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Abstract

It is known that direct-survey estimators of small area parameters, calculated with the data from the
given small area, often present large mean squared errors because of small sample sizes in the small
areas. Model–based estimators borrow strength from other related areas to avoid this problem. How
small should domain sample sizes be to recommend the use of model-based estimators? How robust
small area estimators are with respect to the rate sample size/number of domains?
To give answers or recommendations about the questions above, a Monte Carlo simulation experiment
is carried out. In this simulation study, model-based estimators for small areas are compared with some
standard design-based estimators. The simulation study starts with the construction of an artificial
population data file, imitating a census file of an Statistical Office. A stratified random design is used
to draw samples from the artificial population. Small area estimators of the mean of a continuous
variable are calculated for all small areas and compared by using different performance measures. The
evolution of this performance measures is studied when increasing the number of small areas, which
means to decrease their sizes.
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1 Introduction

The problem of small area estimation arises when samples aredrawn from (large)
populations, but estimates calculated using sample data are required for smaller
domains, within which sample data is not enough to provide reliable direct-survey
estimators.
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Usually, any geographical population is partitioned at several levels, which are often
nested; for instance, Spain is divided in 19 Communities, where each Community is
divided in several provinces, each province in counties, and each county is divided in
administrative districts. Thus a design-based estimator may be accurate enough when
calculated at the Community or the province levels, but its accuracy may become
unacceptable for counties and districts. In that cases, model-based estimators decrease
their mean square error by using auxiliary information in the form of regression models.
Here we are interested in observing and analyzing the effect of decreasing the level
of aggregation (i.e., decrease the ratetotal sample size/number of domains) in the
behaviour of some design-based estimators and some model-based estimators, in order
to know till which level are design-based estimators reliable and when is necessary to
attend to model-based estimators. Further, it is reasonable to suppose that as long as
we decrease area sizes, extra “useful” auxiliary information is needed, so models with
more information should provide better estimators of smallareas. Models with small
area random effects are becoming rather popular. Here we compare the performance of
fixed effects models and random effects models for the simulated data.

For this purpose, an artificial population is generated imitating a census data file
of some geographical population. This file contains the variables defining domains or
areas at six nested levels of aggregation, a variable used for stratification, three auxiliary
variables, one of them categorical, and the target variable. From this artificial population,
10,000 samples have been extracted. For each sample, small-area estimators have been
calculated at each level of aggregation. At the end, two efficiency measures have been
computed for each estimator and each level of aggregation: the first measuring the bias,
and the second the mean squared error. The evolution of such measures is investigated
when decreasing the level of aggregation.

2 The artificial population

The artificial population is a data file with 11 variables and 300,000 records. Each record
represents a household of an imaginary country. The file is generated with the purpose
of simulating surveys on income and living conditions. See the description of the file
in Table 2.1. The first 7 variables are geographical characteristics, whereD1-D6 have a
nested structure and define the domains or areas, whileH, representing strata, produces
cross-sections withD1-D6. The last 4 variables represent household characteristics.
For variableG (socioeconomic condition group), we assume that labour activities are
classified into two groups: “better paid” and “worse paid”, denoting the first group by
BPA.
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Table 2.1: Description of the Artificial Population.

variable position name and description values
geographical characteristics

D1 1 Region 1–8
D2 2–3 Community 1–16
D3 4–5 Province 1–32
D4 6–7 County 1–64
D5 8–10 District 1–128
D6 11–13 Zone 1–256
H 14 Stratum 1–6

household characteristics
X1 15–16 Total number of household members 01–30
X2 17–20 Total area of the dwelling (m2) 0000–9999
G 21 Socioeconomic condition group 1–4

All members of the household are unemployed 1
There are employed members. None of them in BPA 2
There are employed members, but only one in BPA 3
There are employed members. Two or more in BPA 4
target variable

Y 22–26 Total net monetary annual income of the household00000–99999

Generation of stratum-zone sizes

Let Nhd6 be the number of households on stratumh and zoned6, h = 1, . . . ,6,
d6 = 1, . . . ,256. These numbers are generated according to the followingalgorithm

1. Generate 6× 256 = 1,536 uniform numbers in the interval (0,1). Denote these
numbers byuhd6, h = 1, . . . ,6, d6 = 1, . . . ,256.

