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On Invariant Density Estimation for Ergodic Diffusion
Processes

Yu. A. Kutoyants

Université du Maine

Abstract

We present a review of several results concerning invariant density estimation by observations of
ergodic diffusion process and some related problems. In every problem we propose a lower minimax
bound on the risks of all estimators and then we construct an asymptotically efficient estimator.
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1 Introduction
Suppose that we observe a traject¥fy= {X;,0 < t < T} of the difusion process
dX; = S(X) dt + (X)) dW,,  Xo, t>0 (1)

where the trend cdicient S (-) is an unknown function and theftlision codficient
o (-)? is a known positive function. We assume that these functaessuch that the
equation (1) has a unique weak solution (see, e.g. Durré6(1®oreover, we suppose
that the following conditions are fulfilled.
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ConditionsAy:

X Y S(v) }
ex —2f dvydy — +o0, as X — 00
fo p{ At

! X S(v)
G(S) = Ioo W eXp{ZJO‘ 0‘(V)2 dV} dXx < oo.

By these conditions the solution of equation (1) has ergpdoperties, with the
invariant density

and

.1 s
500 = o {2 f, e @

i.e., for any functiorh () such thaEs |h (£)| < « the law of large numbers

.
'Il'fo h(X;) dt — Esh(é) p.s.

holds. We denote by a random variable with density functidag (-) .

We consider the problem of estimation of the invariant dgrisy observationX™
and study the properties of its estimators in the asymptdtiarge sample§ — .
The initial valueX, is supposed to have the same density functipf), so the observed
process is stationary and the observed vaduis a random variable with densitig (-).
We recall that in i.i.d. case the density of one observatitimaly defines the distribution
of the whole sample, but in the case of continuous time stichgrocesses the
distribution of the observed trajectory is defined by alltérdimensional distributions.
Hence the density of one observation does not identify theeihd-or an ergodic
diffusion process this density nevertheless identifies theavhobel, because the model
is entirely defined by the trend (unknown) anétasion (known) cofficients and having
invariant density we can write the trend €d@ent as

(o (92 fs ()

S0 =55

3)
The problem of invariant density estimation was considdrgdnany authors (see,

e.g., Nguen (1979), Delecroix (1980), Castellana and Lethelb(1986), Bosq (1998),

van Zanten (2001t al). In particular, Castellana and Leadbetter (1986) showead t

for any stationary process with one and two dimensionalitesd (y), f(r,y, 2) under

condition :

CL. The functionst (y), f(t,y,2),t > 0 are continuous at poitand

1t(r.y. 2 - f T < (1) € L1(RY), 4)
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this densityf (y) can be estimated with thgarametric rate/T, i.e., letfr (X) be a kernel
type estimator

~ o1 T (X —x
foo=g,; J, k(757 ©

wherepr — 0, Tor — o0 and the kernekK (-) satisfies the usual properties, then
. ~ 2
fim T E(fr(0) - () = AX).

Here .
A(X) = 2 f [ f(r. % %) = 1(9?] dr.
0

The conditionCL can be verified for ergodic fiusion processes (see Veretennikov
(1999) for sifficient conditions). Note that this verification requires muaore
regularity from the coféicientsS () and o (-), than we really need in this estimation
problem.

In this work we propose several asymptoticali@ent estimators of the density
function without supposing that the conditio’ is fulfilled.

2 Lower bound

We start with the minimax lower bound on the risks of all estiiors. This bound was
established for a wide class of loss functions (see Kutay@fi97b), (1998)) but for
simplicity of exposition we consider quadratic loss fuoog only.

Fix someS.(-) and ands > 0 and introduce the set

Vs ={S() : SURpIS(X) - S.(X¥)I < ).

The role of Fisher information in our problem plays the qitsint

Xigsx — Fs(g) )2}_1

1£(S, X) = {4 fo(%)? Es( (&) f.(9)
S

whereFS(-) is the distribution function of the invariant law. HenEg(g) is a uniform
[0, 1] random variable. We have the following result.

