment
of the clinical trial.

The model’'s explanatory variables are tige the gender(value 0 if the patient is
male and value 1 for a female) and the existence of any conantiilness ¢c1with a
value of 1 if a concomitant illness is present, otherwiser® ec2 with a value of 1 if
two or more concomitant illnesses are present, otherwisél® concomitant illnesses
considered were hypertension, cardiovascular diseatergiak, asthma, diabetes,
gastrointestinal disorders, urinary dysfunction, prasi&idney pathology, high levels
of cholesterol anfr triglycerides, chronic skin complaints and depresioxiety. Also
included in the model was the time (in months) elapsed siheetart of the illness
until the moment the clinical trial was performed. Finallye wcluded a dichotomous
variable (rat) that was assigned a value of 1 if the patient received th& @d4dl +
IND) treatment protocol and a value of O if the (d4T3TC + IND) treatment was
applied. The linear model of théfectiveness and the costs, for ikt patient is

Ei = Bo+B1-age + B2 - gender+ B3 - CCLj + B4CC2 + Bs - Start + Bt - tratj + u;, (3.1)

Ci=6p+01- agg + o2 - gender+ 03 - CClj + 04CC2; + O5 - Start + o1 - trat) + ;. (32)

3.1.1 Priors

For a fully Bayesian analysis, we must specify priors forgheameters of interest. The
COSTVIR study was carried out in 1999 and it is not practical nowry to elicit the
prior information. For the purpose of our illustrative aysas$, we look at the reasoning
behind the design of the study as an indication of what priormation we can use.
For HAART regimens, there were no indications dfeliences in #ectiveness because
of age or gender. However, they showed better results foermgatwith concomitant
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ilinesses and for patients in the early stages of the illness d4 T+ ddl + IND treatment
was expected to be on average mdfeaive than the d4¥ 3TC + IND treatment but
with a prior interval of probability large enough to includegative values.

In cost terms, it was expected that the age, the fact to beléeam the months
of illness increase cost of HAART therapies. Nteet of the existence of concomitant
illnesses in cost was expected. Higher cost was expectatiddreatment d4¥ ddl +
IND.

Mean and interval of probability were asked to the exper@rirelicitation process
to obtain the prior mean and variance of the parameters efdst. Diftuse information
is assumed for the precision terms. Then, the prior elioitais implemented by using
the following parameter assignments:

B°=(0,0,0,5,10,-05,2), Vi =diag(1d° 1,1,6.256.250.01, 2.25),

6% = (0,10,200,0,0,5,200) V. = diag(13°, 25,250Q 625 625 6.25, 2500)
a; =05 b;=0, a =05, andb, =0.

3.1.2 Results

For all models, simulations were done using WinBUGS (Splegjtdret al,, 1999). A
total of 50000 iterations were carried out, after a burnerigu of 10000 iterations. The
codes are available from authors upon request. Table 2 sth@nzosterior estimation
of the parameters.

Table 2: Posterior statistics and symmetrical interval of probability at 95% (normal

model).
Mean Standard deviation 95% CI
Bo 0.9514 3.9213 (-6.6991, 8.6842)
B 0.05458 0.1072 (-0.1549, 0.2629)
B2 -0.3023 0.8701 (-2.0084, 1.3882)
B3 3.5431 1.4382 (0.7186, 6.3673)
Ba 9.5387 1.7963 (6.0183, 13.0518)
Bs -0.005698 0.008184 (-0.02176, 0.01038)
Br 1.4080 1.1471 (-0.8494, 3.6707)
S0 6673.4 194.9 (6287.3, 7052.7)
o1 9.1532 46151 (0.0483, 18.2076)
o2 199.31 48.36 (103.84, 293.35)
03 2.4683 24.7677 (-46.2720, 50.9167)
04 -1.0110 24.9816 (-49.7648, 48.3937)
O5 1.0614 0.8412 (-0.5928, 2.7221)
ot 198.80 48.56 (103.39, 293.91)

Let us begin by analysing thdfectiveness model. The age and gendelffaments
(81 andB,) are not statistically relevant, which means that thesamates do notféect
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the final results for #ectiveness. The existence of concomitant illnesses favaurs
increase in the patient's VAS, as shown by the positive signth@ corresponding

codficients. The months elapsed between the start of the illnesshenmoment of

the clinical trial do not seem tdfact the final €ectiveness results.

