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Abstract

We present a review of several results concerning invariant density estimation by observations of
ergodic diffusion process and some related problems. In every problem we propose a lower minimax
bound on the risks of all estimators and then we construct an asymptotically efficient estimator.
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1 Introduction

Suppose that we observe a trajectoryXT
= {Xt,0 ≤ t ≤ T} of the diffusion process

dXt = S(Xt) dt + σ(Xt) dWt, X0, t ≥ 0 (1)

where the trend coefficient S (·) is an unknown function and the diffusion coefficient
σ (·)2 is a known positive function. We assume that these functionsare such that the
equation (1) has a unique weak solution (see, e.g. Durret (1996). Moreover, we suppose
that the following conditions are fulfilled.
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ConditionsA0:

∫ x

0
exp

{

−2
∫ y

0

S(v)
σ(v)2

dv

}

dy→ ±∞, as x→ ±∞

and

G (S) =
∫ ∞

−∞

1
σ(x)2

exp

{

2
∫ x

0

S(v)
σ(v)2

dv

}

dx < ∞.

By these conditions the solution of equation (1) has ergodicproperties, with the
invariant density

fS(x) =
1

G(S)σ(x)2
exp

{

2
∫ x

0

S(v)
σ(v)2

dv

}

, (2)

i.e., for any functionh (·) such thatES |h (ξ)| < ∞ the law of large numbers

1
T

∫ T

0
h (Xt) dt −→ ES h (ξ) p.s.

holds. We denote byξ a random variable with density functionfS (·) .
We consider the problem of estimation of the invariant density by observationsXT

and study the properties of its estimators in the asymptoticof large samplesT → ∞.
The initial valueX0 is supposed to have the same density functionfS (·), so the observed
process is stationary and the observed valueXt is a random variable with densityfS (·).
We recall that in i.i.d. case the density of one observation entirely defines the distribution
of the whole sample, but in the case of continuous time stochastic processes the
distribution of the observed trajectory is defined by all finite dimensional distributions.
Hence the density of one observation does not identify the model. For an ergodic
diffusion process this density nevertheless identifies the whole model, because the model
is entirely defined by the trend (unknown) and diffusion (known) coefficients and having
invariant density we can write the trend coefficient as

S (x) =

(

σ (x)2 fS (x)
)′

2 fS (x)
. (3)

The problem of invariant density estimation was consideredby many authors (see,
e.g., Nguen (1979), Delecroix (1980), Castellana and Leadbetter (1986), Bosq (1998),
van Zanten (2001)et al.). In particular, Castellana and Leadbetter (1986) showed that
for any stationary process with one and two dimensional densities f (y), f (τ, y, z) under
condition :
CL. The functionsf (y), f (τ, y, z), τ > 0 are continuous at pointx and

| f (τ, y, z) − f (y) f (z)| ≤ ψ(τ) ∈ L1(R+), (4)
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this densityf (y) can be estimated with theparametric rate
√

T, i.e., let f̂T (x) be a kernel
type estimator

f̂T (x) =
1

TϕT

∫ T

0
K

(

Xt − x
ϕT

)

dt (5)

whereϕT → 0,TϕT → ∞ and the kernelK (·) satisfies the usual properties, then

lim
T→∞

T E
(

f̂T(x) − f (x)
)2
= A(x).

Here

A(x) = 2
∫ ∞

0

[

f (τ, x, x) − f (x)2
]

dτ.

The conditionCL can be verified for ergodic diffusion processes (see Veretennikov
(1999) for sufficient conditions). Note that this verification requires much more
regularity from the coefficientsS (·) andσ (·), than we really need in this estimation
problem.

In this work we propose several asymptotically efficient estimators of the density
function without supposing that the conditionCL is fulfilled.

2 Lower bound

We start with the minimax lower bound on the risks of all estimators. This bound was
established for a wide class of loss functions (see Kutoyants (1997b), (1998)) but for
simplicity of exposition we consider quadratic loss functions only.

Fix someS∗(·) and andδ > 0 and introduce the set

Vδ = {S(·) : sup
x∈R
|S(x) − S∗(x)| ≤ δ}.

The role of Fisher information in our problem plays the quantity

I f (S, x) =















4 f
S
(x)2 E

S













χ{ξ>x} − F
S
(ξ)

σ(ξ) f
S
(ξ)













2












−1

whereF
S
(·) is the distribution function of the invariant law. HenceF

S
(ξ) is a uniform

[0,1] random variable. We have the following result.

