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Extremes of periodic moving averages of random
variables with regularly varying tail probabilities

A. P. Martins, H. Ferreira

Universidade da Beira Interior

Abstract

We define a family of local mixing conditions that enable the computation of the extremal index of
periodic sequences from the joint distributions of k consecutive variables of the sequence. By applying
results, under local and global mixing conditions, to the (2m — 1)-dependent periodic sequence
X,(jm) = Zlf":'_i,, ¢jZ,-j, n > 1, we compute the extremal index of the periodic moving average sequence
Xn= 2 CjZn—jy N > 1, of random variables with regularly varying tail probabilities.

This paper generalizes the theory for extremes of stationary moving averages with regularly varying
tail probabilities.
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1 Introduction

The moving average process of the form

Xo= D ¢ Zoy, N1, (1.1)

J:—OO

with iid real-valued innovations or noise variableg)(cz, includes the popular
ARMA(p, q) and AR(p) processes considered in classical time series analysidieS
of the extreme value behaviour of such processes have ba@doaut, among others,
by Cline (1983), Davis and Resnick (1985, 1988) and Chereiek. (1991).
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162 Extremes of periodic moving averages of random variables with regularly...

In this paper we are concerned with moving average procegshe form (1.1) but
with Z = {Z;} ez a T —periodic sequence of independent real-valued variable$, that
Fi(x) = P(Z] > x),i = 1,...,T, are regularly varying with exponent, i.e.,

Fi(¥) = x°Li(x), x>0, i=1...,T, (1.2)

for somea > 0 andL; : R, — R, slowly varying functions. We also assume the tail
balance conditions

— i — i, i=1...,T, 1.3
X—00 Fi(X) ! X—00 Fi(X) ql ( )

for somep; andgq; € [0,1] suchthaty +q = 1,i =1,..., T, and tail equivalence in the
following way

. P(Zi>X) ) ) .
lep(zj - =%y > x—00 P(Z; < —X) =%; >0 Lj=1....T. (14

The sequence of real constaats {c;}jcz will be taken to satisfy

D Igl° < oo, (1.5)

j=—o0

for somes < min{a, 1}, in order to guarantee the a.s. convergence of (1.1). Nttate
conditions (1.3) and (1.4) imply the existenceyf = limy_,« 5&'2'@3 Lj=1...,T.

Extreme value theory known for periodic sequences can tleapplied to this
moving average sequen&e= {Xy}n=1, Since it is also & —periodic sequence. Alpuim
(1988) showed that under Leadbetter’s global mixing caodiD, the only possible
limit laws for the normalized maxima of &—periodic sequence are the three extreme
value distributions. Under local mixing conditio@éﬁ, k=12, Ferreira (1994) studied
the extremal behaviour of periodic sequences, and underdaker local mixing
conditionsD¥, k > 3, Ferreira and Martins (2003) obtained the expressionter t
extremal index of & —periodic sequence from the joint distribution lotonsecutive
variables of the sequence.

We say that for a fixed integér > 1 and a sequence of real constamts {Un}ns1
the conditionD¥(u,) holds for a T—periodic sequenceé satisfying Leadbetter's
conditionD(u,) (see Leadbettezt al. (1983)) with mixing coéficientsp,;, when there

exists a sequence of integets= {kn}n>1 such that lim_. ky = oo,r!im knﬁ” = 0,
lIMpe KnBny, = 0, and
1T e |7
lim n?izl: _Zk P(Xi > Un > M, 14k 1. Xj > Un) = O, (1.6)
=1 j=i+

whereM; ; = maxX, Xi;1, ..., X;} andM; j = —co fori > j.
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Under this local dependence condition the extremal index, of

o = —log(limp_c P(MaX<j<n Xi < Up))
X — )
T

where -
. 1
T= Amn? i_El P(X > up), 2.7)

can be computed from

1T
anP(Xi > Up > Misisk-1)
. i=1

Ox = lim

n—oo T

(1.8)

A sequence satisfying (1.7) is usually denoted o) = (ul”} for X, and its elements
are called normalized levels fox.
Observe that, whek > 2, condition (1.6) is implied by

(e ]T

;
1

ims® = limn= P(Xi > Un, Xj_1 < Un < X;) = 0,

N—oo [%] N—oo T; Jgk i n ) n J

which limits the distance between exceedances of layethat is, in each interval
there can only be more than one exceedanas, dfseparated by less thdn— 1 non-
exceedances af,. Consequently, the local dependence condiﬁﬁﬂ, k > 1, become
weaker as the value éfincreases.

