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Some discrete exponential dispersion models:
Poisson-Tweedie and Hinde-Demeétrio classes
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Abstract

In this paper we investigate two classes of exponential dispersion models (EDMs) for overdispersed
count data with respect to the Poisson distribution. The first is a class of Poisson mixture with positive
Tweedie mixing distributions. As an approximation (in terms of unit variance function) of the first, the
second is a new class of EDMs characterized by their unit variance functions of the form u + uP, where p
is a real index related to a precise model. These two classes provide some alternatives to the negative
binomial distribution (p = 2) which is classically used in the framework of regression models for count
data when overdispersion results in a lack of fit of the Poisson regression model. Some properties are
then studied and the practical usefulness is also discussed.
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1 Introduction

The Poisson distribution is well-known to be the classidatribution for count data,
but it has only one parameter and its variance is equal to th@nmSince the index
of dispersion (i.e. the variance divided by the mean) of Swisis one, this makes it
inadequate for fitting overdispersed count data (e.g. [@aatid Ferez-Casany, 2004),
and raises the question of whether an appropriate two-paegndistribution such
as the negative binomial should be used routinely for amadysverdispersed count
data. The same problem occurs in the framework of regressmiels for count data
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(McCullagh and Nelder, 1989), when the Poisson distrilbbutioes not fit well, and the
observed dispersion is greater than that predicted by #melatd distribution.

It is well known that negative binomial can be understood Bsiason mixture with
gamma mixing distribution, taking into account the hetergty in the population.
Hougaarcet al (1997) have considered a large family of mixture distribng, including
the Poisson-inverse Gaussian distribution, to improveiigntly the fitness to certain
data. We will call thePoisson-Tweedigelass a completed set of these distributions
that we must point out the exact form of its associated “uaitiance function” (a
term to be made precise). Otherwise, Hinde and &teim (1998, page 14) propose for
overdispersed count data the use of the unit variance famcti

VIPG) = p+pP, e MiPCR, 1)

where p € R fixed, which is also an alternative to negative binomial waitiance
function obtained withp = 2 and includes the strict arcsine distribution wjih= 3
(Kokonendji and Khoudar, 2004). We here call tHende-Demétrioclass the set of
all distributions associated to (1). The aim of this work @sgrovide a complete
identification of both the Poisson-Tweedie and the HindeaBteio classes from their
unit variance functions. These classes are sets of two¥ymdes distributions with
an additional index parametgr allowing to identify an appropriate family of these
distributions.

In Section 2, we review some basic properties of the generadels, called
“exponential dispersion models” and, in particular, wesprg theTweedieclass with
unit variance functiornuP. In Section 3, we describe the possible Poisson mixture
distributions with a Tweedie for obtaining the Poisson-&die class: unit variance
function and probabilities are given. In Section 4, we fitassify the Hinde-Der@trio
class (1) and we then compare it to the Poisson-Tweedie. dlgssstress that there
is no intersection between the Hinde-D&mio class g + uP) and the Tweedie class
(uP), except forp = 2. Section 5 is devoted to concluding remarks and the problem
statistical inference fop to select the adequate model in these classes.

2 Exponential dispersion models

Exponential dispersion models (Jgrgensen, 1997) are tantdn statistical modelling.
They have a number of important mathematical propertiesctwhre relevant in
practice. They include several well-known families of diitions as special cases,
giving a convenient general framework. Generalized limaadels (McCullagh and
Nelder, 1989) are based on these families of distributions.

Let v be ac-finite positive measure on the real liRgnot necessarily a probability)
and define the cumulant functidt by

K(©) =In f exp@x)v(dx)
R
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on its (canonical parameter) doman= {6 € R : K(#) < oco}. Assume that both and
©® are not degenerate (i.e.,is not concentrated at one point and the interio®ois
not empty), then the set of the probability measu?és v)(dX) = expldx — K(6)}v(dX)
defined for alld in ® = O(v) represents aatural exponential familfyNEF) generated
by v and denotedr = F(v) = {P(0;v); 0 € B(v)}; see Chapter 54 of Kotet al (2000).
Given a NEF, we define the satof realsd > 0 such thattK(0) is also the cumulant
function for some measusg. For fixeda € A, the NEFF, = F(v,;) generated by, is
then expox — AK(6)}v.(dX), for 6 € ©. This family of distributions, denote@iD(0, 1)
for (9, 1) € ® x A, is called theexponential dispersion mod@DM) generated by (or
v, for improper notation); and can be called the dispersion parameter. Its density or
mass function with respect to some measpcan be written as