Theorem 1 LetsupS∈Vδ G (S) < ∞, andI f (S∗, x) > 0, then for all estimators̄fT(x)

lim
δ→0

lim
T→∞

sup
S(·)∈Vδ

T E
S

(

f̄T(x) − f
S
(x)
)2
≥ I f (S∗, x)−1.
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As usual in this type of problem (see Ibragimov and Khasminskii (1981), Chapter 4)
the proof is based on the estimate

sup
S(·)∈Vδ

E
S

(

f̄T(x) − f
S
(x)
)2
≥ sup
ϑ∈Θδ

E
ϑ

(

f̄T(x) − f
ϑ
(x)
)2

where the parametric sub-model corresponds to the trend coefficientS (ϑ, x) = S∗ (x) +
(ϑ − ϑ0)ψ (x)σ (x)2 ∈ Vδ, with the functionψ (·) from the class

K =
{

ψ(·) : ES∗

∫ x

ξ

ψ(v) dv =
(

2 fS∗(x)
)−1
}

.

For this parametric family with Fisher information Iψ we obtain a Hajek-Le Cam
minimax bound and then choose theleast favourable family(with minimal Fisher
information) as follows

inf
ψ∈K

Iψ = I f (S∗, x) .

Note that forψ(·) ∈ K we havef
ϑ
(x) = ϑ + o (1) asδ → 0. The details of the proof can

be found in Kutoyants (1997d), (1998), (2003).
This lower bound allows us define the asymptotically efficient estimatorϑ∗T by the

following equality:

lim
δ→0

lim
T→∞

sup
S(·)∈Vδ

T E
S

(

f ∗T(x) − f
S
(x)
)2
= I f (S∗, x)−1.

3 Asymptotically efficient estimators

We consider below three type of estimators:local time, unbiasedandkernel type.

Local time estimator

Recall that local timeΛT(x) of the diffusion process (1) is defined by the formula

ΛT(x) = lim
ε↓0

meas{t : |Xt − x| ≤ ε, 0 ≤ t ≤ T}
4 ε

and it admits the representation (see Karatzas and Shreve (1991))

2ΛT(x) = |XT − x| − |X0 − x| +
∫ T

0
sgn(x− Xt) dXt
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Local time estimatorof the density is defined by the equality

f ◦T (x) =
2ΛT(x)
σ(x)2 T

.

We study its asymptotic behavior under the following conditions:
U. The law of large numbers

PS − lim
T→∞

4 f
S
(x)2

T

∫ T

0













χ{Xt>x} − F
S
(Xt)

σ(Xt) f
S
(Xt)













2

dt = I f (S, x)−1

is uniform onS(·) ∈ Vδ.
B.

sup
S(·)∈Vδ



















E
S

∣

∣

∣

∣

∣

∣

∣

χ{ξ>x} − F
S
(ξ)

σ(ξ) f
S
(ξ)

∣

∣

∣

∣

∣

∣

∣

2

+ E
S

∣

∣

∣

∣

∣

∣

∣

∫ ξ

0

χ{v>x} − F
S
(v)

σ(v)2 f
S
(v)

dv

∣

∣

∣

∣

∣

∣

∣

2
















< ∞.

Theorem 2 Let the conditionsU,B be fulfilled andI f (S, x) be continuous on Vδ, then
the estimator f◦T (x) is unbiased:E

S
f ◦T (x) = f

S
(x), asymptotically normal:

L
S

{√
T
(

f ◦T (x) − f
S
(x)
)}

⇒ N
(

0, I f (S, x)−1
)

and is asymptotically efficient.

The proof follows directly from the representation

√
T
(

f ◦T (x) − f
S
(x)
)

=
2 f (x)
√

T

∫ XT

X0

χ{v>x} − F(v)

σ(v)2 f (v)
dv

−2 f (x)
√

T

∫ T

0

χ{Xt>x} − F(Xt)

σ(Xt) f (Xt)
dWt (6)

and the central limit theorem for stochastic integrals.

Unbiased estimator

Let us introduce the estimator of the density function

f ∗T(x) =
1
T

∫ T

0
Rx (Xt) dXt +

1
T

∫ T

0
Nx (Xt) dt
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whereh (·) ∈ C′ (R) and

Rx (y) =
2χ{y<x}h(y)

σ (x)2 h(x)
, Nx (y) =

χ{y<x}h
′(y)σ (y)2

σ (x)2 h(x)
.

Then it is easy to see thatE
S

f ∗T(x) = f
S
(x) and

L
S

{√
T
(

f ∗T(x) − f
S
(x)
)}

⇒ N
(

0, I f (S, x)−1
)

.