Our aim in this paper is to use the previous results, thatrgdine the ones obtained
by Chernicket al. (1991) for stationary sequences, to obtain the expressiothe
extremal index of th@ —periodic moving average sequence of random variables with
regularly varying tail probabilitieX defined by (1.1) and satisfying certain balance and
tail equivalence conditions. To attain this we start by eltarizing in Section 2 the
behaviour of each talP(X;) > x,i = 1,...,T asx — oo, and by obtaining sticient
conditions that allow the application of our results to aténmoving average sequence
X that “approximatesX asm — co. In Section 3 we present our main result which
gives the expression of the extremal index of Theperiodic moving average sequence
X.

The proofs of all theorems presented are given in the Appendi

2 First results
The first result we present is a simple modification of a thexdieund in Resnick (1987)

for the stationary case, but crucial for the characteazratif the behaviour of each tail
P(X > x),i=1,...,T, asx — oo, which we present ahead.
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Theorem 2.1 Let Z = {Z,}nez be a T-periodic sequence of independent random
variables satisfying (1.2), (1.3) and (1.4) and= {c;};cz a sequence of real constants
satisfying (1.5). Thenfor+ 1,..., T when x— o

P[Z i Zij| > x] -

lim —— =) e D el (2.9)
s=0 j

X—00 P(Z| > x)

J:—OO

The behaviour of each tafl(X; > x),i = 1,...,T, asx — « is vital for the extremal
behaviour of the periodic moving average proc¥ss\s Embrechtst al. (1997), we
prove how every r.\Z;, j € Z, has a contribution to each t&(X; > x),i=1,...,T.

Theorem 2.2 Let Z = {Z.}nez be a T—periodic sequence of independent variables
satisfying (1.2), (1.3) and (1.4) arw= {cj};ez a sequence of real constants satisfying
(2.5). Thenfori=1,...,T

(o]

T-1 T-1 o0
P(X > X) ~ X *Li(X) {pizyi(j)si Z [CJ*HS]Q + inyi‘:)Si Z [Cj‘ns]a},
s=0 j s=0 j

]:—oo J:—OO
whereq = maxc;, 0} and G = max—c;, 0}.

As we can see, the contribution of the random varialles {Z,}nez to each tail
depends on the size and sign of the respective weighdsociated to them.

The computation of the extremal index using expression) (gd@uires the validation
of a long range and a local mixing condition, which is oftenifficllt task when
considering some sequences, namely moving average s&guerc overcome this
difficulty it's useful to consider in these cases an “approxingitisequenceX™ =
(XM ., for a fixed integem, then apply a Slutsky argument and tet— co. We can
then use the extremal index of this sequeX€® to estimate that oX.

Sufficient conditions, to take into consideration such a secei¥f@, in the periodic
case, can be found in the next result, analogous to the oné falChernicket al.(1991)
for the stationary case.

Theorem 2.3 SupposeX and X™, m > 1 are T—periodic sequences defined on the
same probability space such that for some sequences ofarsst = {Un}n>1 and
i=1,...,T,

Iim0 limsupnP((1-€)u, < X < (1 + €)u,) =0, (2.10)
€= n—oco
lim lim supnP(|Xi - XM} > eun) =0, €>0. (2.11)
m—oo N—o0

Then
() lim limsup IP(M(In) < un) = P(M™(I) < up)| = 0, where the supremum is
o n—oo

taken over all index setg k£ {1,...,n}.
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(ii) If condition D(u) holds forX™ for each m, then it holds fox as well.
(i) lim lim PG > Un > Miszioes) = POC™ > un =2 MY, )= 0. k=2,

with M(1) = maxX; and MM (1) = m?xxj(m), forl c {1,...,n}.
je je

Remark 1 If (2.10) and (2.11) hold withi™ andX™, m > 1 has extremal indefm,
then by Theorem 1.3(i) with, = {1,...,n}, X has extremal indeXy if and only if
Oym — Ox asm — co.

