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Asymptotically optimal filtering in linear systems
with fractional Brownian noises*
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Abstract

In this paper, the filtering problem is revisited in the basic Gaussian homogeneous linear system driven
by fractional Brownian motions. We exhibit a simple approximate filter which is asymptotically optimal
in the sense that, when the observation time tends to infinity, the variance of the corresponding filtering
error converges to the same limit as for the exact optimal filter.
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1 Introduction

Several contributions have been already reported arourdriy problems concerning
models where the driving processes are fractional Browmations (fBm’s for short) :
see Kleptsynat al. (2000) for a rather general approach and further referefdes
specific case of a homogeneous linear system has been gatestin Kleptsyna and
Le Breton (2002) where explicit closed form equations amévdd both for the optimal
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filter and the variance of the filtering error. Moreover, #iarit is shown that this filter
is asymptotically stable in the sense that the varianceeofiliering error converges to
a finite limit as the observation time tends to infinity. Hete aim is to exhibit a simple
approximate filter which has the same asymptotic behavigtin@ optimal one. Let us
fix this more precisely.

As in Kleptsyna and Le Breton (2002), we deal with real-vdlypeocesseX =
X, t = 0)andY = (Y, t > 0), representing the signal and the observation
respectively, governed by the following homogeneous linggstem of stochastic
differential equations interpreted as integral equations :

dX X% dt+dVH, t>0, X =0, 1)
dY, = wuXdt+dW!, t>0, Yo=0. '

HereVH = (v, t > 0) andWH = (W, t > 0) are independent normalized fBm’s
with the same Hurst parametelr in [%, 1) and the cogéicientsd andu # 0O are fixed
real constants. The system (1.1) has a uniquely definedi@olptocess X, Y) which

is Gaussian. Supposing that oyis observed but one wishes to kndthe classical
problem of filtering the signaX at timet from the observation of up to timet occurs.
The solution to this problem is the conditional distributiof X; given{Ys, 0 < s < t},
which of course is Gaussian. Then, it is completely detegahipy the conditional mean
m(X) = E(%/{Ys, 0 < s < t}), which we shall call theexact optimal filter and the
variancey,,(t) = E(X% — m(X))? of the filtering error. In Kleptsyna and Le Breton
(2002), a system of Volterra type integral equations fos¢éheharacteristics is provided
and the following stability property of the filter is also sto:

tﬁrpoo yxx(t) =Yu>

where the constant, is given by

r'CH +1 VO + 2+ 0 .
= (2 +2L 1+ H 7 U singH]. (1.2)
2(0% + p°) 02 +u2 -0

In the classical casd = % where the noises are standard Brownian motions, the system
of filtering equations reduces to the well-known Kalman-8agstem (seeg.g, Davis
(1977) and Liptser and Shiryaev (1978)) and the asymptatiaruce of the filtering
errorisy, = u~?[ /6% + ¢2+6]. In that case, substituting the constgntfor the function

Yx (1) IN the Kalman-Bucy system, one gets the simpler fiIteringaeimn
drf (X) = — /6% + p2r; (X)dt + py, dYr; 75(X) =0, 1.3)
2
which generates the filter

t
7 (X) =y, fo g VP t-9 gy, (1.4)
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It turns out thatr; (X) is anasymptotically optimal filtem the sense that the variance
E(X; — 77 (X))? of the corresponding filtering error convergesg/toast goes to infinity.
Observe that actually, in this case, the asym|tototic optiynid filztering is achieved in
the class of filters which can be representetjoa&(t — 9)dYs. In the present paper, we
show that this still holds foH > Z and we identify in this class a filter for which the
variance of the filtering error convergesyo.

The paper is organized as follows. At first in Section 2, we fime notations
and preliminaries; in particular we associate to the pmoblmder study an equivalent
deterministic control problem. Then, our main result igesieand proved in Section 3
by exploiting the solution of this auxiliary problem whicklbngs to a family of infinite
time horizon deterministic control problems which are stigated in Section 4.