C(x; 1) explox — AK(0)}, xe€ SCR, (2)

wherev,(dX) = C(x; )n(dx). Note here thaBD(0, 1) defined by (2) is the additive
version of EDM. The reproductive version &f ~ ED(0, 1) is given byZ = X/A.
However, additive EDMs turn out to be important for discrefita because many
usefull families of discrete distributions have this foramy EDM satisfiesSD(6, 1) =
ED(O, 1) = ED(H, 11+15), so the family is closed under convolution did2, - - - } C A.
Also the model is infinitely divisible if and only i\ = (0, c0).

In the interior of®, denoted in®, the cumulant functiofl — K(#) is strictly convex.
Then the expectation and varianceXof £D(0, 1) are

E(X) = AK'() and VarK) = AK”(6), 3)

whereK’(6) and K”(0) are, respectively, the first and second derivative& ddt the
point 8. From (3) withA = 1, the characterizing functioW defined on the domain
M = K’(int®) such that

K”(0) = VIK'(6)}

is calledunit variance functionWe also haveV(u) = 1/¢/(u), for u € M, where
w = (K)™1 is the inverse function oK’. Note thatM depends only on the family
F = {&D(0,1) : 6§ € B}, and not on the choice of the generating measuoé F. If

M = Q, whereQ denotes the interior of the convex hull of the supgdf F, the family

F is said to besteep From here to the end, an EDM is always assumed to be steep. The
role of the unit variance function in data fitting should bédentify an appropriate EDM
of distributions, if any. The reparametrization by unit mga= K’(6) = u(6) allows us to
write the EDM as follows{ED(u(6), 1); u(0) € M, A1 € A} = EDM(y, 2). Itis sometimes
considered the reparametrization of the EDM by the rmanE(X) = A K’(6) = m(4, 6)
instead of the unit meam = u(6). From (3), the unit variance functiov leads to the
varianceV, = Var(X) of X ~ &D(6, 1) in terms ofm, calledvariance functionand
expressed as followd/,;(m) = AV(m/Q), for all m € AM. For discrete overdispersed
EDM compared to the Poisson distribution we have

V() > u, u>0, (4)
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whereV(u) = p is the unit variance function of the Poisson model (e.g. daurand
Kokonendji, 2002).
A complete description of the EDMs with power unit varianaadtions

Vo) = 1P, pe (00,0l U[1, ), ®)

is given by Jargensen (1997) where, for> oo the corresponding unit variance function
takes the exponential form!, (1) = exp@Bu) , 8 # 0. This class, called tiHBveedie class
was introduced by Tweedie (1984). Itis also convenientttoduce the index parameter
a of stable distribution, connected by the following relation:

(p-DA-a)=1 (6)

According to the above notations, we can denote7i(p, 1) any distribution of this
class wherel € (0, ) = A for all p of (5),u € M, = K’(int®p) andé € ®, with

R for p=0,1
[0,0) for p<OorO<p<1

O = (-0,0) for 1<p<2orp— o (")
(-0,0] for 2<p<oco.
Thus, forse ®, — # andX ~ 7(6, 1), the Laplace transfor(es) is
A[(1 - p)o]” }
expl ———————[(1+s/6)* -1]; for p#1,2
p{ @-p (+sO -1y for p
Gp(s,6,1) = (1+s/6)* for p=2 (8)

exp1e’(e® - 1)} for p=1

As shown in Table 1, the Tweedie clabs= {T Mp(u, 1); p € R} includes several well-
known families of distributions amongst which one may beitiverse-Gaussian model
T Ms(u, 1) and the noncentral gamma modeWMs;»(u, A) of zero shape (respectively, a
special case of positive stable and compound Poisson &hilfhe compound Poisson
(1 < p < 2)is also called Poisson-gamma; it can be represented aBdisson
random sum of independent gamma random variables (and i Imaass at zero but
otherwise has a continuous positive distribution). Obsehowever, that the extreme
stable distributionsf{ < 0) are not steep and only the Poisson distributipn=(1) is
discrete.
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Table 1: Summary of Tweedie EDMs (Jgrgensen, 1997).