3 Main result

We are now in conditions to state our main theorem which cdegpthe extremal
index 6x of a periodic sequencX of moving averages of random variables with
regularly varying tail probabilities. For this, we need tmsider a sequence of constants
U = {Un}ney Satisfying
T-1 00 o T-1 [e] P
lim nP(Zz| > un):ri/ RS N S (= Y+ Y VI S (e~ L S (< e
s=0 s=0

j=—c0 j==o0

for givent; > 0,i = 1,...,T. Such a sequence exists by the assumption of regular
variation of each;, i = 1,..., T, and implies, by Theorem 2.2, thalP(X; > u,) — i,
X— oo, i=1...,T,thereforeu = u® for X with r = £ 3.7 | ;.

Theorem 3.1 LetX = {X}n=1 be a T-periodic moving average sequence as defined in
(1.1). ThenX has extremal index

T T-1 T-1
3 {pi S @ e ys:;ic;@}
Oy = i=1 s=0 s=0

T T-1 oo T-1 oo ’
zyi,l{pizy&;i S a0 ) [c,-T+s]“}
i=1 s=0 j s=0 j

j=—o0 J=—

where

(o]

i) = ) ([erod - mex 7).

j:—oo

cs@)= . ([efre] = max )

j:—oo

and

This result shows how the balance and tail equivalence peteaminfluence the value
of the mean number of clustered exceedances in these pescess
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4 Appendix

Proof (Theorem 2.1). We begin by showing a weaker result, namely for each
1,....T,

m P(Ic1Zi—1| + ICoZi—o| + |C3Zi—z| > X)
X—00 P(1Z] > X)

= 7|(f)1| pi__l]_ pi|Cl|a + Yfz| pi__lz pi|C2|a + )’,(:r;)g. pi__lg pi|C3|a- (4-2)

We restrict ourselves to three summands with non-zgr@, c; to show the method, the
general case can be proved analogously by inductions Eq0, 1/3) andi = 1,..., T,
{IcaZi-al + [C2Zi—2| + |C3Zi-3| > X}
C {lcaZizal > (1= 6)X} U {IcoZiza| > (1 - 6)X} U {ICaZi—a| > (1 - 6)*x}
U {lc1iZi-al > 6(1 = 0)X, [C2Zi—a| > 6(1 - 0)x}
U {lciZi—al > 6(1 = 0)X, [caZi—g| > 6(1 — 0)x}
U {Ic2Zi—a| > 6(1 = 0)X, |CaZi—3| > 6(1 - 0)x}

U {[c1Zi-1] > 62X, [C2Zi—o| > 62X, |C3Zi—3| > 6°X}.
Hence, by conditions (1.2), (1.3) and (1.4)

P(Ic1Zi-1| + IC2Zi—o| + |C3Zi—3| > X)

limsu <191 = §)y 22 pt )
e P(ZI > %) <=y b
+e2l"(1 - 8) 2y b+ lesl* (L - ) 2 ph v b (4.3)
Moreover,

{Ic1Zi_a| + |C2Zi o] + [C3Zi_3| > X}
S {lcrZical > (1 +6)%X, [C2Zi—a + [CaZi—g| < 6%}
U {[C1Zi_1] < 6%, [CoZi_o] > (1 + 6)?X, [C3Zi_3] < 6(1 + &)X}
U {lc1Zial < 6%, [C2Zi—al < 6(1+ 6)%,[C3Zi-3| > (1 + 6)°x).

