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Abstract

We define a family of local mixing conditions that enable the computation of the extremal index of
periodic sequences from the joint distributions of k consecutive variables of the sequence. By applying
results, under local and global mixing conditions, to the (2m – 1)–dependent periodic sequence
X(m)

n =
∑m – 1

j = –m cj Zn – j, n ≥ 1, we compute the extremal index of the periodic moving average sequence
Xn =

∑∞
j=–∞ cj Zn – j, n ≥ 1, of random variables with regularly varying tail probabilities.

This paper generalizes the theory for extremes of stationary moving averages with regularly varying
tail probabilities.
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1 Introduction

The moving average process of the form

Xn =

∞
∑

j=−∞

c j Zn− j , n ≥ 1, (1.1)

with iid real-valued innovations or noise variables (Z j) j∈Z, includes the popular
ARMA(p,q) andAR(p) processes considered in classical time series analysis. Studies
of the extreme value behaviour of such processes have been carried out, among others,
by Cline (1983), Davis and Resnick (1985, 1988) and Chernicket al. (1991).
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162 Extremes of periodic moving averages of random variables with regularly...

In this paper we are concerned with moving average processesof the form (1.1) but
with Z = {Z j} j∈Z a T−periodic sequence of independent real-valued variables, such that
F i(x) = P(|Zi | > x), i = 1, . . . ,T, are regularly varying with exponent−α, i.e.,

F i(x) = x−αLi(x), x > 0, i = 1, . . . ,T, (1.2)

for someα > 0 andLi : R+ → R+ slowly varying functions. We also assume the tail
balance conditions

lim
x→∞

P(Zi > x)

F i(x)
= pi , lim

x→∞

P(Zi < −x)

F i(x)
= qi , i = 1, . . . ,T, (1.3)

for somepi andqi ∈ [0,1] such thatpi + qi = 1, i = 1, . . . ,T, and tail equivalence in the
following way

lim
x→∞

P(Zi > x)
P(Z j > x)

= γ
(+)
i, j > 0, lim

x→∞

P(Zi < −x)
P(Z j < −x)

= γ
(−)
i, j > 0, i, j = 1, . . . ,T. (1.4)

The sequence of real constantsc = {c j} j∈Z will be taken to satisfy

∞
∑

j=−∞

|c j |
δ < ∞, (1.5)

for someδ < min{α,1}, in order to guarantee the a.s. convergence of (1.1). Noticethat
conditions (1.3) and (1.4) imply the existence ofγi, j = limx→∞

P(|Zi |>x)
P(|Z j |>x) , i, j = 1, . . . ,T.

Extreme value theory known for periodic sequences can then be applied to this
moving average sequenceX = {Xn}n≥1, since it is also aT−periodic sequence. Alpuim
(1988) showed that under Leadbetter’s global mixing condition D, the only possible
limit laws for the normalized maxima of aT−periodic sequence are the three extreme
value distributions. Under local mixing conditionsD(k)

T , k = 1,2, Ferreira (1994) studied
the extremal behaviour of periodic sequences, and under theweaker local mixing
conditionsD(k)

T , k ≥ 3, Ferreira and Martins (2003) obtained the expression for the
extremal index of aT−periodic sequence from the joint distribution ofk consecutive
variables of the sequence.

We say that for a fixed integerk ≥ 1 and a sequence of real constantsu = {un}n≥1

the condition D(k)
T (un) holds for a T−periodic sequenceX satisfying Leadbetter’s

conditionD(un) (see Leadbetteret al. (1983)) with mixing coefficientsβn,l, when there

exists a sequence of integersk = {kn}n≥1 such that limn→∞ kn = ∞, lim
n→∞

kn
ln
n
= 0,

limn→∞ knβn,ln = 0, and

lim
n→∞

n
1
T

T
∑

i=1

[

n
knT

]

T
∑

j=i+k

P(Xi > un ≥ Mi+1,i+k−1,X j > un) = 0, (1.6)

whereMi, j = max{Xi ,Xi+1, . . . ,X j} andMi, j = −∞ for i > j.
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Under this local dependence condition the extremal index ofX,

θX =
−log(limn→∞ P(max1≤i≤n Xi ≤ un))

τ
,

where

τ = lim
n→∞

n
1
T

T
∑

i=1

P(Xi > un), (1.7)

can be computed from

θX = lim
n→∞

n
1
T

T
∑

i=1

P(Xi > un ≥ Mi+1,i+k−1)

τ
. (1.8)

A sequenceu satisfying (1.7) is usually denoted byu(τ)
= {u(τ)

n } for X, and its elements
are called normalized levels forX.