2 Preliminaries

Fractional Brownian motion Here, for someH ¢ [3,1), B* = (Bf',\t > 0) is a
normalized fractional Brownian motion with Hurst paranete This means thaB"
is a Gaussian process with continuous paths sucthHai 0,EBI =0and

1
§§H+€H—m—wﬂ,atzo (2.1)

Of course the fBm reduces to the standard Brownian motiomwhe: 3. ForH = 1,
the fBm is outside the world of semimartingales but a thedrgtochastic integration
with respect to fBm has been developed (geg, Decreusefond andstiinel (1999) or
Duncanet al. (2000)). Actually the case of deterministic integrandsiclihs suficient
for the purpose of the present paper, is easy to handledggé\orroset al. (1999)). In
particular, for a stochastic integral

a:ﬁ}a—amy (2.2)

EBBI =

we can evaluate
t
. 1
f g’(s)ds if H= >

ESf =1 VO - 1

H(2H —l)f f a(9)g(r)Is—rl*"2dsdr if He (5’1)'
o Jo
In the second case, exploiting the representation

1 +00
|s— -2 = - f (r— 9" 3(r - idr,
B(H - 1,2 - 2H) Jour

whereB(.,.) denotes the Beta function, it is easy to check that we caritesw

H(2H - 1) +00 fS/\t i

ES? =
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Therefore, we have also for &ll € [%, 1)

_ ) 2HF(
lim ES; = f T()ds, (2.3)
oo I'(H+ )F(2 2H)
where
— d s H-1
99 = g | 90, (2.9
0
andI is the Gamma function. Actually, the connection (2.4) cainierted by
9= st gs |, G0-Dtr @5)
= BhH e +1,3_Hyds d '

2

Filtering errors. As announced in Section 1, in the system (1.1), we shalleunate
on filters which take the form

' (X) = j; t B(t — 9)dYs.
From the first equation in (1.1), we have
X =" f e =dV{,

and, taking into account the second one, we get

7l (X) = u fo t B(t — )&’ fo Se-"“dvg'}ds+ fo t Bt — 9dWE' .
Hence, it comes that

7(X) = fo | | o(t - 9 dgE AV + fo ot — AW

u

or

t t—u t
7l (X) = u fo { i p(w)e™dwe/tVdVH + fo ot — s)dWE'

Finally, the filtering error corresponding to the filteff(X) can be written as

t
- (X) = f 91—
0 0

or equivalently

t—-s

t
p(w)e™dwidVE - f ot — s)dWE',
0

t t
2000 = [ 20— 9dvr - - .
(00 = [ 2= 90V - [ at- 9wt (2.6)
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where the functioz? is defined fromp, Z¢ = Z say, by

Z(r) =1 - ,uf p(w)e™dwj .
0
Notice thatZ is governed by the élierential equation

Z2(t) = 0Z(1) — ue(r); Z(0) = 1. (2.7)

Asymptotic variance of filtering errordNow, starting from (2.6), according to the
identities (2.2)-(2.4) with Z, V") and @, W") in place of ¢,B") and due to the
independence oft andW", we get that the asymptotic variance of the filtering error
corresponding to the filter(X), i.e.,

im E(% - x{(X)? = 3(0). 2.8)
is given by ,
3@ = G- H) @29 + (I, 2.9)

I'(H + Hr(2 - 2H) Jo
where, forZ linked to¢ by (2.7),

Z(s):dﬂsfo Z(r)(s-nH-zdr; ?p‘(s):dﬂsfo #(r)(s— )" zdr. (2.10)

Actually, it is readily seen from (2.7) and (2.10) that thedsnics which link<Z to ¢ is
nothing but

Z(t)=efotZ(s)ds—ﬂfota(s)dsHH-%. (2.11)

Notice that of course iH = % and hence = ¢ andZ = Z, equation (2.11) is nothing
but equation (2.7) written in integral form andHf > % then (2.11) can be rewritten as

Z(t) = 62(9) — ud(9)ds+ (H — %)tH-% . Z(0)=0.

Due to the limiting property (2.8), our guess is that in orttedefine an asymptotically
optimal filter 7y (X), one may takg{‘(X) = nt“’ (X) where the functio* corresponds
through (2.5) to an optimal contrgf in the control problem :

minJ(¢) subject to (211), (2.12)
s

with the performance criteriod(¢) = J(¢) defined by (2.9).