Hence

liminf P(Ic1Zi-1] + C2Zi—o| + |C3Zi—3| > X)
X—>00 P(1Z| > X)

Hea" (1 +6) 2 p Ly b+ el (@ + ) 2 phy () p (4.4)

> [ca"(1+6) > piy Vi(ji,i bi

Lettingd — 0in (4.3) and (4.4) we obtain (4.2). Notice that in the cése 2 we have

¥ =¥ Pict = pioa, fori = 1,2 andpy = ps.
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We must leap now from (4.2) to (2.9). Frr> 0 andl, = {0, ..., T — 1}, write

P['i |CjZi—J|>X]: P(Tz_l _m

j=—00 i

ICiT+sZi—jT—sl > X}
s=0 j=—o0

T-1 o
= P[ Z [CiT+sZi-jT-¢l > X, maxmax|Cjr +sZi—jT—s| > X]
. sel;  jeR
T-1 oo
+P| >0 > IeimesZijr-ol > X, maxmax|cirsZijr-o < X
sel;  jeR
{ICiT+sZi-jT-sl > X}]

T-1 o
+P[ Z |CJT+SZi—JT—SIJI{lensZi-jT-s\SX} > X{.

s=0 j=—o0

Applying Markov’s inequality to the second term on the ritplaind side, we obtain for
i=1,...,T,

P[Z IciZi_jl > X]/P(|Zi| > X)

j=—00
T-1 o

<D, 2, PlZid > lerad ™)[P(Z1 > %)

s=0 j=—c0

- [e+]

1
+2 0 D e E(Zidiz geier.0)[PUZI > %)

s=0 j=-o0
= 1(X) + I(x). (4.5)
For1(x), since fori = 1,...,T ands € |1, P(|Z_¢ > X) € RV, we have that for all

se | andj € R such thafcjr.¢ < 1 (i.e., all but a finite number) there existgsuch
thatx > Xo implies

P(Z_¢l > |CjT+s|_1X)
P(1Z| > X)

< (L +p)lcjTad’ pi__lsyi(i,i Pi;

foreachi = 1,...,T. This bound is summable because of (1.5) and hence by dadinat
convergence

T-1 00
lim 109 = py 7 B D Iemed”.
s=0 j

j=—00
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For J(X) lets start by considering @ « < 1. From an integration by parts

X
P(Zi_s| > u)du
E(Zi-slYyz_y<x) _ fo (4-d>4

PZd>n | XPZdA
and sinceP(|Z_s > X) € RV, foralli = 1,...,T, s € |1, by applying Karamata’s
Theorem this converges as— oo to a(1 — @)~t. Thus E(1Z-41yz_4<x) € RVi_, and
hence we have, for all but a finite numberssénd j’s, that for x sufficiently large and
some constari’ > 0,

E(Z-slXiz,_g<icir.o-x)
it L 4y . -1\1-a+a- -1 (+) '
XP(Z| > X) <K |C]T+S|(|CJT+S| ) PiZsYi_si Pi

|CjT+s

K’ICjT +sl” pi__lsyi(j)s,i Pi,
which is summable isandj. So we conclude
T-1 00
limsupJ(x) < K’ piZ Vi(ii pi‘_ls Z ICiT+sl”,
s=0 j

X—00 j=—co

and hence with & a < 1 for someK’ > 0

P[Z IciZi_j| > x]
lim sup ———

X—00 P(lzll > X)

T-1 o
< (K + l)piZ yi(féi P Z ICjT+sl”. (4.6)
s=0 j

j=—00

If @ > 1, we get a similar inequality by reduction to the case ® < 1 as follows: Pick
B € (a,a671) and considec = 2jlcjlandp; = [cj|/c. By Jensen’s inequality we get

o0 B o0 B .
(Z |Cjzi—j|] =CB(Z pj|zi—j|) SCﬂ_lZ Icil 1Zi—j1”.

J=—00 J=—00 ]J=—0c0

Then, by (4.5) we can write far=1,..., T andg € (o, ad™?)

