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Abstract

In this paper we investigate two classes of exponential dispersion models (EDMs) for overdispersed
count data with respect to the Poisson distribution. The first is a class of Poisson mixture with positive
Tweedie mixing distributions. As an approximation (in terms of unit variance function) of the first, the
second is a new class of EDMs characterized by their unit variance functions of the form µ+ µp, where p
is a real index related to a precise model. These two classes provide some alternatives to the negative
binomial distribution (p = 2) which is classically used in the framework of regression models for count
data when overdispersion results in a lack of fit of the Poisson regression model. Some properties are
then studied and the practical usefulness is also discussed.
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1 Introduction

The Poisson distribution is well-known to be the classical distribution for count data,
but it has only one parameter and its variance is equal to the mean. Since the index
of dispersion (i.e. the variance divided by the mean) of Poisson is one, this makes it
inadequate for fitting overdispersed count data (e.g. Castillo and Ṕerez-Casany, 2004),
and raises the question of whether an appropriate two-parameter distribution such
as the negative binomial should be used routinely for analysing overdispersed count
data. The same problem occurs in the framework of regressionmodels for count data
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Mathématiques Appliqúees. CNRS FRE 2570-D́epartement STID. Avenue de l’Université. 64000 Pau, France.
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(McCullagh and Nelder, 1989), when the Poisson distribution does not fit well, and the
observed dispersion is greater than that predicted by the standard distribution.

It is well known that negative binomial can be understood as aPoisson mixture with
gamma mixing distribution, taking into account the heterogeneity in the population.
Hougaardet al (1997) have considered a large family of mixture distributions, including
the Poisson-inverse Gaussian distribution, to improve significantly the fitness to certain
data. We will call thePoisson-Tweedieclass a completed set of these distributions
that we must point out the exact form of its associated “unit variance function” (a
term to be made precise). Otherwise, Hinde and Demétrio (1998, page 14) propose for
overdispersed count data the use of the unit variance function

VHD
p (µ) = µ + µp, µ ∈ MHD

p ⊆ R, (1)

where p ∈ R fixed, which is also an alternative to negative binomial unitvariance
function obtained withp = 2 and includes the strict arcsine distribution withp = 3
(Kokonendji and Khoudar, 2004). We here call theHinde-Demétrioclass the set of
all distributions associated to (1). The aim of this work is to provide a complete
identification of both the Poisson-Tweedie and the Hinde-Demétrio classes from their
unit variance functions. These classes are sets of two-parameter distributions with
an additional index parameterp allowing to identify an appropriate family of these
distributions.

In Section 2, we review some basic properties of the general models, called
“exponential dispersion models” and, in particular, we present theTweedieclass with
unit variance functionµp. In Section 3, we describe the possible Poisson mixture
distributions with a Tweedie for obtaining the Poisson-Tweedie class: unit variance
function and probabilities are given. In Section 4, we first classify the Hinde-Deḿetrio
class (1) and we then compare it to the Poisson-Tweedie class. We stress that there
is no intersection between the Hinde-Demétrio class (µ + µp) and the Tweedie class
(µp), except forp = 2. Section 5 is devoted to concluding remarks and the problemof
statistical inference forp to select the adequate model in these classes.

2 Exponential dispersion models

Exponential dispersion models (Jørgensen, 1997) are important in statistical modelling.
They have a number of important mathematical properties, which are relevant in
practice. They include several well-known families of distributions as special cases,
giving a convenient general framework. Generalized linearmodels (McCullagh and
Nelder, 1989) are based on these families of distributions.

Let ν be aσ-finite positive measure on the real lineR (not necessarily a probability)
and define the cumulant functionK by

K(θ) = ln
∫

R

exp(θx)ν(dx)
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on its (canonical parameter) domainΘ = {θ ∈ R : K(θ) < ∞}. Assume that bothν and
Θ are not degenerate (i.e.,ν is not concentrated at one point and the interior ofΘ is
not empty), then the set of the probability measuresP(θ; ν)(dx) = exp{θx − K(θ)}ν(dx)
defined for allθ in Θ = Θ(ν) represents anatural exponential family(NEF) generated
by ν and denotedF = F(ν) = {P(θ; ν); θ ∈ Θ(ν)}; see Chapter 54 of Kotzet al (2000).
Given a NEF, we define the setΛ of realsλ > 0 such thatλK(θ) is also the cumulant
function for some measureνλ. For fixedλ ∈ Λ, the NEFFλ = F(νλ) generated byνλ is
then exp{θx − λK(θ)}νλ(dx), for θ ∈ Θ. This family of distributions, denotedED(θ, λ)
for (θ, λ) ∈ Θ ×Λ, is called theexponential dispersion model(EDM) generated byν (or
νλ for improper notation); andλ can be called the dispersion parameter. Its density or
mass function with respect to some measureη can be written as