2. Calculateu =
∑6

h=1
∑256

d6=1 uhd6 andvhd6 = uhd6/u, h = 1, . . . ,6, d6 = 1, . . . ,256.
3. CalculateNhd6 = [300,000vhd6], h = 1, . . . ,6, d6 = 1, . . . ,256, where [·] denotes

“integer part”.
4. If

∑6
h=1

∑256
d6=1 Nhd6 = 300,000−n, with n > 0, then add one to the firstn sizesNhd6.

Use lexicographic order in subindexes (h,d6).
5. If

∑6
h=1

∑256
d6=1 Nhd6 = 300,000, then stop.

Generation of geographical characteristics

Imputation of numerical values to variablesH andD6 is done by assigning sequentially
H = h and D6 = d6 to Nhd6 records,h = 1, . . . ,6, d6 = 1, . . . ,256. VariableD5 is
calculated fromD6 by applying formula

D5 =

[
D6 + 1

2

]
.

Similar formulas are used to generateD4, D3, D2 andD1, i.e.

D4 =

[
D5 + 1

2

]
, D3 =

[
D4 + 1

2

]
, D2 =

[
D3 + 1

2

]
, D1 =

[
D2 + 1

2

]
.
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In this way, the number of areas are doubled fromDℓ to Dℓ+1, which means that sample
sizes are approximately divided by two.

Generation of household characteristics

• X1 is generated by
{

X1 ∼ Poisson(λhd6) + 1 if Poisson(λhd6) + 1 < 30
X1 = 30 otherwise,

whereλhd6 = 0.8 + 1.5U + h/6 + d6/256, h = 1, . . . ,6, d6 = 1, . . . ,256 and
U ∼ Uni f orm(0,1).
• X2 is simulated from

X1 ∼ N(µhd6, σ
2
hd6

),

where

µhd6 = 80+ 20U + 2h, σhd6 = 5+
2d6

256
, h = 1, . . . ,6, d6 = 1, . . . ,256

andU ∼ Uni f orm(0,1).
• G is simulated, conditionally onX1, from the following discrete distributions:

G|X1=1 ∼

(
0.1 0.5 0.4
1 2 3

)
and G|X1=2,3,... ∼

(
0.05 0.45 0.4 0.1

1 2 3 4

)
.

This is to say that for the variableG, two cases are considered. IfX1 = 1, G is
simulated from a discrete distribution taking values 1, 2, 3with probabilities 0.1,
0.5 and 0.4 respectively. IfX1 = 2,3, . . .,G is simulated from a discrete distribution
taking values 1, 2, 3, 4 with probabilities 0.05, 0.45, 0.4 and 0.1 respectively.

Generation of target variable

Y is simulated from the normal mixed model

Yhd6g j = ud6 + ah + bg + β1Xhd6g j1 + β2Xhd6g j2 + ehd6g j, (2.1)

h = 1, . . . ,6, d6 = 1, . . . ,256, g = 1, . . . ,4, j = 1, . . . ,Nhd6g,

whereud6 andehd6g j are the zone and household level residuals, which are independent
random variables with distributionsN(0, σ2

u) andN(0, σ2
e) respectively. Indexesh, d6, g

and j are used to denote stratum, zone, socioeconomic group and household respectively.
Therefore,Nhd6g is the number of households in stratumh, zoned6 and groupg, and
Yhd6g j, Xhd6g j1, Xhd6g j2 are the values thatY, X1, X2 take on the householdj of the group
g, zoned6 and stratumh.

The following parameter values are used to generate the artificial population:β1 =

500, β2 = 25, σ2
u = 1000, σ2

e = 750, ah = 4000+ 300h, h = 1, . . . ,6, and
bg = 5000+ 500g, g = 1, . . . ,4.
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Target parameters

Let us use indexdℓ for geographical characteristicDℓ, ℓ = 1, . . . ,6. Target parameters
are

Ydℓ =
1

Ndℓ

6∑

h=1

4∑

g=1

Nhdℓg∑

j=1

Yhdℓg j, ℓ = 1, . . . ,6,

whereNhdℓg andYhdℓg j are defined in the same way asNhd6g andYhd6g j, andNdℓ is the
number of households in domainDℓ = dℓ.