Distribution p a M S
Extreme stable p<O0 l<a<2 | (0,0) R
Normal p=0 a=2 R R

[ Do not exist ] O<p<l|2<a<wm

Poisson p=1 a— —oo | (0,00) N
Compound Poisson 1< p<2 a<0 (0,00) | (0, 0)
Gamma p=2 a=0 (0,0) | (0,0)
Positive stable p>2 O<a<1l | (0,0) | [0,c0)
Extreme stable p— o a=1 R R

3 Poisson-Tweedie EDMs

Let X be a non-negative random variable followifig(6, ). If a discrete random
variableY is such that the conditional distribution ¥fgiven X is Poisson with mean
X, then the EDM generated by the distribution\ois of the Poisson-Tweedie class.
We can also use the following notatiof®9 (6, 1) to denote the distribution of and
PT My (u, 1) for the corresponding EDM. Hence fpr> 1, the individual probabilities
of Y ~ PT (6, 2) are

o xy
Pr(Y=y):fo ey!x To0.2)dY). y=0,1,---. ©)

Proposition 1 (Hougaard et al., 1997) Let ¥ $7 (0, A) defined by (9), whereé € ©,
given by (7) andl > O for fixed p> 1 or a € [-, 1) from (6). We have the following
properties: (i) If ¥, --- , Y, are independent, with;Y~ £7 (6, 4i), then ¥ + --- + Y,
follows P7 p(0, A1 + --- + An). The distribution7 (6, 1) is infinitely divisible. (ii)
The distributionP7 (6, 1) is unimodal for p> 2. (ii) The Laplace transform of
Y ~ PT p(6, ) is

exp{ 1L P - 1+ ) - (L= P} for p 12

E(eY) ={ [(e¢® -1+ 6)/6] " for p=2 (10)

exp{/l[exp(e‘“ -1+6)- e"]} for p=1,

forw € ®, — 6. For p = 1, it is a Neyman type A distribution; for pg= 2, it is
a negative binomial distribution; and, for g 3, it is the Sichel or Poisson-inverse
Gaussian distribution (e.g. Willmot, 1987).
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Proposition 2 With the asumptions of Proposition 1, the unit variance fiomcof the
model PT M(u, 1) generated by Y~ P7 (6, 1) is exactly

V() = i+ uP expl(2~ P)Dp()), 1> O, (11)

where ®,(u), generally implicit, denotes the inverse of the increadimgctionw
d{InE(e*Y)}/dw.

Proof. Let K(w) = InE(e”Y) for Y ~ P7 (6, 1). From Proposition 1ii{) with
A =1 and using (6) to simplify, the first derivative Ef{w) is

e[(L-p)(e’ -1+t for p#12
u=Kw)={ —e’(e-1+6)"1 for p=2
e’ exple’ — 1+ 6} for p=1,

and the second derivative Kf(w) may be expressed as follows:

K'(w) +e“[(1-p)e’-1+6)]*? for p£12
VET (1) = K" (w) ={ K'(w) + [K'(w)]? for p=2
K’ (w) + €’K’(w) for p=1

Forp # 1,2, we can also writi&” (w) = K’(w) + €“[K’(w)/e*]P and the expression
given in (11) is easily obtained. O

The Poisson-Tweedie EDMs are summarized in Table 2, thatwealivide in three
parts with respecttp: 1< p<2,2< p<ocoandp € {1, 2, oo}.

Table 2: Summary of Poisson-Tweedie EDMs.

Distribution p a M S
[ Do not define ] p<1 l<a<o

Neyman type A p=1 @ — —0 (0,0) | N
Poisson-compound Poissgnl < p < 2 a<0 (0,00) | N
Negative binomial p=2 a=0 (0,0) | N
Poisson-positive stable p>2 O<a<l | (0,0) | N
Poisson p— o a=1 (0,00) | N

Forp = 1 ora — —oo Which is not studied by Hougaast al. (1997), we can refer
to Johnsoret al. (1992; pages 368-) to obtain some properties on the NeynmnAy
distribution, which is therefore both a Poisson mixture oisBon distributions, and also
a Poisson-stopped sum of Poisson distributions.

Note that we consider in this paper only the strictly mixedsBon distributions
(p = 1). In fact, it is not possible to mix a Poisson with a Tweedistribution
To(6, 1) for p < 0 because it can be negative but (9) can be seen as a purelglform
operation. Foip = 0 we refer to Kemp and Kemp (1966) who show thak ifollows a
normal distributiori7 (6, 1) with meanu = p(f) and standard deviatian = o-(1) such
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thatu > o2, the corresponding mixed Poisson distribution is the Hermistribution
(Johnsoret al.,1992; pages 357-364).