Observe that, whenk ≥ 2, condition (1.6) is implied by

lim
n→∞

S(k)
[

n
knT

] = lim
n→∞

n
1
T

T
∑

i=1

[

n
knT

]

T
∑

j=i+k

P(Xi > un,X j−1 ≤ un < X j) = 0,

which limits the distance between exceedances of levelun, that is, in each interval
there can only be more than one exceedance ofun if separated by less thank − 1 non-
exceedances ofun. Consequently, the local dependence conditionD(k)

T , k ≥ 1, become
weaker as the value ofk increases.

Our aim in this paper is to use the previous results, that generalize the ones obtained
by Chernicket al. (1991) for stationary sequences, to obtain the expression for the
extremal index of theT−periodic moving average sequence of random variables with
regularly varying tail probabilitiesX defined by (1.1) and satisfying certain balance and
tail equivalence conditions. To attain this we start by characterizing in Section 2 the
behaviour of each tailP(Xi) > x, i = 1, . . . ,T as x → ∞, and by obtaining sufficient
conditions that allow the application of our results to a finite moving average sequence
X(m) that “approximates”X asm→ ∞. In Section 3 we present our main result which
gives the expression of the extremal index of theT−periodic moving average sequence
X.

The proofs of all theorems presented are given in the Appendix.

2 First results

The first result we present is a simple modification of a theorem found in Resnick (1987)
for the stationary case, but crucial for the characterization of the behaviour of each tail
P(Xi > x), i = 1, . . . ,T, asx→ ∞, which we present ahead.
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Theorem 2.1 Let Z = {Zn}n∈Z be a T−periodic sequence of independent random
variables satisfying (1.2), (1.3) and (1.4) andc = {c j} j∈Z a sequence of real constants
satisfying (1.5). Then for i= 1, . . . ,T when x→ ∞

lim
x→∞

P

















∞
∑

j=−∞

|c jZi− j | > x

















P(|Zi | > x)
= pi

T−1
∑

s=0

γ
(+)
i−s,i p−1

i−s

∞
∑

j=−∞

|c jT+s|
α. (2.9)

The behaviour of each tailP(Xi > x), i = 1, . . . ,T, asx→ ∞ is vital for the extremal
behaviour of the periodic moving average processX. As Embrechtset al. (1997), we
prove how every r.v.Z j , j ∈ Z, has a contribution to each tailP(Xi > x), i = 1, . . . ,T.

Theorem 2.2 Let Z = {Zn}n∈Z be a T−periodic sequence of independent variables
satisfying (1.2), (1.3) and (1.4) andc = {c j} j∈Z a sequence of real constants satisfying
(1.5). Then for i= 1, . . . ,T

P(Xi > x) ∼ x−αLi(x)



















pi

T−1
∑

s=0

γ
(+)
i−s,i

∞
∑

j=−∞

[

c+jT+s

]α
+ qi

T−1
∑

s=0

γ
(−)
i−s,i

∞
∑

j=−∞

[

c−jT+s

]α



















,

where c+j = max{c j ,0} and c−j = max{−cj ,0}.

As we can see, the contribution of the random variablesZ = {Zn}n∈Z to each tail
depends on the size and sign of the respective weightc j associated to them.

The computation of the extremal index using expression (1.8) requires the validation
of a long range and a local mixing condition, which is often a difficult task when
considering some sequences, namely moving average sequences. To overcome this
difficulty it’s useful to consider in these cases an “approximating” sequenceX(m)

=

{X(m)
n }n≥1 for a fixed integerm, then apply a Slutsky argument and letm→ ∞. We can

then use the extremal index of this sequenceX(m) to estimate that ofX.
Sufficient conditions, to take into consideration such a sequenceX(m), in the periodic

case, can be found in the next result, analogous to the one found in Chernicket al.(1991)
for the stationary case.