The Bt codficient indicates the incrementaffectiveness of the new treatment.
The codficient has a value 0f.4080, which indicates that the patients who received
the three-way treatment (d4F ddl + IND), under conditions ofceteris paribus
reported an increase in their health state evaluation arageef 14080 units greater
than the patients who were given the alternative treatnigatertheless, the 95%
probability interval includes both positive and negatiatues, and so we cannot claim
that the diference between the two treatment protocols, with regarttéoteveness, is
statistically relevant. From the posterior marginal disition of thegt codficient, it
can be said that there exists a probability 0838 that the (d4F ddl + IND) treatment
is more dfective than the (d4% 3TC + IND) treatment.

With regard to costs, we found that the (d4Tddl + IND) treatment is more
expensive than the alternative, by an average of.8®&uros, with an interval of
probability of (103.39, 293.91).

The incremental costféectiveness ratio is calculated as the ratio of the increiases
cost and &ectivenessd;/Bt). In the present study, the ICER was found to be.290
Figure 1 shows the joint posterior distribution of the incestal costs andffectiveness
measured.

400 . . .

350 —
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Figure 1: Joint posterior distribution of costs and incrementgketiveness (normal model).
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In addition to the ICER, we obtained the value of the incrermlemtt benefit (INB).
Figure 2 shows the probability that the INB is positive for vpossible value oR.,
that is, the cost{fectiveness acceptability curve.
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Figure 2: Cost-gfectiveness acceptability curve (normal model).

At a willingness to pay of 141.89 euros or more, the decisi@mker prefers the
alternative treatment (d4F 3TC + IND), because the probability of this preference is
greater than 50%.

3.2 Binary effectiveness

We now consider the possibility of thefectiveness being measured by means of a
binary variable, that is, the percentage of patients wharga certain treatment option,
achieve undetectable levels of viral load.

Table 1 shows that 68% of the patients achieved undetedeadels of viral load with
the (d4T+ 3TC + IND) treatment, versus 66% of those given the (d4dddl + IND)
treatment. We now apply the logit regression model desdiiib&ection 2.2. This model
enables us to determine whether thffadiences between the two treatment groups are
due to the treatment itself or to individual charactersbthe patients.

The odds ratio (OR) is the most common measurement used toacentpe
probability of success between two categories of a quiaitaariable in a logit model
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(Deeks, 1998). Its main advantage over alternative meamires comparing treatments
is its ability to measure independently of individual patieharacteristics. Thus, when
two categories 1 and 0, of a dichotomous variables are cadpardicating here the
type of treatment received, the odds ratio is obtained asdiagive probability of the
success ratio between categories. Thus the final value obtdoes not depend on the
remaining individual patient characteristics:

pi
1-p!

P
1-p°

OR=

= exp(B), (3.3)

wherep! is the probability of success of a patiéntho has received the new treatment,
and piO is the probability of success of the same patiamho has received the control.

Values greater than 1 for the odds ratio reflect a preferencthéonew treatment,
as the relative probability of improvement is greater tharthe case of the control
treatment. The odds ratio has a very intuitive practical icration, and the decision-
maker who has a good statistical training should have nol@mlo assess it. We
propose to use this feature in the elicitation process asrshothe following.

3.2.1 Priors

We include prior information about the value of the fiments of the logit model.
However, the coficients have not a natural interpretation to be elicited.tRatrreason
we asked the experts the prior beliefs about the mean araheariof the odds ratio for
each covariate.

Assuming that the prior distribution of the vector of @iogentsg is normal, the
prior distribution of the odds ratio is log-normal. Thus, vaaelicit the prior mean and
variance using the following relationship:

Bk~ N(BR. Vy,, = OR = exp@k) ~ log-N(ORY, Vor, ),
where log-N denotes the log-normal distribution and the two first momargs

E[ORy] = OR? = exp@ + V;1/2),

Lk

Var[OR] = VB%zk,k = exp(2:fy + Vi) - (EXp(VI&) - 1).

The experts have prior information about the mean and vagiaficodds ratios.
Solving the previous system of equations we can obtain pnfariation about the
codficientsg.

Before the study was carried out, the experts expected Ipradabilities to achieve
undetectable viral load for women (odds ratio of 0.8), pdtewith concomitant
illnesses (odds ratios of 0.7 and 0.5 fmrl andcc?) and for each additional month
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of iliness (odds ratio of 0.8). It is necessary to commenthlmnditerent signs of the
codficient for concomitant illnesses for the two measuresfigotiveness considered.
The HAART regimens improve the quality of life of the patiemtth concomitant
illnesses attenuating theffect of these illnesses. However, the existence of these
concomitant illnesses supposes an inconvenience in tHeofaahieving undetectable
viral load. There was no prior information about th&elience between treatments. A
small value of 01 was assigned to the prior variance for all the odds rafiben, the
prior elicitation is implemented by using the following pareter assignments:

£° = (0,0,-0.2301 —0.3667, —0.7124 —0.2301, 0),

and
V1 = diag(13°, 10'°,0.0154 0.02, 0.0385 0.0154 10').