To conclude this section, we explicit the probability massctions (2) of all the
Poisson-Tweedie EDMs generated by any distributiorY of #7 (6o, 1) for fixed
p € [1, 00) andfp € O the closure oB,, given in (7). Indeed, one has

Cpoo(Y; ) explwy — AKpg(w)}, y=0,1,2,---, (12)

wherew € ©, — 6 is the canonical parameter and> 0 is the dispersion parameter
such that, respectively by (9) and (10),

1 0"Gy(s, o, A)

. _ 1 X —
Coanlyid) = B(EX) = Z=r

ls=—1 for X ~ 75(6o, 1) (13)

and Kpg,(w) = A7 InE(e”Y) for Y ~ PT (60, 1). Note that, in practice, we can use
6o = 0 which is here defined for app € [1, ) with the convenience:0= 1, for any

A > 0 (only for p = 2). To clarify completely (12), we must point oGt 4, (y; 1) by the
following proposition.

Proposition 3 Let pe [1, «) be fixed and le#, € ®_p given by (7). Then, foralk > 0
and ye N, the expression of ¢, (y; 4) in (12) is,
-forp=1ora — —oo,

exq/le@o—l(]_ -e)} for y=0
. — y
Con¥iD =\ Soi0d) 5 anier iy for y=12.---,
: k=1

witha,y =a,1 = 1and g = ay_1x-1 + Kay_1k;

0,
— forp=2o0ra=0,Cyyy; 1) = (90 E 1) yir(a) \1-6o

— forpe(1,2)U(2,0)0ra e (—o0,0)U(0,1),
Xp{/l(aa— 1)

AF(y+/l)( 1 )y_

[{(1—90)/(1—0)}“—{(—90)/(1—01)}“]} for y=0

Coa; ) =1 1 y
>7c:p,go(o; ) kgl ayk(@) (1 - 60)/(1 - a)}kaY fory=12,---,

with ay(@) = 1, ay1(@) = T(y - a)/[(1 - @)Y (2 - )] and g(a) = ay-1k-1() + [(y-
1-ka)/(1- a)]ay-1k(a).

Proof. Following Hougaarcet al. (1997), we show only fop = 1 ora — —oo.
From (13), it siffices to check the recursive formula of derivatives of Laptamesform

(8), hich iS0Gy(s; 6, 1)/ = Ga(S, 6o, A) 3. ayA™*S) O
k=1
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4 Hinde-Dem étrio EDMs

We now characterize the Hinde-Détrio class which is the set of EDMs with unit
variance function of the “simple” form (1) and, then, we cargit to the Poisson-
Tweedie class (11).

Theorem 4 Let p > 1. Then there exists a NEFpfr such that M, = (0,) and
VE,,(u) = u + pP. Furthermore, the NEF F; is infinitely divisible (with bounded Lévy
measure). More precisely, denote-al/(p— 1) similarly to the interchangeable relation
(6) and consider the positive measure

o0

: a@a+1)---(a+k-1) 1
o=, kI T+ k(p= 1) e

k=0

00 n

A , ,
Then, for alla > 0, vp, = expdvp} = 3 ﬁ"?an generates a NEF [; with variance
n=0 'l

function
Ve, (M) = m+ A" PmP (14)

and F,, is concentrated on the additive semigradg- piN.

Proof. Itis standard by checking that we have exactly

o . i a@+1)---(a+k- l)eg[1+k(p—l)]‘

Ko 0) = [1-elp-D]a k!

O

Forp > 1, we also denote by{D(0, 1) any distribution of the EDMHDM(u, A)
corresponding to (1) or (14) with > 0 andd € ®}, C R. As a probabilistic interpretation
of Y ~ HDy(0, 2), let X be a random variable associated’fo= v, 4 of Theorem 4 (up
to normalizing constant) and, |&k be a standard Poisson process on the interv#] (O
(No = 0) with ratea (i.e. N; ~ P(at)) and supposed to be independenXofFrom the
Laplace transform of

N¢
Vi= D UXi= Xk oo+ Xy,
i=1

where theX; are independent and identically distributeda is easy to see that = Y;
by fixing the time tat = 1.