Theorem 2.3 SupposeX and X(m), m ≥ 1 are T−periodic sequences defined on the
same probability space such that for some sequences of constants u = {un}n≥1 and
i = 1, . . . ,T,

lim
ǫ→0

lim sup
n→∞

nP((1− ǫ)un < Xi ≤ (1+ ǫ)un) = 0, (2.10)

lim
m→∞

lim sup
n→∞

nP
(

|Xi − X(m)
i | > ǫun

)

= 0, ǫ > 0. (2.11)

Then
(i) lim

m→∞
lim sup

n→∞

∣

∣

∣P(M(In) ≤ un) − P(M(m)(In) ≤ un)
∣

∣

∣ = 0, where the supremum is

taken over all index sets In ⊂ {1, . . . ,n}.
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(ii) If condition D(u) holds forX(m) for each m, then it holds forX as well.
(iii) lim

m→∞
lim
n→∞

n|P(Xi > un ≥ Mi+1,i+k−1) − P(X(m)
i > un ≥ M(m)

i+1,i+k−1)| = 0, k ≥ 2,

with M(I ) = max
j∈I

X j and M(m)(I ) = max
j∈I

X(m)
j , for I ⊂ {1, . . . ,n}.

Remark 1 If (2.10) and (2.11) hold withu(τ) andX(m), m ≥ 1 has extremal indexθX(m) ,
then by Theorem 1.3(i) withIn = {1, . . . ,n}, X has extremal indexθX if and only if
θX(m) → θX asm→ ∞.

3 Main result

We are now in conditions to state our main theorem which computes the extremal
index θX of a periodic sequenceX of moving averages of random variables with
regularly varying tail probabilities. For this, we need to consider a sequence of constants
u = {un}n∈N satisfying

lim
n→∞

nP(|Zi | > un) = τi

/



















pi

T−1
∑

s=0

γ
(+)
i−s,i

∞
∑

j=−∞

[

c+jT+s

]α
+ qi

T−1
∑

s=0

γ
(−)
i−s,i

∞
∑

j=−∞

[

c−jT+s

]α



















, (3.1)

for given τi > 0, i = 1, . . . ,T. Such a sequence exists by the assumption of regular
variation of eachF i , i = 1, . . . ,T, and implies, by Theorem 2.2, thatnP(Xi > un) → τi,
x→ ∞, i = 1, . . . ,T, thereforeu = u(τ) for X with τ = 1

T

∑T
i=1 τi .

Theorem 3.1 Let X = {Xn}n≥1 be a T−periodic moving average sequence as defined in
(1.1). ThenX has extremal index

θX =

T
∑

i=1

γi,1















pi

T−1
∑

s=0

γ
(+)
i−s,i c+s (α) + qi

T−1
∑

s=0

γ
(−)
i−s,ic

−
s (α)















T
∑

i=1

γi,1



















pi

T−1
∑

s=0

γ
(+)
i−s,i

∞
∑

j=−∞

[

c(+)
jT+s

]α
+ qi

T−1
∑

s=0

γ
(−)
i−s,i

∞
∑

j=−∞

[

c−jT+s

]α



















,

where

c+s (α) =
∞
∑

j=−∞

(

[

c+jT+s

]α
− max

r> jT+s
{c+r }

α

)

+

and

c−s (α) =
∞
∑

j=−∞

(

[

c−jT+s

]α
− max

r> jT+s
{c−r }

α

)

+

.

This result shows how the balance and tail equivalence parameters influence the value
of the mean number of clustered exceedances in these processes.
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4 Appendix

Proof (Theorem 2.1). We begin by showing a weaker result, namely for eachi =
1, . . . ,T,

lim
x→∞

P(|c1Zi−1| + |c2Zi−2| + |c3Zi−3| > x)
P(|Zi | > x)

= γ
(+)
i−1,i p−1

i−1 pi |c1|
α
+ γ

(+)
i−2,i p−1

i−2 pi |c2|
α
+ γ

(+)
i−3,i p−1

i−3 pi |c3|
α. (4.2)

We restrict ourselves to three summands with non-zeroc1, c2, c3 to show the method, the
general case can be proved analogously by induction. Forδ ∈ (0,1/3) andi = 1, . . . ,T,

{|c1Zi−1| + |c2Zi−2| + |c3Zi−3| > x}

⊂ {|c1Zi−1| > (1− δ)2x} ∪ {|c2Zi−2| > (1− δ)2x} ∪ {|c3Zi−3| > (1− δ)2x}

∪ {|c1Zi−1| > δ(1− δ)x, |c2Zi−2| > δ(1− δ)x}

∪ {|c1Zi−1| > δ(1− δ)x, |c3Zi−3| > δ(1− δ)x}

∪ {|c2Zi−2| > δ(1− δ)x, |c3Zi−3| > δ(1− δ)x}

∪ {|c1Zi−1| > δ
2x, |c2Zi−2| > δ

2x, |c3Zi−3| > δ
2x}.