The detailed proof (with conditions likeU,B) can be found in Kutoyants (1998), (2003).
It is based on the representation

√
T
(

f ∗T(x) − f
S
(x)
)

=

√
T
(

f ◦T (x) − f
S
(x)
)

+ o (1) .

In particular, ifσ (x) ≡ 1 andh (x) = x3, then forx , 0

f ∗T(x) =
2

T x3

∫ T

0
χ{Xt<x} X3

t dXt +
3

T x3

∫ T

0
χ{Xt<x} X2

t dt

is unbiased and asymptotically efficient estimator of the density.

Kernel type estimator

Let us introduce thekernel type estimator

f̂T(x) =
1
√

T

∫ T

0
K
(√

T(Xt − x)
)

dt

where the kernelK(·) is a bounded function with compact support [A, B] and

∫ B

A
K(u) du = 1,

∫ B

A
u K(u) du = 0.

To study this estimator we need to suppose that the functionfS (x) is continuously
differentiable (the functionS (x) is continuous andσ (x)2 is continuously differentiable).
Then we obtain the representation

√
T
(

f̂T(x) − f (x)
)

=

√
T
(

f ◦T (x) − f (x)
)

+ o (1)

and the asymptotic normality of this estimator

L
S

{√
T
(

f̂T(x) − f
S
(x)
)}

⇒ N
(

0, I f (S, x)−1
)
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follows from the asymptotic normality of the local time estimator. The detailed
proof with exact conditions can be found in Kutoyants (1998), (2003). Using similar
arguments we obtain its asymptotic efficiency. It is clear thatA (x) = I f (S, x)−1. The
consistent estimation of the quantity If (S, x)−1 is proposed in Dehay and Kutoyants
(2004).

4 Semiparametric estimation

Let us consider the problem of parameter

ϑ
S
= E

S
R(ξ) S (ξ) + E

S
N (ξ)

estimation by observations (1) (with unknownS (·) and knownσ (·)2). HereR(·) and
N (·) are known functions. We will see later that the problem of invariant density
estimation is a particular case of this problem.

Introduce the Fisher information

Iϑ (S) =



















E
S















R(ξ)σ (ξ)2 f
S

(ξ) + 2M
S

(ξ)

σ (ξ) f
S

(ξ)















2


















−1

where

M
S

(y) = E
([

F
S

(y) − χ{ξ<y}

]

[

R(ξ) S (ξ) + N (ξ)
]

)

.

The first result is the lower bound similar to that of Theorem 1.

Theorem 3 LetsupS∈Vδ G (S) < ∞ andIϑ(S∗) > 0, then for all estimators̄ϑT

lim
δ→0

lim
T→∞

sup
S(·)∈Vδ

T E
S

(

ϑ̄T − ϑS

)2
≥ Iϑ(S∗)

−1.

The proof can be found in Kutoyants (1997c) and (2003).
By direct calculation we verify that theempirical estimator

ϑ̃
T
=

1
T

∫ T

0
R(Xt) dXt +

1
T

∫ T

0
N (Xt) dt

(under moments conditions) is asymptotically normal:

L
S

{√
T
(

ϑ̃
T
− ϑ

S

)}

⇒ N
(

0, Iϑ (S)−1
)

.
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and asymptotically efficient:

lim
δ→0

lim
T→∞

sup
S(·)∈Vδ

T E
S

(

ϑ̃T − ϑS

)2
= Iϑ(S∗)

−1.

Let us consider three different choices of the functionsR(·) andN (·).

• Distribution function estimation. Let us putR(y) = 0 andN (y) = χ{y<x}, then
ϑ

S
= F

S
(x). Hence the empirical distribution function

•

ϑ̃
T
= F̂T (x) =

1
T

∫ T

0
χ{Xt<x} dt

is asymptotically efficient estimator of the invariant distribution function Kutoyants
(1997a).

• Density estimation. Let us putR(y) =
sgn(x− y)

σ (x)2
andN (y) = 0, thenϑ

S
= f

S
(x)

and
•

ϑ̃
T
= f̄T (x) =

1

Tσ (x)2

∫ T

0
sgn(x− Xt) dXt.

Therefore,f̄T (x) is an asymptotically efficient estimator of the density.

• Moments estimation. Let us putR(y) = 0 andN (y) = yk, thenϑS = ESξ
k and the

empirical moment
•

ϑ̃
T
=

1
T

∫ T

0
Xk

t dt

is asymptotically efficient estimator of the moments of ergodic diffusion process.