Theorem 1 Letsups.,, G(S) < o, andl(S., x) > 0, then for all estimatorsf;(x)

lim fim sup T Eg (fr(9 - f,(9) = 11(S. 0L
60T —co S(-)eVs
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As usual in this type of problem (see Ibragimov and Khasniit§&R81), Chapter 4)
the proof is based on the estimate

— 2 — 2
S%)lied E(fr(¥) - f4(0) 2 gelg?Eﬁ (fr(¥) - f,(%)

where the parametric sub-model corresponds to the trerfii@entS (7, X) = S, (X) +
(® — 90) ¥ (X) o (X)? € Vs, with the functiony (-) from the class

7<={w(-): e | )= (2 fs*(X))_l}-

For this parametric family with Fisher informatior we obtain a Hajek-Le Cam
minimax bound and then choose tleast favourable familyfwith minimal Fisher
information) as follows

l/l/l;}‘(l,/, =17 (S., X).

Note that fory(-) € K we havef (x) = ¢ + 0(1) asé — 0. The details of the proof can
be found in Kutoyants (1997d), (1998), (2003).

This lower bound allows us define the asymptoticaliyceent estimator); by the
following equality:

. . iy 2 1
!SILTE)TII_r&S?)LGIeéT Eq (109 - f5(0) = 11(S.. 97"

3 Asymptotically efficient estimators
We consider below three type of estimatdozal time, unbiasedndkernel type
L ocal time estimator

Recall that local time\+(X) of the difusion process (1) is defined by the formula

meagt: [ Xi—X<eg 0<t<T}
4¢

At(X) = l;ﬂg
and it admits the representation (see Karatzas and Shra9é)j1

)
2AT(X) = X1 — X - [Xo - X| + f sgn(x - X dX
0
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Local time estimatoof the density is defined by the equality

2A1(X)

0= et

We study its asymptotic behavior under the following coiodis:
U. The law of large numbers

4F (X2 (T (Xiary — Fs(XOY
Ps — lim — f ( X ) dt = 1:(S, %)™
STiee T o U o(X) f(X) 8.2

is uniform onS(-) € V;.
8.

Yoy~ Fs@F
GGG

S

ff/\/{\bx} - FS(V)dVZ
o WT,W) =

Theorem 2 Let the conditiondd, 8B be fulfilled andl ¢ (S, x) be continuous on Y/ then
the estimator f(x) is unbiasedE f£(x) = f;(X), asymptotically normal:

sup E
S()eVs

L VT (209 - 1,(9)} = N (015 (S.07Y)
and is asymptotically/gcient.

The proof follows directly from the representation

2 f(x) Xt Xy~ FV)
Co(v)2f(v)

_2 f(X) f Xixon ~ PO
a(X) f(X)

dv

VT (£209 ~ 5(9)

dW (6)

and the central limit theorem for stochastic integrals.
Unbiased estimator

Let us introduce the estimator of the density function

. 1 (7 1 (7
9= [ RO g [ Mk o
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whereh(:) € ¢’ (R) and

h(y) Ky M) 02

Wy
Re () x - (2h00

o (¥%h(x)’
Then itis easy to see thBt f;(x) = f(X) and
L VT (H(0 - 1)} = N (015 (S.97Y).

The detailed proof (with conditions lik&f, 8) can be found in Kutoyants (1998), (2003).
It is based on the representation

VT (709 = f(0) = VT (£209 = f4(x)) + 0(1).
In particular, ifo- (x) = 1 andh (x) = 3, then forx # 0

w002 [ ks = [ 2
T(X)_ ﬁ 0 X{X(<X} Xt Xt+ﬁ 0 X{X[<X} Xt t

is unbiased and asymptoticallffieient estimator of the density.
Kernel type estimator

Let us introduce thé&ernel type estimator

. 1 T
fT(x):ﬁfo K (VT(X - X)) dt

where the kerneK(:) is a bounded function with compact suppadkt B] and

B B
fAK(u)du:L fAuK(u)du:O.

To study this estimator we need to suppose that the fundddm) is continuously
differentiable (the functio (x) is continuous and- (x)? is continuously dferentiable).
Then we obtain the representation

VT (fr(0 - £(9) = VT (209 - £ () + o(1)
and the asymptotic normality of this estimator

L VT (fr(0 - 1)} = N (0,17 (S.07)
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follows from the asymptotic normality of the local time esétor. The detailed
proof with exact conditions can be found in Kutoyants (1998P03). Using similar
arguments we obtain its asymptotiffieiency. It is clear thaA(x) = 1 (S, X)L The
consistent estimation of the quantity(5, x)~* is proposed in Dehay and Kutoyants
(2004).