Hence, by conditions (1.2), (1.3) and (1.4)

lim sup
x→∞

P(|c1Zi−1| + |c2Zi−2| + |c3Zi−3| > x)
P(|Zi | > x)

≤ |c1|
α(1− δ)−2αp−1

i−1 γ
(+)
i−1,i pi

+|c2|
α(1− δ)−2αp−1

i−2 γ
(+)
i−2,i pi + |c3|

α(1− δ)−2αp−1
i−3 γ

(+)
i−3,i pi . (4.3)

Moreover,

{|c1Zi−1| + |c2Zi−2| + |c3Zi−3| > x}

⊃ {|c1Zi−1| > (1+ δ)2x, |c2Zi−2| + |c3Zi−3| ≤ δx}

∪ {|c1Zi−1| ≤ δx, |c2Zi−2| > (1+ δ)2x, |c3Zi−3| ≤ δ(1+ δ)x}

∪ {|c1Zi−1| ≤ δx, |c2Zi−2| ≤ δ(1+ δ)x, |c3Zi−3| > (1+ δ)2x}.

Hence

lim inf
x→∞

P(|c1Zi−1| + |c2Zi−2| + |c3Zi−3| > x)
P(|Zi | > x)

≥ |c1|
α(1+ δ)−2αp−1

i−1 γ
(+)
i−1,i pi

+|c2|
α(1+ δ)−2αp−1

i−2 γ
(+)
i−2,i pi + |c3|

α(1+ δ)−2αp−1
i−3 γ

(+)
i−3,i pi . (4.4)

Letting δ → 0 in (4.3) and (4.4) we obtain (4.2). Notice that in the caseT = 2 we have
γ

(+)
i−1,i = γ

(+)
i−3,i , pi−1 = pi−3, for i = 1,2 andp1 = p3.
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We must leap now from (4.2) to (2.9). Forx > 0 andI1 = {0, . . . ,T − 1}, write

P

















∞
∑

j=−∞

|c jZi− j | > x

















= P

















T−1
∑

s=0

∞
∑

j=−∞

|c jT+sZi− jT−s| > x

















= P

















T−1
∑

s=0

∞
∑

j=−∞

|c jT+sZi− jT−s| > x,max
s∈I1

max
j∈R
|c jT+sZi− jT−s| > x

















+P

















T−1
∑

s=0

∞
∑

j=−∞

|c jT+sZi− jT−s| > x,max
s∈I1

max
j∈R
|c jT+sZi− jT−s| ≤ x

















≤ P

















T−1
⋃

s=0

∞
⋃

j=−∞

{|c jT+sZi− jT−s| > x}

















+P

















T−1
∑

s=0

∞
∑

j=−∞

|c jT+sZi− jT−s|1I{|c jT+sZi− jT−s|≤x} > x

















.

Applying Markov’s inequality to the second term on the righthand side, we obtain for
i = 1, . . . ,T,

P

















∞
∑

j=−∞

|c jZi− j | > x

















/

P(|Zi | > x)

≤

T−1
∑

s=0

∞
∑

j=−∞

P(|Zi−s| > |c jT+s|
−1x)
/

P(|Zi | > x)

+
1
x

T−1
∑

s=0

∞
∑

j=−∞

|c jT+s|E(|Zi−s|1I{|Zi−s|≤|c jT+s|
−1x})
/

P(|Zi | > x)

= I (x) + J(x). (4.5)

For I (x), since fori = 1, . . . ,T ands ∈ I1, P(|Zi−s| > x) ∈ RV−α, we have that for all
s ∈ I1 and j ∈ R such that|c jT+s| < 1 (i.e., all but a finite number) there existsx0 such
thatx > x0 implies

P(|Zi−s| > |c jT+s|
−1x)

P(|Zi | > x)
≤ (1+ ρ)|c jT+s|

ρp−1
i−sγ

(+)
i−s,i pi ,

for eachi = 1, . . . ,T. This bound is summable because of (1.5) and hence by dominated
convergence

lim
x→∞

I (x) = pi

T−1
∑

s=0

γ
(+)
i−s,i p−1

i−s

∞
∑

j=−∞

|c jT+s|
α.
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For J(x) lets start by considering 0< α < 1. From an integration by parts