3.2.2 Results

Table 3 shows some posterior moments of the parametersfdifdittiveness regression
estimated by means of MCMC simulation techniques.

Table 3: Posterior statistics and symmetrical interval of probability at 95% (binary

effectiveness).
Mean Standard deviation 95% ClI

Bo 1.5281 0.6020 (0.3998, 2.7534)
B -0.0127 0.0162 (-0.0454, 0.0181)
B -0.3174 0.1109 (-0.5359, -0.0972)
Bs -0.3728 0.1244 (-0.6102, -0.1276)
Ba -0.7451 0.1709 (-1.0760, -0.4078)
Bs -0.000402 0.001304 (-0.002807, 0.002327)
Br -0.0367 0.2589 (-0.5392, 0.4722)

expBr) 0.9968 0.2631 (0.5832, 1.6041)
Ap -0.002285 0.014085 (-0.030341, 0.024540)

The relative risk measure is usually employed to compareo&ts in logit discrete
choice models. This measure is obtained by determining thie od the relative
probabilities of success and failure of two categories.hWigard to the type of
treatment received, a patient given the (d4ddl + IND) treatment has an odds ratio
of reducing the viral load to undetectable levels of/98 with respect to another, with
the same characteristics, who receives the (e43TC + IND) treatment. There is a
probability of 447% that the new treatment (d4d ddl + IND) is more dfective than
the first-named one (d4F 3TC + IND). The regression cdicients corresponding to
the costs are the same as in the previous section.
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Figure 3: Joint posterior distribution of costs and relative risk (binajfeetiveness).
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Figure 4. Cost-gfectiveness acceptability curve (binarfeetiveness).

Besides the odds ratio, we estimate the mediemdince in the probability of
success between treatments. The mean incremental changebabjity is estimated
as—0.229%, with a Bayesian interval 0f8.03% 2.45%)

Figure 3 shows the joint posterior distribution of the inaeén probability and of
the incremental cost.
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The cost-fectiveness acceptability curve is shown in Figure 4. From th&-c
effectiveness acceptability curve, we see that the new treat(dT + ddl + IND)
is not preferred, in all cases, to the control treatment (é8ITC + IND).
3.3 Cost asymmetry: log-normal model
Most statistical models assume normality fieetiveness and in costs (O’Haganal,
2001, O’'Hagan and Stevens, 2002). In practice, howevers ¢est to present severe
asymmetry, and this should be taken into account in the aisaligvidence of skewing
is shown in Figure 5, which contains a histogram of the red&dfram the normal

model of Section 3.1. Due to this skewness, it is more apptptd consider a log-
transformation. The analysis of th&exctiveness is similar to that of Section 3.1.
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Figure 5: Histogram of residuals of the normal model.

The codficients of the log-normal model does not have a natural inépon and
it is necessary to search for another means of comparingfibet ®f a covariate. In
this case, the ratio of the costs of having or not a charatiteian be described by the
exponential of the cdiicient. We use this property to define our prior information:

C=1) _CO4=1-C04=0) ,__ AC
CX=0) C(%=0) T CXe=0)

whereC(Xx = 1) is the cost of a patient in the treatment group @@¥y = 0) is the cost
of a patient in the reference group.

expix) = +1,
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3.3.1 Priors

We can elicit the prior mean and variance of the exponenfiailach coéicients
using the prior information shown in Section 3.1.

E(AC)
C(X% =0)

Var(AC)

E[exp(si)] = (CO% = 0)2

+1 and Var[expdy)] =

Using aLC(Xk = 0) the sample mean of the cost for the reference group werotbigi
prior mean and variance for the exponential of theitoients. For continuous covariates
asageor startwe use as reference group the total of the sample. With tfasnration
and similarly to the previous section we can obtain the piméormation about the
codficients:

B° = (0,1.39060- 10°3,2.76073- 102, -6.12301- 10, -6.02103- 1075,
-6.93488- 1073,2.75936- 1072),

and

V; = diag(10° 4.80952- 10~,4.64127- 107>, 1.22460- 10°°,1.20421- 107,
:1.19405- 1077, 4.63492- 107).

3.3.2 Results

The new treatment is 2.78% more expensive than the controlvatte an interval of
probability of 95% of (1.48%, 4.06%).