The concerned infinite time horizon deterministic contmaipgem (2.12) belongs to
the class of control problems which are solved in SectionhgifTsolutions make us
able to formulate and prove our main result.
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3 Asymptotically optimal filtering

At first, let us discuss the case wheh= % Here, in the control problem studied in
Section 4, we musttake=1,K = 0,a=6,b = —u andqg = r = 1. Hence, applying
Theorem 4.1 (see also the particular case 4.1), it comet#haptimal control in (2.12)
is

¢*(t) = py, & VI,
2

where
VZ 12 +0
2 ’
is the value of the optimal cost. This means nothing but t&glaimed in Section 1, an
asymptotically optimal filter is; (X) = 2 (X) given by (1.4).
Now, we turn to the caskl € (%, 1) where we can prove the following statement
which provides also an asymptotically optimal filter :

Vi =
2

Theorem 3.1 Define the function Vby

H _ 1 +00 TH—%
V(L) = 2 f e VPt ___“qr t>0. (3.1)
BH+1,2-H)Jo T+1

Let the pair of function$s*, Z*) be defined by
0+ O+ p?
00 = Iz OV,

Z () = 6Z°(t) —pe'(t); Z*(0)=1.

(3.2)

Then the filter t
0= [ #(- 90,
is asymptotically optimal, i.e.,
Jim E(¢ () = 7,
wherey,, is given by (1.2).
Proof. ForH € (%, 1), in the control problem studied in Section 4, we must take
x=0,K(t) = (H-)t"% a=0,b=—uand
_ 2HT(G-H)
I'(H+ 3Hr@-2H)

Hence, applying Theorem 4.1 (see also the particular caene get that the following
pair (¢*, Z*) is optimal in the control problem (2.12) :

g=r

7o = Tz 0T,
Z@) = ZO-mO+H-D1 Z©=0,
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where

V(1) = (H - %)fo e V(¢ 1 r)H3dr. (3.3)

Moreover, it is easy to check that the optimal cost in (2.52)(#*) = v, Wherey,

is given by (1.2). Hence, it is clear that to define an asyniaty optimal filter by
7 (X) = nf*(X) we can take the second componehtof the triple /%, ¢*, Z*) which
corresponds through (2.5) to the triplé*(¢*, Z*). It is easy to check that* is defined
by (3.2) where/* corresponds through (2.5)¥ and so, finally, we have just to identify
V*. From (3.3), we compute

f t(t — 927"V (9ds
0

(H——»]kr—sr bfW)_sz%s+OH%dr
H——)f & Vit f(t 92 M(s+ )" 2dgdr
(H——)f ‘er+ H(1 - v)-2dvidr

Observing that actually

d (i t3-HpH-3
—f viH(l-w3idv= ——
dt 0 t+r

it follows that

f t(t — 927 HV*(9)ds
0

——H H——
(H——)f g Voery f —u duydr

_ = e 92+p2ru2 r 2

(H )f f R ’ dridu
1 o VPR T

(H )f f +1

From (2.5), we see that this means exactly ¥ais given by (3.1). O

Remark 3.1 (a) Observe that from (3 1) we have also

) H+l
V() = — 462 + 12 -3 f e 92+“2‘T dr, t>0.
© TBH+LI-H) +1

Then, splitting the integral into two terms correspondingtte decomposition af+2
as the diference fH+z + 7H-2] — "-2, one may easily check that" is actually the
solution of the diferential equation

V) = B2V Q- (H - P im v =

where

1-2H

_ (@)

By = rG-h)
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Sincef()+°° V*(t)dt = 1, it means also that th&t" is the solution of the integral equation

t
V(L) = fo 62 + 2V (9)ds+ Bt H -1 (3.4)

(b) Let us emphasize that, similarly to the ca$e= % where the filteer; (X) can be
generated by the approximate Kalman-Bucy algorithm (= 3gcursive scheme can be
also provided for the asymptotically optimal filter in thesedd € (%, 1). At first, we
observe that due to the first equation in (3.2) we can write

i (X) = Ky, [Zi + Vi, (3.5)
where t t
Z:i = f Z'(t—-9dYs; Vi = f V*(t - 9s)dVYs.
0 0
Since the functioZ* is differentiable, we have

t S
Z?=Z*(0)Yt+f{f Z*(s-r)dY;}ds.
0 0

Hence, due to the second equation in (3.2), the progéds generated fronY by the
equation

Zi = HfotZ’;ds—ufotn’g(X)ds+ Yi, (3.6)
Now, using equation (3.4), we can write
Wi = j: Y(t - 9)dYs + 5, fot(t— 92 MY,
where the functiony satisfies

Uty = \JO2+ V() w(0)=—1.