E(|Zi−s|1I{|Zi−s|≤x})

xP(|Zi−s| > x)
=

∫ x

0
P(|Zi−s| > u)du

xP(|Zi−s| > x)
− 1,

and sinceP(|Zi−s| > x) ∈ RV−α for all i = 1, . . . ,T, s ∈ I1, by applying Karamata’s
Theorem this converges asx → ∞ to α(1 − α)−1. ThusE(|Zi−s|1I{|Zi−s|≤x}) ∈ RV1−α and
hence we have, for all but a finite number ofs and j’s, that for x sufficiently large and
some constantK′ > 0,

|c jT+s|
E(|Zi−s|1I{|Zi−s|≤|c jT+s|

−1x})

xP(|Zi | > x)
≤ K′|c jT+s|(|c jT+s|

−1)1−α+α−ρ p−1
i−sγ

(+)
i−s,i pi

= K′|c jT+s|
ρ p−1

i−sγ
(+)
i−s,i pi ,

which is summable insand j. So we conclude

lim sup
x→∞

J(x) ≤ K′ pi

T−1
∑

s=0

γ
(+)
i−s,i p−1

i−s

∞
∑

j=−∞

|c jT+s|
α,

and hence with 0< α < 1 for someK′ > 0

lim sup
x→∞

P

















∞
∑

j=−∞

|c jZi− j | > x

















P(|Zi | > x)
≤ (K′ + 1)pi

T−1
∑

s=0

γ
(+)
i−s,i p−1

i−s

∞
∑

j=−∞

|c jT+s|
α. (4.6)

If α ≥ 1, we get a similar inequality by reduction to the case 0< α < 1 as follows: Pick
β ∈ (α, αδ−1) and considerc =

∑

j |c j | andp j = |c j |/c. By Jensen’s inequality we get
















∞
∑

j=−∞

|c jZi− j |

















β

= cβ
















∞
∑

j=−∞

p j |Zi− j |

















β

≤ cβ−1
∞
∑

j=−∞

|c j | |Zi− j |
β.

Then, by (4.5) we can write fori = 1, . . . ,T andβ ∈ (α, αδ−1)

P

















∞
∑

j=−∞

|c jZi− j | > x

















/

P(|Zi | > x)

≤ P

















T−1
∑

s=0

∞
∑

j=−∞

|c jT+s| |Zi− jT−s|
β > c1−β xβ

















/

P(|Zi |
β > xβ)

≤

T−1
∑

s=0

∞
∑

j=−∞

P(|Zi−s|
β > |c jT+s|

−1 c1−β xβ)
/

P(|Zi |
β > xβ)

+
1

c1−β xβ

T−1
∑

s=0

∞
∑

j=−∞

|c jT+s|E(|Zi−s|
β 1I{|Zi−s|

β≤|c jT+s|
−1 c1−β xβ})

/

P(|Zi |
β > xβ).



A. P. Martins, H. Ferreira 169

Now, as before, sinceP(|Zi−s|
β > x) ∈ RV−αβ−1 with δ < αβ−1 < 1, for all i = 1, . . . ,T,

s ∈ I1,

lim sup
x→∞

P
(

∑∞
j=−∞ |c jZi− j | > x

)

P(|Zi | > x)
≤ (1+ K′′)pi

T−1
∑

s=0

γ
(+)
i−s,i p−1

i−s

∞
∑

j=−∞

|c jT+s|
αβ−1

cα(1−β
−1) < ∞,

(4.7)
for some constantK′′ > 0, which is similar to (4.6).

We are now in conditions to prove (2.9): For any integerm = KT with K ≥ 1 we
have the obvious extension of (4.2)

P
(

∑∞
j=−∞ |c jZi− j | > x

)

P(|Zi | > x)
≥

P
(

∑m−1
j=−m |c jZi− j | > x

)

P(|Zi | > x)

−→x→ ∞ pi

m−1
∑

j=−m

γ
(+)
i− j,i p−1

i− j |c j |
α
= pi

T−1
∑

s=0

γ
(+)
i−s,i p−1

i−s

K−1
∑

j=−K

|c jT+s|
α,

and sinceK is arbitrary

lim inf
x→∞

P
(

∑∞
j=−∞ |c jZi− j | > x

)

P(|Zi | > x)
≥ pi

T−1
∑

s=0

γ
(+)
i−s,i p−1

i−s

∞
∑

j=−∞

|c jT+s|
α.