4 Semiparametric estimation
Let us consider the problem of parameter
Jg = EgR(£) S (&) + EGN(9)
estimation by observations (1) (with unknow{-) and knowno (-)?). HereR(-) and
N (-) are known functions. We will see later that the problem ofanant density

estimation is a particular case of this problem.
Introduce the Fisher information

2f 21
IMQ:%JM@ﬂaS@HQW@q}

o (@) 1@

where

Mg ) = E(|Fs 0 ~ ey |[ROS© + N @I).

The first result is the lower bound similar to that of Theorem 1

Theorem 3 Letsups.,, G(S) < 0 andly(S.) > 0, then for all estimatorsit

5)2 = Il?(S*)_l'

lim lim sup T Eg(dr - o
6—0 T —co S(-)eVs

The proof can be found in Kutoyants (1997c¢) and (2003).
By direct calculation we verify that thempirical estimator

-~ 17 17
ﬁT = ?\fo‘ R(Xt) dXt+ ?L‘ N(Xt) dt

(under moments conditions) is asymptotically normal:

L VT (3, -05)} = N(0.15(5)).

S
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and asymptoticallyficient:

o - 2 i
lim lim S?)lieéT Eg (1 - ) = 1o(S)™

Let us consider three filerent choices of the functiof®(-) andN (-).

e Distribution function estimation. Let us puR(y) = 0 andN(y) = Xiyex’ then
s =Fg (X). Hence the empirical distribution function

.o 1
9 =Fr(¥)= ?\[0 Xixex O

is asymptotically #icient estimator of the invariant distribution function ldyants
(1997a).

gn(x-y)

« Density estimation. Let us puR(y) = - —>* andN (y) = 0, thend, = f_ (x)
O'(X) S S

and
~ — 1 T
F. = (X) = —— sgn(x — X;) dX;.
= F To-(x)zfo gn(x— %) dx,

Therefore, fr (X) is an asymptotically fcient estimator of the density.

e Moments estimation. Let us puR(y) = 0 andN (y) = yX, thends = EséX and the

empirical moment
~ 1 (7o
ﬂT = ?L Xt dt

is asymptotically &icient estimator of the moments of ergodiédsion process.

5 Integral type risk

Let us consider integral type quadratic risk
R(fr. ) = Eg [ (700~ 1,00)° ox

and denote by
Ry (S)=f|f(s*,x)-1 dx

the limit value of this risk for local time estimator.
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Introduce the condition

sup f ES
S()eVs

2
X{§>X} - Fs(f)

@ @
€ Xy~ FsM) [
- [Es f: A

Theorem 4 Let the conditiorn(7) be fulfilled, then

dx+

dx} < oo, )

lim lim inf sup T R(fr.f.) = R:(S.).

Note that this theorem contains two results. The first onkaddwer bound for all
estimators

lim lim sup T R(fr, fg) = R (S.). (8)
§—0T -0 S(-)eVs

The upper bound we obtain with the help of local time estimebtight modification
of the conditions allows obtain the same limit for the risksiobiased and kernel type
estimators. Therefore, all these estimators are asyroptigtiefficient in the sense of
the bound (8). The proofs can be found in Kutoyants (2003}eNloat Negri (2001)
establishes the asymptotidtieiency of the local time estimator for the loss function
with uniform metric, i.e., foiEs¢ (sup, VT |fr (x) - fs (¥)]).

6 Second order efficiency

Having so many asymptoticallyfficient estimators we seek now the second order
efficient one. Let us study the quant(ﬂ]R (fT, fs) — R (S)). Note that for LTE

T2(TR(f7. f5) - R (S) » Q#0.

It can be shown that jf the functioB (-) is k — 1 times diferentiable then for certain
kernel type estimators; (-)

771 (TR(fr. f) - Ry (S)) > -P<0.

To answer the question why the rate: is better tharT z we write the last expression
as

TR(fr. fg) = Re () =P T"%1 (1+0(1)
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and it is clear now that the slower rate is better. Now we canpare the dferent
estimators by their constarf®sand the estimator with biggeBtwill be the best (second
order dficient). Therefore, as before we have two problems: the firstis to obtain a
lower bound on the risks of all estimators (to find the bigg®sand the second is to
construct an estimator which attains this bound. The sinpitablem of second order
efficient estimation was consider by Golubev and Levit (1996) aumr proof follows
the main steps of their work. Note that this result is in thieitspf Pinsker’s approach
(see Pinsker (1980)).
For simplicity of exposition we put (-) = 1.