P[_Z ciZi-jl > X]/P(lzil > %)

J:—OO

T-1 o
< P[Z D lomad Zijr—d? > ¢ xﬂJ [Pzl > xF)

s=0 j=—o0

T-1 o

<> DT PZd > (ot E X [P(ZIF > XF)

=0 j=—o0

1 T-1 o
+wz Z lciT+slE(1Zi-ol” ]l{|Zi_S|Bs\ch+sl-lcl-l3xﬁ})/P(|Zi|'B> x).

s=0 j=—o0
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Now, as before, sincB(|Z_¢# > X) € RV_ 51 With 6 < o<1, forali=1,...,T,
sely,

: P(Z(JX;_‘X’ ICJZ|_1| > X) 7 1-1
RSN TGRSR )p'Z% LB lod ) <o

i (4.7)

]_—oo

for some constari”” > 0, which is similar to (4.6).
We are now in conditions to prove (2.9): For any integee KT with K > 1 we
have the obvious extension of (4.2)

P(Z5 w0 IciZijl > %) g P(ZM2, I6iZisjl > X)
P(Zi| > X) - P(1Zi| > X)

m-1 T-1
S b Z 7.(+i| P lol* = piz yfi’, Vi SZ ICiT+sl,
j=—m s=0

and sinceK is arbitrary

P(ZR -« I6iZijl > %) Z‘ Z
.. =—00 _ (+)
I'Qllgf P(Z| > x) =P 0 Yins) P e

J_—OO

On the other hand, for any> 0, |, = {-m,...,m— 1} andl; = No\I>
P(Z5 w I6iZijl > %) < P(Sja, I6iZijl > A= €)X)  P(Zja; I6iZijl > €X)

< +
P(Zl| > %) P(Z] > x) P(Z] > x)
and so from (4.2) and (4.6) for sorké > 0
P(Z}w 67l > X) IS
. A\ (+)
“T_)Sfp P(1Zi| > x) <(l-9 p'; Vi-si Pi- SZ Cir+sl”

T-1
K+ Depy s D lemed,
s=0

je-K...K-1)
for the case G a < 1, with a similar bound provided by (4.7) wher> 1. LetK — oo
and then send — O to obtainfori=1,...,T
P(ZTL_ |CjZi_j| > X) —
i — N,
BN AT p'; Mg B- SZ el

j=—c0

which combined with the lim inf statement proves (2.9). O

Proof (Theorem 2.2). Form = KT with K > 1 arbitrary, lets consider thiE—periodic
sequenc& ™ = (XM} ., of finite moving averages of the form
m-1
XMW= 6 Zg, X=X, - XM, (4.8)
j=—m
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ForX™ i =1,..., T, mdefined in this way we have fere (0, 1),

PX™ > L+ -P| > 16Zjl = ex (4.9)
je{-m,...m-1}
PX™ > (1+€)) = POX™ < —ex)

IA

< POX™ > (14 x, XM > —ex)
< P(X > X)
< POX™ > (1- €)x) + PX™ > ex)

IA

PX™ > (1-e)x) + P[ Z Icj Zi_jl > ex]. (4.10)
jet-m,..m-1j
Theorem 1.1 implies that

lim lim P[ >k Zi_jlzex]/P(|Zi|>x)
j#l

m—oo X—oo
-m...m-1}

Ilm pIZ 7|(+)S,I p| s Z |CjT+S|a =0.

The latter relation, (4.9) and (4.10) show that it'stsae to prove, for everyn = KT,
K > 1 that

T-1
POX™ > x) ~ X7 Li(x) {piz Vi(f)s. Z [CjT+S] + qlz Yiosi Z [CJT+S] }
s=0 j

As in the proof of Theorem 1.1, by applying (1.2), (1.3) and411we have for
6€(0,1/3)andi=1,...,T,

lim sup P(Cc1Zi-1 + C2Zi» + C3Zi_3 > X)
X300 P(Z| > X)

3 3
<@-oy2py ¥ e +@a-oa) v o] @1y
=1 j=1

and

iming P(C1Zi_1 + C2Zi_5 + C3Z_3 > X)
X—00 P(|Zi| > X)