5 Integral type risk

Let us consider integral type quadratic risk

R
(

f̄T , fS
)

= E
S

∫

( f̄T(x) − f
S
(x))2 dx

and denote by

R f (S) =
∫

I f (S∗, x)−1 dx

the limit value of this risk for local time estimator.
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Introduce the condition

sup
S(·)∈Vδ



















∫

ES

∣

∣

∣

∣

∣

∣

∣

χ{ξ>x} − FS(ξ)

σ(ξ) fS(ξ)

∣

∣

∣

∣

∣

∣

∣

2

dx+

+

∫

ES

∣

∣

∣

∣

∣

∣

∣

∫ ξ

0

χ{v>x} − FS(v)

σ(v)2 fS(v)
dv

∣

∣

∣

∣

∣

∣

∣

2

dx



















< ∞. (7)

Theorem 4 Let the condition(7) be fulfilled, then

lim
δ→0

lim
T→∞

inf
f̄T

sup
S(·)∈Vδ

T R
(

f̄T , fS
)

= R f (S∗) .

Note that this theorem contains two results. The first one is the lower bound for all
estimators

lim
δ→0

lim
T→∞

sup
S(·)∈Vδ

T R
(

f̄T , fS
)

≥ R f (S∗) . (8)

The upper bound we obtain with the help of local time estimator. Slight modification
of the conditions allows obtain the same limit for the risks of unbiased and kernel type
estimators. Therefore, all these estimators are asymptotically efficient in the sense of
the bound (8). The proofs can be found in Kutoyants (2003). Note that Negri (2001)
establishes the asymptotic efficiency of the local time estimator for the loss function
with uniform metric, i.e., forESℓ

(

supx

√
T
∣

∣

∣ f̄T (x) − fS (x)
∣

∣

∣

)

.

6 Second order efficiency

Having so many asymptotically efficient estimators we seek now the second order
efficient one. Let us study the quantity

(

TR
(

f̄T , fS
)

− R f (S)
)

. Note that for LTE

T
1
2

(

TR
(

f ◦T , fS
)

− R f (S)
)

→ Q , 0.

It can be shown that if the functionS (·) is k − 1 times differentiable then for certain
kernel type estimatorŝfT (·)

T
1

2k−1

(

TR
(

f̂T , fS
)

− R f (S)
)

→ −P < 0.

To answer the question why the rateT
1

2k−1 is better thanT
1
2 we write the last expression

as

TR
(

f̂T , fS
)

= R f (S) − P T−
1

2k−1 (1+ o (1))
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and it is clear now that the slower rate is better. Now we can compare the different
estimators by their constantsP and the estimator with biggestP will be the best (second
order efficient). Therefore, as before we have two problems: the first one is to obtain a
lower bound on the risks of all estimators (to find the biggestP) and the second is to
construct an estimator which attains this bound. The similar problem of second order
efficient estimation was consider by Golubev and Levit (1996) and our proof follows
the main steps of their work. Note that this result is in the spirit of Pinsker’s approach
(see Pinsker (1980)).

For simplicity of exposition we putσ (·) = 1.

Theorem 5 (Dalalyan, Kutoyants (2003))Suppose that the function S(·) is (k− 1)-
times differentiable (k> 1), satisfies the condition

lim
|x|→∞

sgn(x) S (x) < 0,

where S∗ (x) = −x and belongs to the set

Σk =

{

S (·) :
∫

[

f (k)
S (x) − f (k)

S∗
(x)
]2

dx ≤ R

}

.

Then for all estimators̄fT (·)

lim
T→∞

sup
S(·)∈Σk

T
1

2k−1

[

TR
(

f̄T , fS
)

− R f (S)
]

≥ −Π̂ (k,R)

where

Π̂ (k,R) = 2(2k− 1)

(

4k
π (k− 1) (2k− 1)

)
2k

2k−1

R−
1

2k−1 .

The proof can also be found in Kutoyants (2003).
Let us introduce a subdivision ofR on intervalsIm = [am− δT ,am + δT ], where

am = 2mδT ,m = 0,±1,±2, . . . andδT → 0. The asymptotically second order efficient
estimator (forx ∈ Im) can be written as

f̂
T
(x) =

1
2TδT

∫ T

0

ν̂T
∑

l=−ν̂T

(

1−
∣

∣

∣

∣

∣

l
ν̂

T

∣

∣

∣

∣

∣

kT )

cos

(

πl (x− Xt)
δT

)