Theorem 5 Let p € R. The function (1)u — V{!P(u) = u + P, defined on a suitable
domain IV[;'D corresponds to a unit variance function of discrete (std€lpM when
pe{0}U[1,00),

with MJ'® = (-1, o) and M® = (0, o) for p > 1; and the domair®,, of the canonical
parameter is given by (7). Moreover, if § 0 the model HDM(u, 1) is a positive-
translated Poisson; if p= 1 the model HDM(u, 2) is a scaled Poisson; if p= 2
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the model HDM(u, 1) is negative binomial; if p= 3 the model HDM(u, 1) is strict
arcsine (Kokonendji and Khoudar, 2004); and, it{®, 1, 2, 3the model HDM(u, 1) is
deduced from Theorem 4.

Before giving the proof, let us observe that, from (4), thad#i-Dengtrio class (1)
is the set of overdispersed EDMs compared with the Poissstnlaition, as well as
the Poisson-Tweedie class (11) (see also Feller, 1943)n&keproposition provides
comparable behaviours of these two classes. Indeed, omigtise binomial model
HDM3(u, 1) is interpreted adPT My(u, 2); and, for fixedp > 1 anda > 0, each
HDMy(u, 1) can be “approximated” by?T M,(u, A) for large u. This approximation
must be understand in terms of their unit variance functions

Proposition 6 Let HD = {HDMy(u, 4); p € R} be the Hinde-Demeétrio class (1) and
PT = {PTMpy(u, 2); p € R} the Poisson-Tweedie class (11). Then: (i) HOPT =
{HDMy(u, 2) = PT My(u, 2)}; (i) For fixed p> 1, VET(u) ~ VE‘D(,u) asu — oo.

For the proof of Theorem 5 we need the two following lemmase Titst is an
“impossibility criterion” to exclude case & p < 1, and the second is related to the
steepness.

Lemma7 There are no EDM with M= (0, o) and unit variance function {) ~ u” as
u— O0forvy e (0,1).

Proof. If V(u) ~ u” asu — 0, thend = y(u) = 6 + f()”(V(t))‘ldt is left-bounded.
Now, V(u) — 0 asu — 0 implies that the generateris concentrated on [00) (e.qg.
Letac and Mora, 1990). Hence, the domai(v) is not left-bounded, which yields a
contradiction. O

Lemma8 (Jgrgensen, 1997; page 58) Let £ {ED(0,1);0 € O} be a NEF with
variance function V. on M and support S.itff S = 0, then: (i) inf M = 0; (ii)
Iirr})V(u) = 0; (iii) IirrEJV(,u)/,u = ¢, where c= inf{S \ {0}}.

U= U=

Note thatc = 0 for continuous distributions ant = 1 for discrete integer-valued
distributions.

Proof of Theorend: Sincevg'D must be an analytic positive function on the domain
MEP = (a ), we have thav/{!® has no zeroes ina(e) andV®(a) = 0 [this is a
consequence of Theorem 3.1 of Letac and Mora, 1990]. Thubawe

HD _ (O, OO) for p * O
Mo _{ (-1,00) for p=0. (15)

Solving ¥/’ (u) = 1/ng(,1) = 1/(u + uP) and ignoring the arbitrary constants in the
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solutions,
In(w) — (p—1)tIn(L+ Pt for p#0,1
Yu) =12 Inu for p=1 (16)
In(1+ w) for p=0.

We now examine the ffierent situations op € R in (1) from (15).
— Consider casp € {0} U [1, ). Let 8 = (u) be the canonical link function given
by (16), then we find first = K’(6) and, hence,

& -0 for p=
e )2 for p=
—In(1-¢) for

K(9) =
©) arcsine’ for

S Tk+1/(p — )] explo[L + k(p— 1]}
o KIL/(p-1)]  1+k(p-1)

for

©T T T T T
H 1
O W MNEF O

” l’ 2’ 39

for 6 € ®, where the interior 08 is obtained by using (15) and (16):

R for p=0,1
int® =4 (0,00) for p<OorO<p<1 a7
(=00,0) for 1< p<co.

Since K(6) is analytic, the domai® defined from its interior (17) coincides ©,
given by (7). Thus, for eaclp € {0} U [1, ), we define a discrete generator of the
corresponding (steep) EDM with unit variance function (1).

— Case k p< lisexcluded by Lemma 7.