C(x; λ) exp{θx− λK(θ)}, x ∈ S ⊆ R, (2)

whereνλ(dx) = C(x; λ)η(dx). Note here thatED(θ, λ) defined by (2) is the additive
version of EDM. The reproductive version ofX ∼ ED(θ, λ) is given byZ = X/λ.
However, additive EDMs turn out to be important for discretedata because many
usefull families of discrete distributions have this form.Any EDM satisfiesED(θ, λ1) ∗
ED(θ, λ2) = ED(θ, λ1+λ2), so the family is closed under convolution and{1,2, · · · } ⊆ Λ.
Also the model is infinitely divisible if and only ifΛ = (0,∞).

In the interior ofΘ, denoted intΘ, the cumulant functionθ 7→ K(θ) is strictly convex.
Then the expectation and variance ofX ∼ ED(θ, λ) are

E(X) = λK′(θ) and Var(X) = λK′′(θ), (3)

whereK′(θ) and K′′(θ) are, respectively, the first and second derivatives ofK at the
point θ. From (3) withλ = 1, the characterizing functionV defined on the domain
M = K′(intΘ) such that

K′′(θ) = V{K′(θ)}
is calledunit variance function. We also haveV(µ) = 1/ψ′(µ), for µ ∈ M, where
ψ = (K′)−1 is the inverse function ofK′. Note thatM depends only on the family
F = { ED(θ,1) : θ ∈ Θ}, and not on the choice of the generating measureν of F. If
M = Ω, whereΩ denotes the interior of the convex hull of the supportS of F, the family
F is said to besteep. From here to the end, an EDM is always assumed to be steep. The
role of the unit variance function in data fitting should be toidentify an appropriate EDM
of distributions, if any. The reparametrization by unit meanµ = K′(θ) = µ(θ) allows us to
write the EDM as follows:{ED(µ(θ), λ); µ(θ) ∈ M, λ ∈ Λ} ≡ EDM(µ, λ). It is sometimes
considered the reparametrization of the EDM by the meanm= E(X) = λK′(θ) = m(λ, θ)
instead of the unit meanµ = µ(θ). From (3), the unit variance functionV leads to the
varianceVλ = Var(X) of X ∼ ED(θ, λ) in terms ofm, calledvariance functionand
expressed as follows:Vλ(m) = λV(m/λ), for all m ∈ λM. For discrete overdispersed
EDM compared to the Poisson distribution we have

V(µ) > µ, µ > 0, (4)
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whereV(µ) = µ is the unit variance function of the Poisson model (e.g. Jourdan and
Kokonendji, 2002).

A complete description of the EDMs with power unit variance functions

VT
p (µ) = µp, p ∈ (−∞,0] ∪ [1,∞), (5)

is given by Jørgensen (1997) where, forp→ ∞ the corresponding unit variance function
takes the exponential formVT

∞(µ) = exp(βµ) , β , 0. This class, called theTweedie class,
was introduced by Tweedie (1984). It is also convenient to introduce the index parameter
α of stable distribution, connected top by the following relation:

(p− 1)(1− α) = 1. (6)

According to the above notations, we can denote byTp(θ, λ) any distribution of this
class whereλ ∈ (0,∞) = Λ for all p of (5), µ ∈ Mp = K′(intΘp) andθ ∈ Θp with

Θp =































R for p = 0,1
[0,∞) for p < 0 or 0< p < 1
(−∞,0) for 1< p ≤ 2 or p→ ∞
(−∞,0] for 2 < p < ∞.