3 Notation and estimators

3.1 Notation

The following notation is used
• Indexes: sis used for sample andr for nonsample,d = 1, . . . ,D for small areas

defined by one of the variablesD1 − D6, g = 1, . . . ,G for socioeconomic group,
and finally j = 1, . . . ,n for households.
• Sizes: Nfor population andn for sample. WhenN or n have indexes they denote

size of the corresponding indexed set. For example,nh is the sample size of stratum
h.
• Totals: Y or X. When Y or X have indexes they denote the total of the

corresponding indexed set. For example,Yd denotes the total in small aread.
• Means: Y or X. When Y or X have indexes they denote the mean of the

corresponding indexed set. For example,Yd denotes the mean of small aread.
• Weights: wj is used for householdj and is defined as the inverse of the inclusion

probability of householdj in the sample. Also, whenw has indexes it denotes the
sum of weights of the corresponding indexed set.

3.2 Design-based estimators

The following design-based estimators (see e.g. Särndal, Swensson and Wretman
(1992)) are considered:
• w-direct estimator:It is the classical direct estimator.

Ŷ
wdirect

d =

∑
j∈s∩d w jYj

N̂direct
d

, N̂direct
d =

∑

j∈s∩d

w j .

• Basic synthetic estimator:It relies on the idea that the population is partitioned
in groups larger than areas, for which direct estimators with good precision are
available. It is approximatelly unbiased when all areas contained in a group have
the same mean as the whole group. This estimator was used by the USA National
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Center for Health Statistics in 1968.

Ŷ
synt

d =
1
Nd

G∑

g=1

NdĝY
wdirect

g =
1

Nd

G∑

g=1

Ndg

(∑
j∈s∩g w jYj∑

j∈s∩g w j

)
.

• Sample size dependent estimator:It is constructed by composition of thew-direct
and thebasic syntheticestimators. It was proposed by Drew, Sigh and Chouldry
(1982).

Ŷ
ssd

d = γdŶ
wdirect

d + (1− γd)Ŷ
synt

d ,

whereγd is calculated by the following formula

γd =


1 if N̂direct

d ≥ Nd,
N̂direct

d

Nd
otherwise.

3.3 Generalized regression estimators

These estimators arise from fitting a model with general shape

y = Xβββ +W−1/2e , (3.1)

(see e.g. Section 10.5 of Särndal, Swensson and Wretman (1992)) wherey is the vector
of sample observations of the target variableY, X is the matrix whose columns are the
observations of auxiliary variables,βββ is the vector of coefficients of mentioned variables,
W is a diagonal matrix of known positive elements, ande is the vector of individual
errors, satisfyinge ∼ N(0, σ2

eIn), whereIn denotes the identity matrix of sizen. Fitting
this model by weighted least squares, we get individual predictions

Ŷd j = xd j β̂ββ, d = 1, . . . ,D, j = 1, . . . ,Nd , (3.2)

wherexd j represents the row of matrixX corresponding to householdj of aread, and

β̂ββ = (XtWX)−1XtWy . (3.3)

Then, the prediction of area mean

Yd =
1

Nd

Nd∑

j=1

Yd j

is the mean of predictions of individual values

Ŷd =
1

Nd

Nd∑

j=1

Ŷd j . (3.4)

We have used four specific models of the form (3.1), starting from a simple model,
and sequentially including more information to the model. Each model provides a
generalized regression estimator.
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• Generalized regression synthetic estimator (gsynt):It is based on the model with
common interceptα andX1 (number of members of the household) as explanatory
variable, i.e.

yd j = α + βxd j1 + w−1/2
d j ed j, d = 1, . . . ,D, j = 1, . . . ,nd. (3.5)

This model is a particular case of model (3.2) takingβ = (α, β)t andxd j = (1, xd j1).

Applying formula (3.3), estimator̂β = (α̂, β̂)t is obtained, wherêα = Ŷ
wdirect

−

β̂X̂
wdirect

1 . Replacinĝα in predictionŝYd j = α̂ + β̂xd j1, we get

Ŷd j = Ŷ
wdirect

+ β̂(xd j1 − X̂
wdirect

1 ).

Making the average of predictions as in (3.4), we get the following expression of
thegsyntestimator

Ŷ
gsynt

d = Ŷ
wdirect

+ β̂(Xd1 − X̂
wdirect

1 ) .