Table 4: Posterior statistics and symmetrical interval of probability at 95% (logmar

model).
Mean Standard deviation 95% Cl

do 8.785 0.02294 (8.74, 8.829)
01 0.000961 0.000585 (-0.000190, 0.002107)
o 0.02548 0.006382 (0.01285, 0.03784)
03 0.000862 0.003448 (-0.005887, 0.007592)
Oa -0.000138 0.003429 (-0.00685, 0.006563)
Js 0.000423 0.0000858 (0.000259, 0.000596)
ot 0.027411 0.006416 (0.0147,0.03977)

exp@r) — 1 0.02781 0.006594 (0.01481, 0.04057)

Figure 6 shows the joint posterior distribution of the incestal dfectiveness and
the relative incremental cost (exp( — 1).
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Figure 6: Joint posterior distribution of incrementajfectiveness and of the ratio between costs (log-normal
model).

The cost-&ectiveness acceptability curve is shown in Fig. 7.
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Figure 7: Cost-gfectiveness acceptability curve (log-normal model).



F. J. Vazquez-Polo and M. A. Negrin-Hernandez 105

The critical value is 0.019353. When the decision-maker &pared to increase
costs by 1.9353% or more in order to increafieaiveness by one unit, then the new
treatment (d4T+ ddl + IND) will be preferred. If we take the cost of the control
treatment as its mean value (7142.44 euros), an increas®853% is equivalent to
138.23 euros. In Section 3.1, with the assumption of norgadhiis critical value was
calculated to be 141.89 euros. The greater the degree of astyynim costs, the greater
is the divergence between the results obtained by the niblyraabumption and the log-
normal assumption.

4 Conclusions

This paper presents a flexible methodology to carry out ciistiiveness analysis,
developed from a Bayesian perspective. The assumption cantorall models is that
the dfectiveness and costftirences between alternative treatment options may not be
due solely to the type of treatment received. Samptiedinces between the groups
given one or other of the two treatments may be relevant dhgkince the final results
for effectiveness and cost. Therefore, a valid comparison of tweorgltive treatments is
only possible if we are able to isolate thi#eet of the type of treatment received on the
variables of interest (Bectiveness and cost). In order to achieve this, we mustereat
a regression model that includes the other explanatonabi@s and a dichotomous
variable that is assigned a value of 0 or 1 depending on thedftreatment received.
On the basis of these models, we can generate fferelit cost-fectiveness decision-
making measures described in the literature.

The initial model is normal-normal, in which bothfectiveness and costs are
assumed to follow a normal distribution. This assumption ajustified by the central
limit theorem, in the case of large sample sizes.

However, on some occasions thffegtiveness measure is not determined by a
quantitative variable. For exampleffectiveness may be measured by whether or not
a certain objective has been achieved. Taking this intowatdceve have developed an
alternative model that uses thefdrence in the probability of success as measure of
effectiveness.

Moreover, costs often present severely asymmetricallgigtons, or the sample size
may be limited, which would invalidate the assumption ofmality. In such cases, it is
necessary to assume an alternative cost distribution,hatest flexible to the existence
of extreme values. Such a requirement is met by the log-nodis&ibution, and the
ratio of costs is then used to comparé&ealent treatments.

All the models described here have been developed from asgay@erspective,
which enables us to incorporate prior information (if it &) in a natural, flexible
way, and to interpret the results in terms of probabilityr flee purposes of our
illustrative analysis, we obtained prior information frahe consensus of the experts
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who participated in the study. Aflierent elicitation process is proposed for each model,
and this process plays an important role in the analysiseofahults. For future research
more dforts have to be carried out to elicit the prior informatiordan analyse the
robustness of the models. The coffeetiveness acceptability curve is shown to be a
natural measure and one that is easy for the decision-maketetpret.
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Resum

La major part de les publicacions que comparen diverses opcions de tractament, es redueixen a
comparar els resultats (eficacia i cost) obtingudes per cada grup. Aquest treball proposa la incorporacio
d’altres caracteristiques dels pacients en I'analisi. La major part dels estudis duts a terme en aquest
context suposen que tant el cost com l'eficacia sén normals. A la practica les dades no sempre es
distribueixen d’acord amb aquesta hipotesi. Cal desenvolupar models alternatius. En aquest article
presentem un model general que incorpora una mesura de l'eficacia binaria i un cost asimetric. En
un aplicaci6 practica, comparem dos tractaments antiretrovirals altament actius donats a pacients VIH
asimptomatics. Proposem un model logit on I'eficacia es mesura d’acord amb si s’ha aconseguit un

en la probabilitat d’exit.

A meés, les dades de cost sbn usualment asimetriques cap a la dreta. Proposem usar la transformacio
logaritmica per a dur a terme el model de regressio. Els tres models es condueixen demostrant els
avantatges d’'aquest model. La corba d’acceptabilitat cost-eficacia s'utilitza com a mesura per prendre
les decisions.
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Paraules clau: analisis baiesiana, eficacia-Cost, Markov chain Monte Carlo (MCMC), distribucions de
cost asiméetriques