(7)

Thus, fors ∈ Θp − θ andX ∼ Tp(θ, λ), the Laplace transformE(esX) is

Gp(s; θ, λ) =




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


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
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



















exp

{

λ[(1 − p)θ]α

(2− p)
[(1 + s/θ)α − 1]

}

for p , 1,2

(1+ s/θ)−λ for p = 2

exp{λeθ(es− 1)} for p = 1.

(8)

As shown in Table 1, the Tweedie classT = {T Mp(µ, λ); p ∈ R} includes several well-
known families of distributions amongst which one may be theinverse-Gaussian model
T M3(µ, λ) and the noncentral gamma modelT M3/2(µ, λ) of zero shape (respectively, a
special case of positive stable and compound Poisson families). The compound Poisson
(1 < p < 2) is also called Poisson-gamma; it can be represented as thePoisson
random sum of independent gamma random variables (and it hasa mass at zero but
otherwise has a continuous positive distribution). Observe, however, that the extreme
stable distributions (p < 0) are not steep and only the Poisson distribution (p = 1) is
discrete.
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Table 1: Summary of Tweedie EDMs (Jørgensen, 1997).

Distribution p α M S

Extreme stable p < 0 1 < α < 2 (0,∞) R

Normal p = 0 α = 2 R R

[ Do not exist ] 0 < p < 1 2 < α < ∞
Poisson p = 1 α→ −∞ (0,∞) N

Compound Poisson 1 < p < 2 α < 0 (0,∞) (0,∞)
Gamma p = 2 α = 0 (0,∞) (0,∞)
Positive stable p > 2 0 < α < 1 (0,∞) [0,∞)
Extreme stable p→ ∞ α = 1 R R

3 Poisson-Tweedie EDMs

Let X be a non-negative random variable followingTp(θ, λ). If a discrete random
variableY is such that the conditional distribution ofY given X is Poisson with mean
X, then the EDM generated by the distribution ofY is of the Poisson-Tweedie class.
We can also use the following notationsPT p(θ, λ) to denote the distribution ofY and
PT Mp(µ, λ) for the corresponding EDM. Hence forp ≥ 1, the individual probabilities
of Y ∼ PT p(θ, λ) are

Pr(Y = y) =
∫ ∞

0

e−xxy

y!
Tp(θ, λ)(dx), y = 0,1, · · · . (9)

Proposition 1 (Hougaard et al., 1997) Let Y∼ PT p(θ, λ) defined by (9), whereθ ∈ Θp

given by (7) andλ > 0 for fixed p≥ 1 or α ∈ [−∞,1) from (6). We have the following
properties: (i) If Y1, · · · ,Yn are independent, with Yi ∼ PT p(θ, λi), then Y1 + · · · + Yn

follows PT p(θ, λ1 + · · · + λn). The distributionPT p(θ, λ) is infinitely divisible. (ii)
The distributionPT p(θ, λ) is unimodal for p ≥ 2. (iii) The Laplace transform of
Y ∼ PT p(θ, λ) is

E(eωY) =


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









exp

{

λ

2− p
[{(1− p)(eω − 1+ θ)}α − {(1− p)θ}α]

}

for p , 1,2

[(eω − 1+ θ)/θ]−λ for p = 2

exp

{

λ[exp(eω − 1+ θ) − eθ]

}

for p = 1,

(10)

for ω ∈ Θp − θ. For p = 1, it is a Neyman type A distribution; for p= 2, it is
a negative binomial distribution; and, for p= 3, it is the Sichel or Poisson-inverse
Gaussian distribution (e.g. Willmot, 1987).
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Proposition 2 With the asumptions of Proposition 1, the unit variance function of the
model PT Mp(µ, λ) generated by Y∼ PT p(θ,1) is exactly

VPT
p (µ) = µ + µp exp{(2− p)Φp(µ)}, µ > 0, (11)

whereΦp(µ), generally implicit, denotes the inverse of the increasingfunctionω 7→
d{lnE(eωY)}/dω.

Proof. Let K(ω) = lnE(eωY) for Y ∼ PT p(θ,1). From Proposition 1 (iii ) with
λ = 1 and using (6) to simplify, the first derivative ofK(ω) is

µ = K′(ω) =




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











eω[(1 − p)(eω − 1+ θ)]α−1 for p , 1,2
−eω(eω − 1+ θ)−1 for p = 2
eω exp{eω − 1+ θ} for p = 1,

and the second derivative ofK(ω) may be expressed as follows:

VPT
p (µ) = K′′(ω) =


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
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
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







K′(ω) + e2ω[(1 − p)(eω − 1+ θ)]α−2 for p , 1,2
K′(ω) + [K′(ω)]2 for p = 2
K′(ω) + eωK′(ω) for p = 1.