On the other hand, for anyǫ > 0, I2 = {−m, . . . ,m− 1} andI ∗2 = N0\I2

P
(

∑∞
j=−∞ |c jZi− j | > x

)

P(|Zi | > x)
≤

P
(

∑

j∈I2
|c jZi− j | > (1− ǫ)x

)

P(|Zi | > x)
+

P
(

∑

j∈I ∗2
|c jZi− j | > ǫx

)

P(|Zi | > x)

and so from (4.2) and (4.6) for someK′ > 0

lim sup
x→∞

P
(

∑∞
j=−∞ |c jZi− j | > x

)

P(|Zi | > x)
≤ (1− ǫ)−α pi

T−1
∑

s=0

γ
(+)
i−s,i p−1

i−s

K−1
∑

j=−K

|c jT+s|
α

+(K′ + 1)ǫ−α pi

T−1
∑

s=0

γ
(+)
i−s,i p−1

i−s

∑

j<{−K,...,K−1}

|c jT+s|
α,

for the case 0< α < 1, with a similar bound provided by (4.7) whenα ≥ 1. LetK → ∞
and then sendǫ → 0 to obtain fori = 1, . . . ,T

lim sup
x→∞

P
(

∑∞
j=−∞ |c jZi− j | > x

)

P(|Zi | > x)
≤ pi

T−1
∑

s=0

γ
(+)
i−s,i p−1

i−s

∞
∑

j=−∞

|c jT+s|
α,

which combined with the lim inf statement proves (2.9). ¤

Proof (Theorem 2.2). For m = KT with K ≥ 1 arbitrary, lets consider theT−periodic
sequenceX(m)

= {X(m)
n }n≥1 of finite moving averages of the form

X(m)
n =

m−1
∑

j=−m

c j Zn− j , X∗(m)
n = Xn − X(m)

n . (4.8)
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For X(m)
i , i = 1, . . . ,T,m defined in this way we have forǫ ∈ (0,1),

P(X(m)
i > (1+ ǫ)x) − P

















∑

j<{−m,...,m−1}

|c j Zi− j | ≥ ǫx

















(4.9)

≤ P(X(m)
i > (1+ ǫ)x) − P(X∗(m)

i ≤ −ǫx)

≤ P(X(m)
i > (1+ ǫ)x,X∗(m)

i > −ǫx)

≤ P(Xi > x)

≤ P(X(m)
i > (1− ǫ)x) + P(X∗(m)

i > ǫx)

≤ P(X(m)
i > (1− ǫ)x) + P

















∑

j<{−m,...,m−1}

|c j Zi− j | > ǫx

















. (4.10)

Theorem 1.1 implies that

lim
m→∞

lim
x→∞

P


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




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


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|c j Zi− j | ≥ ǫx

















/

P(|Zi | > x)

= lim
K→∞

pi

T−1
∑

s=0

γ
(+)
i−s,i p−1

i−s

∑

j<{−K,...,K−1}

|c jT+s|
α
= 0.

The latter relation, (4.9) and (4.10) show that it’s suffice to prove, for everym = KT,
K ≥ 1 that

P(X(m)
i > x) ∼ x−α Li(x)



















pi

T−1
∑

s=0

γ
(+)
i−s,i

K−1
∑

j=−K

[

c+jT+s

]α
+ qi

T−1
∑

s=0

γ
(−)
i−s,i

K−1
∑

j=−K

[

c−jT+s

]α



















.

As in the proof of Theorem 1.1, by applying (1.2), (1.3) and (1.4), we have for
δ ∈ (0,1/3) andi = 1, . . . ,T,

lim sup
x→∞

P (c1Zi−1 + c2Zi−2 + c3Zi−3 > x)
P(|Zi | > x)

≤ (1− δ)−2α pi

3
∑

j=1

γ
(+)
i− j,i

[

c+j
]α
+ (1− δ)−2α qi

3
∑

j=1

γ
(−)
i− j,i

[

c−j
]α

, (4.11)

and

lim inf
x→∞

P (c1Zi−1 + c2Zi−2 + c3Zi−3 > x)
P(|Zi | > x)

≥ (1+ δ)−2α pi

3
∑

j=1

γ
(+)
i− j,i

[

c+j
]α
+ (1− δ)−2α qi

3
∑

j=1

γ
(−)
i− j,i

[

c−j
]α

. (4.12)

Lettingδ→ 0 in (4.11) and (4.12) concludes the proof. ¤
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Proof (Theorem 2.3). (i)For ǫ > 0

|P(M(In) ≤ un) − P(M(m)(In) ≤ un)|

≤ P ((1− ǫ)un < M(In) ≤ (1+ ǫ)un) + P(|M(In) − M(m)(In)| > ǫun)

≤ n
T
∑

i=1

P ((1− ǫ)un < Xi ≤ (1+ ǫ)un) + n
T
∑

i=1

P(|Xi − X(m)
i | > ǫun).