Consequently, we get that

t t S
f Wt-9dYs = WO+ f ( f i(s— nydY,)ds
0 0t 0

= \[92+/.12f(V;dS—Yt.
0

Finally, the following equation holds foV; :

t t
Vi = \J6? +u2f0q/;ds+fo[ﬁH(t—s)rH—1]dYS. (3.7)
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The system (3.5)-(3.7) provides a closed-form recursioichvpenerates the filtes; (X)
from the observation proce¥s It is readily seen that wheH = % and henceV* = 0
andr; (X) = pwy, Z;, this system reduces to the single equation

2

t
M0 =~ i [ m0ds iy, Y,

which is nothing but equation (1.3k)(Suppose thatl > % but one does as if the noises

were standard Brownian motions and hence uses the filterafexdoy the approximate
Kalman-Bucy algorithm (1.3),e., the filter

t
7(X) =y, fo e VPt-9y,

Then it can be checked that the corresponding asymptotianae of the filtering error
lim¢_, ;o E(X; — T(X))? is the constant
_ T(2H +1)

Yu = (92+#2)H—%
Moreover the consequent loss of performance with respdiaetasymptotically optimal
filter can be evaluated by

— reH+1) ,, ,
-V = 1-sinzH).

Let us observe that, for fixed parametémandy, the asymptotic relativefigciency

Y-

1
2

2.2 oj
’ 1+pu y%smnH

Vu 1+ uzyi ’

of m(X) decreases d3 increases ing, 1).

4 About optimal control problems

Given a functiorK = (K(t),t > 0) and constantsandb, we consider the state dynamics
Xt:aXt+bﬂt+K(t)’t20; XO:X’ (41)

where the controld = (U, t > 0) can be chosen in order to drive the si&te (X, t >

0). LetA be the class of measurable functioifs called admissible controls, such that
the corresponding fferential equation (4.1) has a unique solut®dnGiven constants
g > 0 andr > 0, we define the performance criterighby

J(U) = j; Oo[qxtz + r?dt. (4.2)
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The following statement gives the solution of the infiniteei horizon deterministic
control problem corresponding to (4.1)-(4.2).

Theorem 4.1 Define the constants

“Lara: 6= a2+ 4.3)
P= 07 4 '

Assume thaim, .., K(t) = 0 and also, setting

+00
V() = f e K(t+r)dr, t>0, (4.4)
0
that the functiorV is well-defined. Let the pa{ri/*, X*) be governed by
* b *

(L.{t = _Fp[Xt + V)], (4.5)

Xy = aXy+bUf +K(t);, Xj=X,
Then, forg defined by (4.2), the pa{ii{*, X*) is optimal in the control problem

(LrTIIGI;l{j((LI) subject to (41).
Moreover, the value of the optimal cost is
+00
TU) = plx+ VO +a [ VE(9s. (4.6)
0

Proof. Suppose that there exists a pak*(p*) which satisfies the Hamiltonian

system
2

y * b k *
X = aX{- —p KO Xo=x.

4.7)
b = -aX;-ap; im p=0,

Hence of cours&X™ is nothing but the state dynamics corresponding throudt) (4.
the controlX/* defined byU; = —(b/r)p; . Let us show that for an arbitrary control
U € A the inequalityT (U) > J(U*) holds. Of course it is true wheff (U) = +co
and so we concentrate on the case wlydfi{) < +oco which in particular means that
lim_,, . Xt = O for the corresponding state dynami¢sDefining forT > 0

T
@) = [ [0+ redlat, (4.8)
0
we evaluate

i
Tr(U) = Tr(U) + fo (GXZ — (X)) + T[22 — (1))t
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Using the equality? — (y)? = (y — y*)? + 2y*(y — y*) and exploiting the property
U; = —(b/r)p;, itis readily seen that
IJ1(U) = J1(U) + A(T) + 2A5(T), (4.9)

where
Aq(T)

.
fo {A[Xe — X712 + r[ Uy — U] Pdt,

T
2o(T) = [ 10XiLX - X1 - BRTLA - 24 ).
But, rewriting the quantity in the last integral as
(Xt — X)[aX; +ap] - pr[a(X: — &Xt) + b(Uy - Uy)]

and taking into account equations (4.1) and (4.7), we sdetisantegral can be written
as

- [ xpn- [ pien- .
Therefore, integrating by parts, sindg — X = 0, it comes that
Ax(T) = —pr(X1 - X7).
Consequently, sincg&,(T) > 0, from (4.9) we get that
J1(U) = Jr(U") - 2pr(X7 - X7).

Hence, if limr_, .. X7 = 0O, lettingT tend to infinity in this inequality, due to the limiting
conditions forp* andX, we obtaing () > J(U*).