For p , 1,2, we can also writeK′′(ω) = K′(ω) + e2ω[K′(ω)/eω]p and the expression
given in (11) is easily obtained. ¤

The Poisson-Tweedie EDMs are summarized in Table 2, that we can divide in three
parts with respect top: 1 < p < 2, 2< p < ∞ andp ∈ {1,2,∞}.

Table 2: Summary of Poisson-Tweedie EDMs.

Distribution p α M S

[ Do not define ] p < 1 1 < α < ∞
Neyman type A p = 1 α→ −∞ (0,∞) N

Poisson-compound Poisson1 < p < 2 α < 0 (0,∞) N

Negative binomial p = 2 α = 0 (0,∞) N

Poisson-positive stable p > 2 0 < α < 1 (0,∞) N

Poisson p→ ∞ α = 1 (0,∞) N

For p = 1 or α → −∞ which is not studied by Hougaardet al. (1997), we can refer
to Johnsonet al. (1992; pages 368-) to obtain some properties on the Neyman type A
distribution, which is therefore both a Poisson mixture of Poisson distributions, and also
a Poisson-stopped sum of Poisson distributions.

Note that we consider in this paper only the strictly mixed Poisson distributions
(p ≥ 1). In fact, it is not possible to mix a Poisson with a Tweedie distribution
Tp(θ, λ) for p ≤ 0 because it can be negative but (9) can be seen as a purely formal
operation. Forp = 0 we refer to Kemp and Kemp (1966) who show that, ifX follows a
normal distributionT0(θ, λ) with meanµ = µ(θ) and standard deviationσ = σ(λ) such
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thatµ ≥ σ2, the corresponding mixed Poisson distribution is the Hermite distribution
(Johnsonet al.,1992; pages 357-364).

To conclude this section, we explicit the probability mass functions (2) of all the
Poisson-Tweedie EDMs generated by any distribution ofY ∼ PT p(θ0, λ) for fixed
p ∈ [1,∞) andθ0 ∈ Θ̄p the closure ofΘp given in (7). Indeed, one has

Cp,θ0(y; λ) exp{ωy− λKp,θ0(ω)}, y = 0,1,2, · · · , (12)

whereω ∈ Θp − θ0 is the canonical parameter andλ > 0 is the dispersion parameter
such that, respectively by (9) and (10),

Cp,θ0(y; λ) =
1
y!
E(e−XXy) =

1
y!

∂yGp(s; θ0, λ)

∂sy
|s=−1 for X ∼ Tp(θ0, λ) (13)

and Kp,θ0(ω) = λ−1 lnE(eωY) for Y ∼ PT p(θ0, λ). Note that, in practice, we can use
θ0 = 0 which is here defined for allp ∈ [1,∞) with the convenience: 0λ = 1, for any
λ > 0 (only for p = 2). To clarify completely (12), we must point outCp,θ0(y; λ) by the
following proposition.

Proposition 3 Let p∈ [1,∞) be fixed and letθ0 ∈ Θ̄p given by (7). Then, for allλ > 0
and y∈ N, the expression of Cp,θ0(y; λ) in (12) is,

- for p = 1 or α→ −∞,

C1,θ0(y; λ) =



















exp{λeθ0−1(1− e)} for y = 0
1
y!

C1,θ0(0;λ)
y
∑

k=1
ay,k(λeθ0−1)k for y = 1,2, · · · ,

with ay,y = ay,1 = 1 and ay,k = ay−1,k−1 + kay−1,k;

– for p= 2 or α = 0, C2,θ0(y; λ) =

(

θ0

θ0 − 1

)λ
Γ(y+ λ)
y!Γ(λ)

(

1
1− θ0

)y

;

– for p ∈ (1,2)∪ (2,∞) or α ∈ (−∞,0)∪ (0,1),

Cp,θ0(y; λ) =












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













exp

{

λ(α − 1)
α

[{(1− θ0)/(1− α)}α − {(−θ0)/(1− α)}α]
}

for y = 0

1
y!