3
> (L+6) 2 p.z YO e +@-oy in; Wilg| @12
J:

Lettings — 0in (4.11) and (4.12) concludes the proof. O
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Proof (Theorem 2.3). (ifore >0
IP(M(1n) < Up) = P(M™M(15) < )
P((1- €)un < M(lp) < (1+ €)un) + PM(In) = M™(1,)] > euy)

IA

IA

T T

nz P((1-eun< X < (1+€)un)+ nz PIX — XM > euy).
i=1 i=1

Following (i) from (2.10) and (2.11).

(i) Leta e (0,1),Ac{l,...,klandB c {k+[na],...,n}, k < n-[n4]. Taking the
suprema over alh andB we have by the triangle inequality
limsup{|P(M(AU B) < u,) — P(MM(AU B) < up)|}

n—oo

< lim limsup {[P(M(AU B) < un) - P(MM(A U B) < uy)l}

n—oo

+1im_lim sup {IP(M™(A) < up)P(M™(B) < tn) = P(M(A) < u))P(M(B) < un)I}

n—oo

+lim lim sup{|P(M™M(AU B) < up) - PIM™M(A) < u,)P(M™(B) < up)l} = o(1),

N—oo

by (i) and the fact thab(u) holdsX™, for all m. Thus, by Lemma 3.2.1 of Leadbetter
et al.(1983),D(u) holds forX, with 8,y = O.

(i) Since
NPOS > Un 2 Miszisi-r) = POS™ > un = MY )

< NP(Miike1 < Un) = PMI, < un)l + nP(Mijact < Un) = POMEY, ) < ug)l,
(i) follows immediately fromn(i). O
Proof (Theorem 3.1). Lets consider again th&—periodic sequencX™, m > 1 of
finite moving averages defined in (4.8). Sin¢® is (2m- 1)-dependent it verifieB(u)
with mixing codficientg,, = 0, forl, > 2m.

From (3.1) and Theorem 1.2, it follows that

nP(Xi>un) S Tis i=1,...,T.
Hence, by considering; = 0 for j ¢ I, = {-m,...,m- 1}, we also have
nPOX™ > u)) =2 7, i=1...,T.

In this way, D(sz)(u) also holds foiX™ since fork = {kn}nar as in the definition oD(sz)
with I, = 2mwe have for/, = [%]
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S@™ = n= Z Z POX™ > un, X} < Uy < X(™)
i=1 j=i+2m

i+2m

<r,n= Z POX™ > un)P(XM > uy) = o(1).

We can then use (1.8) to compute the extremal index(®

Fori=1,...,T,
PX™ > u, > MM = PMT) o < U, max{c,Z| > Up)
— PM, 1 < U, max(cZ-} > Un)
+ POX™ > up > M max(Zij} < un).  (4.13)

Let us first note that for any > 0,

POX™ > up = M™

= Vitti+om-1° melazx{cjzi—j} < Up)
< POG™ > Uy, MAX(CiZi-j} < (1= ) + P2~ n < MAX(CiZ- ) < ),
J€l2 el

and
POC™ > Uy, max{ciZ) < (1 - euy)
Jel2

m-1

=P U (XM > Uy, cZis = maxciZi_j < (1 - €)un)
s=—m Jel2
m-1
< Z POX™ > Uy, €sZiis < (1 - €)un)
s=-m
m-1 UaS
< Z P Z min {CZi_k, CsZi_s} > €l
s=—m k=-m
k#s
me1 m-1 m-1
< Z P Z CkZ|_k > EUn, Z Cszi_s > EUn
Ss=—-m k=-m k=-m
k#s k#s
m-1 m-1
< Z > P(0kZik > etn(2m— 1)) P(csZis > etn(2m—1)!) = O(n?).
k_ -m
k#s