Theorem 5 (Dalalyan, Kutoyants (2003)$uppose that the function(§ is (k — 1)-

times djferentiable (k> 1), satisfies the condition

|I‘im sgn(x) S (x) < 0,
X|— 00
where S (X) = —x and belongs to the set
2
Sk = {S(-) : f [18 (0 - 18 (0] dx < R}.

Then for all estimatordr (-)

. 1 — A
Tn% S?)lingzk-l [TR(fr. f5) - R (S)| = -1 (K.R)

where
2k

fi(kR) = 2(2k - 1)(ﬂ(k_ 14)”22(_ 1))2“ RO,

The proof can also be found in Kutoyants (2003).

Let us introduce a subdivision & on intervalsly, = [an — 61, am + 67], where
an = 2mot,m= 0,+1,+2,... andét — 0. The asymptotically second orddfieient
estimator (forx € I,) can be written as

| [k 7l (x = X)
e 120

or

L (=)
)E fam N cos( 5 )fT (y)dy
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Herekr = k+ ur,ut = 1/4/logT — 0,

1

i Skr2k-1) .
17 6T(RT(k “ 1) (k- 1))

Theorem 6 (Dalalyan, Kutoyants (2004))et the conditions of Theorem 5 be fulfilled,
then

lim S?)lingTl—l [TR(f,. fg) - R¢ (S)] = - Ti(k. R).

The proof can also be found in Kutoyants (2003).

7 Trend estimation

Let us consider the problem of trend ¢oaent estimation. As before the observed
process (1) is ergodic filusion with unknownS (-) and known dffusion codficient,
which we put (for simplicity of exposition) to be equal 1. Tipeoblem of trend
estimation was studied by several authors (see, e.g., B&I®#8), Galtchouk and
Pergamenshchikov (2001)). Therefore we observe a trajetb = {X;,0 <t < T} of
the solution of the stochasticftirential equation

dXt = S(Xt) dt + dVVt, Xo, 0<t<T.
The trend cofficient can be written with the help of invariant densify(-) as

A
0= 350 ©)

Hence for for estimation d& (x) we can use the estimators of density and its derivative.
The error of the estimators we measure with the help of tHeviimhg risk

= ~ 2
R(St.S) = Es f (ST (0 -S(X) fs (07 dx.
The conditions of the regularity are similar to that of thetgm 5.

ConditionsSs.
S1. The functionS (-) has polynomial majorant and

‘Ili_m sgn(x) S(x) < 0.
X|—00
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S». The functiorS (-) € C¥(R) with somek > 1 and belongs to the set
Y5 = {s(.) eV fR [ 18909 - 18+ (x)]2 dx < 4 R}.
Ss. The Fourier transformp. () of the functionfg () is such that

f |/l|2k+‘r
R

with some positive constamt
Let us put

e.()|d1 < oo

2k

K A,
(kR = (2k+ 1)(7r(k+ )k + 1)) Rex

The first result is the minimax lower bound.

Theorem 7 (Dalalyan, Kutoyants (2002))et the conditionsS; be fulfilled. Then for
any estimatoSt () we have

lim inf sup T#1R(Sr.S) > T (k.R).
T—oo ST S(-)exs

According to (9) we introduce the estimator

b ()

S =
1= S0 v e

where f2(x) is the local-time estimator of the densityy = T-09/2 It = [InT]™,
the constank < 1/(2k+ 1) and¥. (X) is the asymptotically ficient estimator of the
derivative f$(x) Dalalyan, Kutoyants (2003):

.
9 (X) = ZTE fo K*(vr (x = X0)) dX;

where the kernel .
K*(x) = }f (1 — u**1) cos@x) du
T Jo

and

2k+1 |

7R (k+1)(2k+ D\FT _
VT = 2K T

Hereur = (log T)™2.
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Theorem 8 (Dalalyan, Kutoyants (2002))et the conditionsSs be fulfilled then

lim sup T%R(éT,S) =I(kR).
T—oo S(-)ez(;

If the valuesk > 2 andR > 0 are unknown then it is possible to construct an adaptive
estimatorSy (-), which has the same asymptotic propertieSa¢).

Theorem 9 (Dalalyan (2003)).et the conditionsS; be fulfilled then

lim sup T#1R(Sr,S) =T (k. R).
T—oo S()exs
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