Cp,θ0(0;λ)
y
∑

k=1
ay,k(α)λk{(1− θ0)/(1− α)}kα−y fory = 1,2, · · · ,

with ay,y(α) = 1, ay,1(α) = Γ(y−α)/[(1−α)y−2Γ(2−α)] and ay,k(α) = ay−1,k−1(α)+ [(y−
1− kα)/(1− α)]ay−1,k(α).

Proof. Following Hougaardet al. (1997), we show only forp = 1 or α → −∞.
From (13), it suffices to check the recursive formula of derivatives of Laplacetransform

(8), which is∂yG1(s; θ0, λ)/∂sy = G1(s; θ0, λ)
y
∑

k=1
ay,k(λeθ0+s)k. ¤
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4 Hinde-Dem étrio EDMs

We now characterize the Hinde-Demétrio class which is the set of EDMs with unit
variance function of the “simple” form (1) and, then, we compare it to the Poisson-
Tweedie class (11).

Theorem 4 Let p > 1. Then there exists a NEF Fp,1 such that MFp,1 = (0,∞) and
VFp,1(µ) = µ + µ

p. Furthermore, the NEF Fp,1 is infinitely divisible (with bounded Lévy
measure). More precisely, denote a= 1/(p−1) similarly to the interchangeable relation
(6) and consider the positive measure

νp =

∞
∑

k=0

a(a+ 1) · · · (a+ k− 1)
k!

1
1+ k(p− 1)

δ1+k(p−1).

Then, for allλ > 0, νp,λ = exp{λνp} =
∞
∑

n=0

λn

n!
ν∗np generates a NEF Fp,λ with variance

function
VFp,λ(m) = m+ λ1−pmp (14)

and Fp,λ is concentrated on the additive semigroupN + pN.

Proof. It is standard by checking that we have exactly

K′νp,1
(θ) =

eθ

[1 − eθ(p−1)]a
=

∞
∑

k=0

a(a+ 1) · · · (a+ k− 1)
k!

eθ[1+k(p−1)].

¤

For p > 1, we also denote byHDp(θ, λ) any distribution of the EDMHDMp(µ, λ)
corresponding to (1) or (14) withλ > 0 andθ ∈ Θ∗p ⊆ R. As a probabilistic interpretation
of Y ∼ HDp(θ, λ), let X be a random variable associated toνp ≡ νp,θ of Theorem 4 (up
to normalizing constant) and, letNt be a standard Poisson process on the interval (0, t]
(N0 = 0) with rateλ (i.e. Nt ∼ P(λt)) and supposed to be independent ofX. From the
Laplace transform of

Yt =

Nt
∑

i=1

Xi = X1 + · · · + XNt ,

where theXi are independent and identically distributed asX, it is easy to see thatY = Y1

by fixing the time tot = 1.

Theorem 5 Let p ∈ R. The function (1):µ 7→ VHD
p (µ) = µ + µp, defined on a suitable

domain MHD
p corresponds to a unit variance function of discrete (steep)EDM when

p ∈ {0} ∪ [1,∞),

with MHD
0 = (−1,∞) and MHD

p = (0,∞) for p ≥ 1; and the domainΘp of the canonical
parameter is given by (7). Moreover, if p= 0 the model HDM0(µ, λ) is a positive-
translated Poisson; if p= 1 the model HDM1(µ, λ) is a scaled Poisson; if p= 2
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the model HDM2(µ, λ) is negative binomial; if p= 3 the model HDM3(µ, λ) is strict
arcsine (Kokonendji and Khoudar, 2004); and, if p, 0,1,2,3 the model HDMp(µ, λ) is
deduced from Theorem 4.

Before giving the proof, let us observe that, from (4), the Hinde-Deḿetrio class (1)
is the set of overdispersed EDMs compared with the Poisson distribution, as well as
the Poisson-Tweedie class (11) (see also Feller, 1943). Thenext proposition provides
comparable behaviours of these two classes. Indeed, only negative binomial model
HDM2(µ, λ) is interpreted asPT M2(µ, λ); and, for fixed p ≥ 1 and λ > 0, each
HDMp(µ, λ) can be “approximated” byPT Mp(µ, λ) for largeµ. This approximation
must be understand in terms of their unit variance functions.