χ{Xt∈Im}
dt

or

f̂
T
(x) =

ν̂T
∑

l=−ν̂T

(

1−
∣

∣

∣

∣

∣

l
ν̂

T

∣

∣

∣

∣

∣

kT ) 1
2δT

∫ am+δT

am−δT
cos

(

πl (x− y)
δT

)

f ◦T (y) dy
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HerekT = k+ µT , µT = 1/
√

logT → 0,

ν̂
T
= δ

T

( 8kπ2(k−1)

RT(k− 1)(2k− 1)

)− 1
2k−1

→ ∞

Theorem 6 (Dalalyan, Kutoyants (2004))Let the conditions of Theorem 5 be fulfilled,
then

lim
T→∞

sup
S(·)∈Σk

T
1

2k−1

[

TR
(

f̂
T
, f

S

)

− R f (S)
]

= − Π̂(k,R).

The proof can also be found in Kutoyants (2003).

7 Trend estimation

Let us consider the problem of trend coefficient estimation. As before the observed
process (1) is ergodic diffusion with unknownS (·) and known diffusion coefficient,
which we put (for simplicity of exposition) to be equal 1. Theproblem of trend
estimation was studied by several authors (see, e.g., Banon(1978), Galtchouk and
Pergamenshchikov (2001)). Therefore we observe a trajectory XT

= {Xt,0 ≤ t ≤ T} of
the solution of the stochastic differential equation

dXt = S(Xt) dt + dWt, X0, 0 ≤ t ≤ T.

The trend coefficient can be written with the help of invariant densityf
S

(·) as

S (x) =
f ′
S

(x)

2 f ′
S

(x)
. (9)

Hence for for estimation ofS (x) we can use the estimators of density and its derivative.
The error of the estimators we measure with the help of the following risk

R
(

S̄T ,S
)

= ES

∫

(

S̄T (x) − S (x)
)2

fS (x)2 dx.

The conditions of the regularity are similar to that of the Section 5.
ConditionsSδ.
S1. The functionS (·) has polynomial majorant and

lim
|x|→∞

sgn(x) S(x) < 0.
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S2. The functionS (·) ∈ Ck (R) with somek ≥ 1 and belongs to the set

Σδ =

{

S(·) ∈ Vδ :
∫

R

[

f (k+1)
S (x) − f (k+1)

S∗
(x)
]2

dx ≤ 4 R
}

.

S3. The Fourier transformϕ∗ (·) of the functionf ′S∗ (·) is such that

∫

R
|λ|2k+τ

∣

∣

∣ϕ∗(λ)
∣

∣

∣

2
dλ < ∞

with some positive constantτ.
Let us put

Π (k,R) = (2k+ 1)

(

k
π (k+ 1) (2k+ 1)

)
2k

2k+1

R
1

2k+1

The first result is the minimax lower bound.

Theorem 7 (Dalalyan, Kutoyants (2002))Let the conditionsSδ be fulfilled. Then for
any estimator̄ST (·) we have

lim
T→∞

inf
S̄T

sup
S(·)∈Σδ

T
2k

2k+1R
(

S̄T ,S
)

≥ Π (k,R) .

According to (9) we introduce the estimator

Ŝ
T

(x) =
ϑ̂

T
(x)

2 f ◦T (x) + εT e−lT |x|

where f ◦T (x) is the local-time estimator of the density,εT = T−(1−κ)/2, lT = [ln T]−1,
the constantκ < 1/ (2k+ 1) and ϑ̂

T
(x) is the asymptotically efficient estimator of the

derivative f ′S(x) Dalalyan, Kutoyants (2003):

ϑ̂
T

(x) =
2νT
T

∫ T

0
K∗
(

νT(x− Xt)
)

dXt

where the kernel

K∗ (x) =
1
π

∫ 1

0
(1− uk+µT ) cos(ux) du

and

νT =

(

π R (k+ 1) (2k+ 1)
4k

)
1

2k+1

T
1

2k+1 .

HereµT =
(

logT
)−1/2.
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Theorem 8 (Dalalyan, Kutoyants (2002))Let the conditionsSδ be fulfilled then

lim
T→∞

sup
S(·)∈Σδ

T
2k

2k+1R
(

ŜT ,S
)

= Π (k,R) .

If the valuesk ≥ 2 andR> 0 are unknown then it is possible to construct an adaptive
estimatorS̃T (·), which has the same asymptotic properties asŜT (·).

Theorem 9 (Dalalyan (2003))Let the conditionsSδ be fulfilled then

lim
T→∞

sup
S(·)∈Σδ

T
2k

2k+1R
(

S̃T ,S
)

= Π (k,R) .
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