Following (i) from (2.10) and (2.11).

(ii) Let λ ∈ (0,1), A ⊂ {1, . . . , k} andB ⊂ {k + [nλ], . . . ,n}, k ≤ n − [nλ]. Taking the
suprema over allA andB we have by the triangle inequality

lim sup
n→∞

{|P(M(A∪ B) ≤ un) − P(M(m)(A∪ B) ≤ un)|}

≤ lim
m→∞

lim sup
n→∞

{|P(M(A∪ B) ≤ un) − P(M(m)(A∪ B) ≤ un)|}

+ lim
m→∞

lim sup
n→∞

{|P(M(m)(A) ≤ un)P(M(m)(B) ≤ un) − P(M(A) ≤ un)P(M(B) ≤ un)|}

+ lim
m→∞

lim sup
n→∞

{|P(M(m)(A∪ B) ≤ un) − P(M(m)(A) ≤ un)P(M(m)(B) ≤ un)|} = o(1),

by (i) and the fact thatD(u) holdsX(m), for all m. Thus, by Lemma 3.2.1 of Leadbetter
et al. (1983),D(u) holds forX, with βn,[nλ] = 0.

(iii) Since

n|P(Xi > un ≥ Mi+1,i+k−1) − P(X(m)
i > un ≥ M(m)

i+1,i+k−1)|

≤ n|P(Mi+1,i+k−1 ≤ un) − P(M(m)
i+1,i+k−1 ≤ un)| + n|P(Mi,i+k−1 ≤ un) − P(M(m)

i,i+k−1 ≤ un)|,

(iii) follows immediately from(i). ¤

Proof (Theorem 3.1). Lets consider again theT−periodic sequenceX(m),m ≥ 1 of
finite moving averages defined in (4.8). SinceX(m) is (2m−1)-dependent it verifiesD(u)
with mixing coefficientβn,ln = 0, for ln ≥ 2m.

From (3.1) and Theorem 1.2, it follows that

nP(Xi > un) −→n→ ∞ τi , i = 1, . . . ,T.

Hence, by consideringc j = 0 for j < I2 = {−m, . . . ,m− 1}, we also have

nP(X(m)
i > un) −→n→ ∞ τi , i = 1, . . . ,T.

In this way,D(2m)
T (u) also holds forX(m) since fork = {kn}n∈N as in the definition ofD(2m)

T

with ln ≡ 2mwe have forr ′n =
[

n
knT

]
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S(2m)
r ′n
= n

1
T

T
∑

i=1

r ′n T
∑

j=i+2m

P(X(m)
i > un,X

(m)
j−1 ≤ un < X(m)

j )

≤ r ′n n
1
T

T
∑

i=1

P(X(m)
i > un)P(X(m)

i+2m > un) = o(1).

We can then use (1.8) to compute the extremal index ofX(m).
For i = 1, . . . ,T,

P(X(m)
i > un ≥ M(m)

i+1,i+2m−1 = P(M(m)
i+1,i+2m−1 ≤ un,max

j∈I2

{c jZi− j} > un)

− P(M(m)
i,i+2m−1 ≤ un,max

j∈I2

{c jZi− j} > un)

+ P(X(m)
i > un ≥ M(m)

i+1,i+2m−1, max
j∈I2

{c jZi− j} ≤ un). (4.13)

Let us first note that for anyǫ > 0,

P(X(m)
i > un ≥ M(m)

i+1,i+2m−1, max
j∈I2

{c jZi− j} ≤ un)

≤ P(X(m)
i > un, max

j∈I2

{c jZi− j} ≤ (1− ǫ)un) + P((1− ǫ)un < max
j∈I2

{c jZi− j} ≤ un),

and

P(X(m)
i > un, max

j∈I2

{c jZi− j} ≤ (1− ǫ)un)

= P

















m−1
⋃

s=−m

{X(m)
i > un, csZi−s = max

j∈I2

c jZi− j ≤ (1− ǫ)un}

















≤

m−1
∑

s=−m

P(X(m)
i > un, csZi−s ≤ (1− ǫ)un)

≤

m−1
∑

s=−m

P































m−1
∑

k = −m
k , s

min {ckZi−k, csZi−s} > ǫun































≤

m−1
∑

s=−m

P































m−1
∑

k = −m
k , s

ckZi−k > ǫun,

m−1
∑

k = −m
k , s

csZi−s > ǫun































≤

m−1
∑

s=−m

m−1
∑

k = −m
k , s

P
(

ckZi−k > ǫun(2m− 1)−1
)

P
(

csZi−s > ǫun(2m− 1)−1
)

= O(n−2).