Proposition 6 Let HD = {HDMp(µ, λ); p ∈ R} be the Hinde-Demétrio class (1) and
PT = {PT Mp(µ, λ); p ∈ R} the Poisson-Tweedie class (11). Then: (i) HD∩ PT =
{HDM2(µ, λ) = PT M2(µ, λ)}; (ii) For fixed p≥ 1, VPT

p (µ) ∼ VHD
p (µ) asµ→ ∞.

For the proof of Theorem 5 we need the two following lemmas. The first is an
“impossibility criterion” to exclude case 0< p < 1, and the second is related to the
steepness.

Lemma 7 There are no EDM with M= (0,∞) and unit variance function V(µ) ∼ µγ as
µ→ 0 for γ ∈ (0,1).

Proof. If V(µ) ∼ µγ asµ → 0, thenθ = ψ(µ) = θ0 +
∫ µ

0
(V(t))−1dt is left-bounded.

Now, V(µ) → 0 asµ → 0 implies that the generatorν is concentrated on [0,∞) (e.g.
Letac and Mora, 1990). Hence, the domainΘ(ν) is not left-bounded, which yields a
contradiction. ¤

Lemma 8 (Jørgensen, 1997; page 58) Let F= {ED(θ,1) ;θ ∈ Θ } be a NEF with
variance function V on M and support S . Ifinf S = 0, then: (i) inf M = 0; (ii)
lim
µ→0

V(µ) = 0; (iii) lim
µ→0

V(µ)/µ = c, where c= inf {S \ {0}}.

Note thatc = 0 for continuous distributions andc = 1 for discrete integer-valued
distributions.

Proof of Theorem5: SinceVHD
p must be an analytic positive function on the domain

MHD
p = (a,∞), we have thatVHD

p has no zeroes in (a,∞) andVHD
p (a) = 0 [this is a

consequence of Theorem 3.1 of Letac and Mora, 1990]. Thus, wehave

MHD
p =

{

(0,∞) for p , 0
(−1,∞) for p = 0.

(15)

Solving ψ′(µ) = 1/VHD
p (µ) = 1/(µ + µp) and ignoring the arbitrary constants in the
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solutions,

ψ(µ) =























ln(µ) − (p− 1)−1 ln(1+ µp−1) for p , 0,1
ln
√
µ for p = 1

ln(1+ µ) for p = 0.
(16)

We now examine the different situations ofp ∈ R in (1) from (15).
– Consider casep ∈ {0} ∪ [1,∞). Let θ = ψ(µ) be the canonical link function given

by (16), then we find firstµ = K′(θ) and, hence,

K(θ) =



















































eθ − θ for p = 0
e2θ/2 for p = 1
− ln(1− eθ) for p = 2
arcsineθ for p = 3
∞
∑

k=0

Γ[k+ 1/(p− 1)]
k!Γ[1/(p− 1)]

exp{θ[1 + k(p− 1)]}
1+ k(p− 1)

for p , 0,1,2,3,

for θ ∈ Θ, where the interior ofΘ is obtained by using (15) and (16):

intΘ =























R for p = 0,1
(0,∞) for p < 0 or 0< p < 1
(−∞,0) for 1< p < ∞.

(17)

Since K(θ) is analytic, the domainΘ defined from its interior (17) coincides toΘp

given by (7). Thus, for eachp ∈ {0} ∪ [1,∞), we define a discrete generator of the
corresponding (steep) EDM with unit variance function (1).

– Case 0< p < 1 is excluded by Lemma 7.
– Finally, let us exclude casep < 0 by Lemma 8. Indeed, it suffices to observe that

MHD
p = (0,∞) from (15) and limµ→0 VHD

p (µ)/µ = limµ→0(1 + µp−1) = ∞. The proof of
Theorem 5 is now complete. ¤

5 Concluding remarks

Here we have two classes of two parameter distributions which could be used as
models for analysing overdispersed count data. It was showed that both are EDMs with
general unit variance functions indexed by a third parameter p. A common member of
both families is the negative binomial family whenp = 2. However, the probability
mass functions (2) ofHDMp(µ, λ) are generally not easy to calculate (except for
p ∈ {0,1,2,3}) whereas forPT Mp(µ, λ) are given explicitly by (12). Whenµ is large,
Proposition 6 (ii ) allows the use of the Poisson-Tweedie model as well as the Hinde-
Demétrio model since the variance functions are equivalent.