• Generalized regression estimator 1 (greg1):Here the model is built by replacing
the common intercept of model (3.5) by area fixed effectsud, i.e.

yd j = ud + βxd j1 + w−1/2
d j ed j, d = 1, . . . ,D, j = 1, . . . ,nd. (3.6)

Hereβ = (u1, . . . ,ud−1,ud,ud+1, . . . ,uD, β)t and xd j = (0, . . . ,0,1,0, . . . ,0, xd j1).
Again, using formula (3.3), estimators ofud, d = 1, . . . ,D andβ are obtained.
Replacing formulas of estimatorŝud, d = 1, . . . ,D in individual predictions (3.2),
and averaging, we get the following expression of thegreg1 estimator

Ŷ
greg1

d = Ŷ
wdirect

d + β̂(Xd1 − X̂
wdirect

d1 ) .

• Generalized regression estimator 2 (greg2):In this case the model is obtained from
(3.6) by incorporating a second explicative variable,X2 (total area of the dwelling
in m2), so that

yd j = ud + β1xd j1 + β2xd j2 + w−1/2
d j ed j, d = 1, . . . ,D, j = 1, . . . ,nd. (3.7)

By the same procedure as before, we get thegreg2 estimator

Ŷ
greg2

d = Ŷ
wdirect

d + β̂1(Xd1 − X̂
wdirect

d1 ) + β̂2(Xd2 − X̂
wdirect

d2 ),

• Generalized regression estimator 3 (greg3):This estimator is based on the model

ydg j = ud + bg + β1xdg j1 + β2xdg j2 + w−1/2
dg j edg j, (3.8)

wherebg is the effect of socioeconomic groupg, g = 1, . . . ,G−1 (bG = 0,G = 4).
The estimator of thedth small area mean can be expressed as

Ŷ
greg3

d = Ŷ
wdirect

d +

G−1∑

g=1

b̂g

(
Ndg

Nd
−

wdg

wd

)
+ β̂1(Xd1 − X̂

wdirect

d1 ) + β̂2(Xd2 − X̂
wdirect

d2 ),

wherêbg, β̂1 andβ̂2 are the weighted least squares estimators obtained by (3.3).
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3.4 Empirical best linear unbiased estimators

We consider estimators obtained by fitting to the sample a random effects model of the
form

y = Xβ + Zu +W−1/2e , (3.9)

where y = yn×1, X = Xn×p, β = βp×1, Z = Zn×D = diag
(
1n1, . . . , 1nD

)
with

1t
a = (1, . . . ,1)1×a andW = Wn×n = diag

(
w11, . . . ,wDnD

)
with w11 > 0, . . . ,wDnD > 0

known. Vectors of area and household random effects,u = uD×1 ∼ N(0, σ2
uID) and

e = en×1 ∼ N(0, σ2
eIn) respectively, are assumed to be independent with unknown

variance componentsσ2
u andσ2

e. Under this model, the variance-covariance matrix ofy
is

V = σ2
uZZt + σ2

eW−1 .

The individual predictions of non sampled units are

Ŷd j = xd ĵβ + γ
w
d

(
Ŷ

wdirect

d − X̂
wdirect

d β̂

)
,

where

β̂ = (XtV−1X)−1XtV−1y, γw
d =

σ2
u

σ2
u + σ

2
e/wd

, wd =

nd∑

j=1

wd j, d = 1, . . . ,D.

The blup of small area meanYd is obtained under the assumption of known variance
components (see Chapter 2 of Vaillant et al (2000) for an overview of the Prediction
Theory) by

Ŷd =
1

Nd


∑

j∈s∩d

Yd j +
∑

j∈r∩d

Ŷd j



= (1− fd)

[
Xd̂β + γ

w
d

(
Ŷ

wdirect

d − X̂
wdirect

d β̂

)]
+ fd
[
ŷd + (Xd − X̂d)̂β

]
, (3.10)

whereXd =
1

Nd

∑Nd

j=1 xd j, X̂d =
1
nd

∑nd

j=1 xd j and̂yd =
1
nd

∑nd

j=1 yd j.

Observe that estimator̂Yd depends on the variance components throughγw
d andV−1.