(4.14)
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On the other hand, forρ > 0

lim
n→∞

nP

(

max
j∈I2

c jZi− j > ρun

)

= lim
n→∞

n



















∑

j∈S+

P(Zi− j > ρc
−1
j un) +

∑

j∈S−

P(Zi− j < ρc
−1
j un)










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





=
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α γ

(−)
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∑
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γ
(+)
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∞
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[
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]α
+ qi
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∑
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γ
(−)
i−s,i

∞
∑

j=∞

[

c−jT+s

]α

whereS+ = { j : c j ≥ 0, j ∈ I2} andS− = { j : c j < 0, j ∈ I2}.
Hence,

lim
ǫ→0

lim
n→∞

nP

(

(1− ǫ)un < max
j∈I2

c jZi− j ≤ un

)

= lim
ǫ→0

lim
n→∞

nP

(

max
j∈I2

c jZi− j > (1− ǫ)un

)

− lim
n→∞

nP

(

max
j∈I2

c jZi− j > un

)

= 0, (4.15)

and so from (4.14) and (4.15) it follows that fori = 1, . . . ,T,

lim
n→∞

nP

(

X(m)
i > un ≥ Mi+1,i+2m−1, max

j∈I2

c jZi− j ≤ un

)

= 0. (4.16)

By a similar analysis we deduce that

lim
n→∞

nP

(

Mi,i+2m−1 ≤ un, max
j∈I2

c jZi− j > un

)

= 0. (4.17)

Combining (4.13), (4.16) and (4.17) we obtain

lim
n→∞

nP
(

X(m)
i > un ≥ M(m)

i+1,i+2m−1

)

(4.18)

= lim
n→∞
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= lim
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i+1,i+2m−1

)

+

∑

j∈S−

P
(
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)



















.

If j ∈ S+ andc jZi− j > un for eachi = 1, . . . ,T, then the conditionMi+1,i+2m−1 ≤ un is
essentially max(0,maxi+1≤s≤i+2m−1 cs−i+ j)Zi− j = c+j (2m)Zi− j. In the same way, ifj ∈ S−
andc jZi j > un for eachi = 1, . . . ,T, then the conditionMi+1,i+2m−1 ≤ un can be replaced
by max(0,maxi+1≤s≤i+2m−1 (−cs−i+ j)(−Zi− j)) = −c−j (2m)Zi− j . Using these arguments it is
straightforward that (4.18) equals
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= lim
n→∞

n
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α

where in the definition ofc±j (2m) we use the conventionc j = 0 for j < I2 = {−m,
. . . ,m− 1}, with in particular,c±m−1(2m) = 0.

From this, it follows immediately the subsequent expression for the extremal index
of X(m)
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∑

i=1

τi

(4.19)
Now considering

Ai = pi
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γ
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α, i = 1, . . . ,T,

by (3.1) we can establish the following relation
τi

Ai
=
τ j

A j
γi, j , i, j = 1, . . . ,T.

Using this relation in (4.19) we obtain the next simplified expression for the extremal
index ofX(m)
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













T
∑

i=1



















γi,1 pi

T−1
∑

s=0

γ
(+)
i−s,i

∞
∑

j=−∞

[c(+)
jT+s]

α
+ γi,1 qi

T−1
∑

s=0

γ
(−)
i−s,i

∞
∑

j=−∞

[c−jT+s]
α



















wherec(K)
s (α)+ =

K−1
∑

j=−K

([c+jT+s]
α − [c+jT+s(2m)]α)+ and c(K)

s (α)− =
K−1
∑

j=−K

([c−jT+s]
α −

[c−jT+s(2m)]α)+, s= 0, . . . ,T − 1.
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It follows by an easy check thatθX(m) → θX asm= KT → ∞, hence by Theorem 1.3
and the remark immediately following it we obtain the resultupon showing (2.10) and
(2.11) which is straightforward. ¤
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