For models with covariates, letY be a count response variable and letx be an
associatedd× 1 vector of covariates with a vectorβ of unknown regression coefficients,
the relation between the meanm= E(Y) = m(x; β) of the distribution and the linear part
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xTβββ being made through a link function (McCullagh and Nelder, 1989). For both EDMs
the cumulant functions are given in explicit form. This allows to compute deviances and
then to use maximum likelihood method for the estimation of the parameters.

When the Poisson-Tweedie modelsPT Mp(µ, λ) or the Hinde-Deḿetrio models
HDMp(µ, λ) are used, one of the problems for statistical inference is the index parameter
p of the adequate distribution. A profile estimate ofp is recommended in the general
situation; see Hougaardet al. (1997) for Poisson-Tweedie mixture. In Hinde-Demétrio
models, we can start by the moment estimate ofp. Indeed, if y = (y1, · · · , yn) is
an n-independent identically distributed observation fromHDp(µ, λ) such that the
overdispersion conditions2/y > 1 is satisfied, wherey and s2 are, respectively, the
sample mean and the sample variance fromy. From (14) and whenλ is fixed or known,
we easily have by the moment method

p∗ = ln[(s2 − y)/λ]/ ln[y/λ] = p∗(λ). (18)

With respect to the unit variance function (1), we can takeλ = 1 in (18) because one
stays in the same EDM; after, one can estimateλ in the correspondingHDMp∗(µ, λ).

In order to illustrate (18), we analyze two data sets of Table3 given by Kokonendji
and Khoudar (2004; Table 5.1 and Table 5.2); one of which (Table 5.1) has been
revisited by several authors (e.g. Willmot, 1987). This type of data is frequent in
marketing, insurance, biometry and financial problems. Thedata correspond to the
number of automobile insurance claims per policy in Germanyover 1960 among
n = 23589 and in Central African Republic over 1984 amongn = 10000. Both data
sets show overdipersion as can be seen in Table 4 withs2/y ≃ 1.14. For these data
some overdispersed models have been used in the literature among others the negative
binomial (HDM2 = PT M2), strict arcsine (HDM3) and Poisson-inverse Gaussian
(PT M3) models. It was used a Pearson’s chi-square goodness-of-fitstatistic and, as
observed by several authors, no single probability law seems to emerge as providing
“the” best fit.

Table 3: The two data sets analysed by Kokonendji and Khoudar (2004; Table 5.1 and
Table 5.2).

Data set 1 Data set 2
No. of claims No. of policies No. of claims No. of policies

0 20592 0 6984
1 2651 1 2452
2 297 2 433
3 41 3 100
4 7 4 26
5 0 5+ 5
6 1

From Table 3 we see that using expression (18) withλ = 1 we findp∗ equal to 2 for data
set 1 and 3 for data set 2, leading, respectively, to a negative binomial (HDM2 = PT M2)
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and to a strict arcsine (HDM3) as models of the Hinde-Deḿetrio class. As Kokonendji
and Khoudar (2004) or Willmot (1987) have shown, the best fit for data set 1 is Poisson-
inverse Gaussian model (PT M3) of the Poisson-Tweedie class withχ2 = 0.48 for 2
degrees of freedom. For data set 2 the value ofχ2 for the strict arcsine model (HDM3)
is bigger than the value ofχ2

2(95%) = 5.99, meaning that it does not fit; however, it is
the best fit among the models of the Hinde-Demétrio class.

Table 4: Summary statistics for two data sets of Table 3 [theχ2 values correspond to
the negative binomial and strict arcsine models (Kokonendji and Khoudar, 2004)].

Data sets y s2 s2/y p∗ χ2 values df
1 0.14 0.16 1.14 1.99 3.12 2
2 0.37 0.42 1.14 3.01 15.64 2

Despite the inefficient estimation of parameterp, in Table 3, we have a good way to
obtain the adequate model in the Hinde-Demétrio class or even to think to the Poisson-
Tweedie class whenp ≃ 2. However, inferential techniques are not yet as well developed
routinely for these two classes of EDMs. But it should be always interesting to handle
simultaneously or separately these two classes, instead for using particular distributions.
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