Now, to show that the pair{*, X*) defined by (4.5) is optimal, it is $licient to check
that the pair £*, p*), wherep; = p[X; + Vk(1)], satisfies the Hamiltonian system (4.7)
and that also the limiting condition lim..., X; = 0 holds. Atfirst, it is easy to check that
(X*, p*) satisfies the dierential equations in (4.7). One can observe that the esipres
(4.4) for V¢ can be rewritten as

Vk(t) = f 9K (s)ds, t > 0,
t

and since lim, ., K(t) = 0, actually’Vi is nothing but the solution of the equation
V() = 6V (t) - K(1); lim Vi@ = 0. (4.10)

Now, since from the first equation in (4.7) we have

. b2
Xi = =0X{ = —pVk(® +K(O); X5=x, (4.11)
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due to lim_.e K(t) = limi540 Vk(t) = O, itis clear that lin,. Xi = 0. Hence, we
have also lin, ., p; = 0.

Finally, we evaluate the optimal cQgt(2{*). At first, in order to compute the variation
PrXT — PeXp, we expresspt*/\";* + ;X from (4.7). Then, forgt defined by (4.8), it
follows easily that

T
(W) = o= prXi + [ piK(a
0
Hence, sincg; = p[X; + Vk(t)], taking the limit forT tending to infinity, we get
+00
TU) = plxs VOt p [ 1K+ VieOIK
0

Proceeding similarly through the evaluation of the vasiafV (T)X7 — Vk (0)XG from
(4.10)-(4.11), we obtain that

+00 2 +00 +0oo
f X{K(t)dt = —prf V2 (t)dt+ f K{t)Vk(t)dt+ Vi (0)x.
0 0 0
Then, since from equation (4.10) we h&) = 6V (t) — fi/K(t), it follows that
J(U) = p[X¢ + 2V (0)4 + p(6 - @) fo Vitdt - 2pf0 V() V().

But p(6 — @) = g and clearly the last integral equan%(Vﬁ(O) and so the equality (4.6)
holds. O

Remark 4.1 Actually, from (4.10), we observe that
VrO)Vk () = 6V2 () — KEOVk(L),
and hence
5{
This allows to rewrite the value (4.6) of the optimal cost as

—+00
0

oo 1 1
fo V2 (t)dt = f K(t)(VK(t)dt—Eq/ﬁ(O)}.

p o+a

J(U) = px[X+ 2V (0)] + E(Z=242(0) + (6 - a) f ~ KOVkdt.  (4.12)
52 o

ParticuLar case 4.1 If we takeK = 0, and hence als@’x = 0, then the optimal pair
(U, X*) is governed by

* b *
o= e (4.13)
Xi = aXi+bl; Xj=x.

Sincea- (b?/r)p = -6, this means that; = e 'x and¥/; = —(b/r)pe *'x. Substituting
these expressions foX; and U; in the integralfoﬂxj[q()(;‘)2 + r(U;)?)dt, a direct
computation gives the valug (U*) = px? of the optimal cost, which of course is
nothing but what (4.6) says in the present case.
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ParticuLar case 4.2 If, for someH e (%, 1), we takeK(t) = (H- %)IH_%, then the optimal
pair (U*, X*) is governed by (4.5) with

Vi(t) = (H - %) fom e (t+r)"2dr. (4.14)

Moreover, the value of the optimal cost can be computed eXgliActually, here from
(4.14), straightforward computations give that

T(2H)[(H + $)I(2 - 2H)
2r(3 - H) '

V(0) = 627 HT(H + %); fo ~ K(t) Vi (t)dt = 6121

Inserting this into the expression (4.12), one may finally ge

1 -
q r(ZH)r(;(; E)E()Z GUITLLIL Y
2

J(U) = pX[x+ I'(H+ %)] +

sH-3 d—a

5 Concluding comments

Linear Quadratic Gaussian (LQG) problems concerning dycelnsystems governed
by Brownian motions have well-known solutions which are roqite classical. When

the driving processes are fBm'’s, the theory is not yet cotadlespecially from the

asymptotical point of view. In this paper, concentratingdfitiering, we have illustrated

the actual solvability of the problems. Actually, the infeitime horizon stochastic
control problems are also tractable and in forthcoming pape shall report the results
about the regulator problem both in the case of complete @ewmplete observation,
the last one mixing filtering and control.
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