— Finally, let us exclude cage< 0 by Lemma 8. Indeed, it $lices to observe that
MpP = (0, ) from (15) and lim_o V5'® (u) /i = lim,_o(1 + uP™*) = co. The proof of
Theorem 5is now complete. O

5 Concluding remarks

Here we have two classes of two parameter distributions whimuld be used as
models for analysing overdispersed count data. It was sthdiwag both are EDMs with
general unit variance functions indexed by a third paramgté& common member of
both families is the negative binomial family whgn= 2. However, the probability
mass functions (2) oHDM;(u, 1) are generally not easy to calculate (except for
p € {0,1,2,3}) whereas folPT My(u, 1) are given explicitly by (12). Whep is large,
Proposition 6 if) allows the use of the Poisson-Tweedie model as well as thdeHi
Denétrio model since the variance functions are equivalent.

For models with covariates, lef be a count response variable and xebe an
associated x 1 vector of covariates with a vectgrof unknown regression céiecients,
the relation between the mean= E(Y) = m(x; 8) of the distribution and the linear part
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x'B being made through a link function (McCullagh and NeldeB2)9 For both EDMs
the cumulant functions are given in explicit form. This alboto compute deviances and
then to use maximum likelihood method for the estimatiorhefparameters.

When the Poisson-Tweedie moddPd My(u, 1) or the Hinde-Deratrio models
HDMp(u, 1) are used, one of the problems for statistical inferendedsitdex parameter
p of the adequate distribution. A profile estimatepofs recommended in the general
situation; see Hougaast al. (1997) for Poisson-Tweedie mixture. In Hinde-Détmio
models, we can start by the moment estimatepoindeed, ify = (yi,---,VYn) is
an n-independent identically distributed observation frdmZ)p(_p,/l) such that the
overdispersion conditios?/y > 1 is satisfied, wher§ and s> are, respectively, the
sample mean and the sample variance fyofrom (14) and when is fixed or known,
we easily have by the moment method

p* = In[($ - 9)/A]/In[y/4] = p*(A). (18)

With respect to the unit variance function (1), we can take 1 in (18) because one
stays in the same EDM,; after, one can estimiitethe correspondingiDM,. (i, ).

In order to illustrate (18), we analyze two data sets of T&bjgven by Kokonend;i
and Khoudar (2004; Table 5.1 and Table 5.2); one of which I€r&hl) has been
revisited by several authors (e.g. Willmot, 1987). Thisetypf data is frequent in
marketing, insurance, biometry and financial problems. @a& correspond to the
number of automobile insurance claims per policy in Germamgr 1960 among
n = 23589 and in Central African Republic over 1984 amang 10000. Both data
sets show overdipersion as can be seen in Table 4 s¥jfj) ~ 1.14. For these data
some overdispersed models have been used in the literaunegaothers the negative
binomial HDM, = PTM,), strict arcsine KIDM3) and Poisson-inverse Gaussian
(PT M3) models. It was used a Pearson’s chi-square goodnesssiéistic and, as
observed by several authors, no single probability law se&rmemerge as providing
“the” best fit.

Table 3: The two data sets analysed by Kokonendji and Khoudar (208lg1.1 and

Table 5.2).
Data set 1 Data set 2

No. of claims  No. of policies| No. of claims  No. of policies
0 20592 0 6984
1 2651 1 2452
2 297 2 433
3 41 3 100
4 7 4 26
5 0 5+ 5
6 1

From Table 3 we see that using expression (18) with1l we findp* equal to 2 for data
set 1 and 3 for data set 2, leading, respectively, to a neghitnomial HDM, = PT M,)
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and to a strict arcsindHDM3) as models of the Hinde-Degtrio class. As Kokonendji
and Khoudar (2004) or Willmot (1987) have shown, the besbfitta set 1 is Poisson-
inverse Gaussian modePT M) of the Poisson-Tweedie class witk = 0.48 for 2
degrees of freedom. For data set 2 the valug?dbr the strict arcsine modeHD Ma)

is bigger than the value qﬁz(%%) = 5.99, meaning that it does not fit; however, it is
the best fit among the models of the Hinde-[&trio class.

Table 4: Summary statistics for two data sets of Table 3 [fResalues correspond to
the negative binomial and strict arcsine models (Kokonieantfj Khoudar, 2004)].

Data sets Y g /Yy p xPvalues df
1 014 016 114 199 312 2
2 037 042 114 301 1564 2

Despite the infficient estimation of parametey in Table 3, we have a good way to
obtain the adequate model in the Hinde-[&rio class or even to think to the Poisson-
Tweedie class whep ~ 2. However, inferential techniques are not yet as well duged
routinely for these two classes of EDMs. But it should be gvimteresting to handle
simultaneously or separately these two classes, insteadiftg particular distributions.
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