(4.14)
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On the other hand, fgr > 0

lim nP(maxc,Z. i >pun)

n—oo

lim n{z P(Zi-j > p&j'un) + )" P(Zi-j < pc;tun)

jeS, jes_

Tj pip_(lz Ca)’,“}, + T qlp Z ( Cj)a‘)ﬂ K

jeSs ]eS_

pi Z 7.(+)3| Z ]T+s] + q'Z Yi- suZ IT+S]a

J_—oo

whereS, ={j:c;>0,jeljandS_={j:c;<0,jel}.
Hence,

e—0 N—oo

I|m lim nP((l —€)Up < machZ. j < un)

=lim lim nP(machZ, i >(1- e)un) - I|m nP(machZ, j> un) =0, (4.15)

e—0 N—oo je jelz

and so from (4.14) and (4.15) it follows that fioe 1, ..., T,
lim nP(X(m) > Un = Mictjiom 1, MaxqZ,. < un) =0. (4.16)
By a similar analysis we deduce that
n—oo

lim nP(MI iv2m-1 < Un, machZ, j> un) =0. (4.17)

Combining (4.13), (4.16) and (4.17) we obtain

WS (m)
lim nP(X™ > uy > M7, 1) (4.18)
= lim nP(MS?HZm 1 < Un, MaxeiZ; > un)
— i 7. (m) (m)
- r!m n{z P(Clzl—l > Un 2 |V||+1|+2m—1) + Z P(CJZ' j > Un Z M|+1|+2m—l)}
jeSs jes_

If j € Sy andcZ_; > uy foreachi = 1,..., T, then the conditioM,1j.om-1 < Uy IS
essentially max(max 1<s<i+om-1 Cs-i+j)Zi-j = cj+(2m)Zi_J-. In the same way, if € S_
andc;Zj > u, foreachi = 1,..., T, then the conditioMM;,1j,om-1 < Un Can be replaced
by max(Q max.1<scirom-1 (—Cs-i+j)(=Zi-j)) = —cj‘(2m)Zi_,-. Using these arguments it is
straightforward that (4.18) equals
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— lim n{z P(CiZi-j > Un > C[(2M)Zi_) + Z P(CiZi_j > Un > (—cj—(zm))zi_,-)}

n—oco y 4
jeSs jeS_

{p. Z POe1” - 6] 2m)]). + g Z Yol - Ie; (2m)]“)+}

pIZ Yi-si Z [CJT+S]Q + QIZ Yi- S»'Z [CJT+S]Q

]_—oo
where in the definition of:ji(Zm) we use the conventlonj =0forj¢l, = {-m,
.,m—1}, with in particularc;_,(2m) =0
From this, it follows immediately the subsequent expras$io the extremal index
of XM

J_

{p.z YOe1” - Icf (2m)]“)++q.Z YO - [c,-—(2m)]f’)+}

.
Z T-1
=t piZ ’Yi(+)$| Z [Cired” + q'Z Yissi Z [Cjrsl”

(m _ s=0 j=—c0 j=—c0
0 T
e
i=1

(4.19)
Now considering

T-1
A = IOiZ ¥, Z [Cirad” + q|Z Vi Z [Cr % i=1....T,
s=0

j==o0 j==e0
by (3.1) we can establish the following relation

T T

A A

Using this relation in (4.19) we obtain the next simplifiegheession for the extremal

index of X(™
T —_
Z {)’i,l puz Yi-si C(K)(OIYr i 1%2 Yiosi C(K)(Ol) }

)/|J, i,j:].,...,T.

oM _ i=1
X =7
Z {’}ﬁ 1 p'z Yi- S,I Cﬁ;)+s]a 7 1q'Z yl si Z [CjT+S] }
i=1 j=—o0 j=—c0
K-1 K-1
wherec?(@)" = > (cfr,d” - [cfrosm]): and (@)™ = > (o d” -
—K j=—K

[Cir,s(2M)]);, S 5 T-1.
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It follows by an easy check thaym — 0x asm = KT — oo, hence by Theorem 1.3
and the remark immediately following it we obtain the resydon showing (2.10) and
(2.11) which is straightforward. O
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