By plugging in (3.10) suitable estimators of the variance components, theempirical blup
(eblup) of small area meanYd is obtained (see Battesse et al. (1988) and Prasad and Rao
(1990)). We present some estimators obtained from specific models of the type (3.9).
• ebluph1:It usesX1 as auxiliary variable, so thatxd j = xd j1 andβ = β. Estimated

variance componentŝσ2
u and σ̂2

e are obtained by Henderson’s method 3 (see
Henderson (1953) or Searle et al (1992)). This small area estimator has been
studied by Rao and Choudhry (1995).
• eblup1:The only difference of this estimator with respect toebluph1is thatβ,
σ2

u andσ2
e are estimated by maximizing the likelihood of model (3.9). These
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maximum likelihood estimates (MLE) are calculated numerically by using the
Fisher-scoring algorithm. We will check which of both variance components
estimation methods (maximum likelihood or Henderson method 3) provide better
small area estimator.
• eblup2:It usesX1 andX2 as auxiliary variables. Estimators of model parameters,
β̂1, β̂2, σ̂2

u, σ̂2
e, are MLE’s and they are calculated via Fisher-scoring algorithm.

• eblup3: It uses X1, X2 and G as auxiliary variables. Estimators of model
parameters,̂bg, β̂1, β̂2, σ̂2

u, σ̂2
e are MLE’s and they are computed by using Fisher-

scoring algorithm.

4 Measures of sampling errors in simulation experiment

In order to evaluate the precision and accuracy of proposed small area estimators
for estimating the average net income,Yd, K samples are drawn from the artificial

population and estimations are obtained for each sample. Let Ŷd(k) be the estimate of
the meanYd for the small aread in thek-th replicated sample. The following standard
performance criteria are considered:

1. Theaverage relative biasfor small aread

ARBd =
1
K

K∑

k=1


Ŷd(k)

Yd

100. (4.1)

2. Therelative mean squared errorfor small aread

RMS Ed =
100

Yd

√√√
1
K

K∑

k=1

(
Ŷd(k) − Yd

)2
. (4.2)

5 Monte Carlo simulation experiment

A C++Builder program has been developed to extract random samples from the data file
and to evaluate estimators and performance measures. The number of replications of the
simulation experiment isK = 10,000. Astratified sampling design, with simple random
sampling without replacement inside each of the strata and total sample sizen = 600,
has been used. Population sizes of strataNh are calculated from the artificial population,
and sampling weightswh have been taken from the Spanish Family Budget Survey for
a province with average size. From these two quantities, by the relationwh = Nh/nh,
sample sizes inside each stratumnh have been derived. These quantities are shown in
Table 5.1.
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Table 5.1: Sizes and weights per stratum.

stratum 1 2 3 4 5 6
Nh 49828 52717 48051 48865 48831 51708
nh 100 105 96 98 98 103
wh 498.28 502.07 500.53 498.62 498.28 502.02

With the obtained sample, all estimators of the average net incomeYd are calculated
for small areas defined byD1, . . . ,D6. When the process ofK = 10,000 replications is
finished, efficiency measures are evaluated.

In order to clarify the role that sample size (n = 600) and number of small areas (D)
play in the analysis of the numerical results, in Table 5.2 wepresent the quantitiesn/D
for D1–D6.

Table 5.2: Average sample sizes per small areas.

D1 D2 D3 D4 D5 D6

D 8 16 32 64 128 256
600/D 75 37.5 18.75 9.375 4.6875 2.34375

Table 5.3: Means over small areas and standard deviations (in brackets) of ARBd.

Estimator D1 D2 D3 D4 D5 D6

wdirect 99.998 100.005 100.026 100.001 100.001 100.145
(0.009) (0.022) (3.167) (0.036) (0.107) (0.966)

synt 100.012 100.037 100.027 100.143 100.337 100.704
(2.012) (2.595) (3.127) (4.207) (5.606) (7.318)

ssd 100.012 100.037 100.026 100.020 100.062 100.219
(2.068) (2.640) (3.163) (0.551) (1.036) (1.968)

rsynt 100.015 100.036 100.038 100.161 100.343 100.693
(1.371) (2.160) (2.758) (3.972) (5.404) (7.120)

greg1 100.002 99.999 100.002 100.005 100.004 100.142
(0.008) (0.018) (0.025) (0.031) (0.107) (0.915)

greg2 100.002 99.999 100.003 100.006 100.006 100.142
(0.005) (0.016) (0.023) (0.029) (0.108) (0.895)

greg3 100.002 99.999 100.002 100.004 100.001 100.145
(0.006) (0.017) (0.024) (0.030) (0.105) (0.966)

ebluph1 100.000 99.994 99.992 99.972 98.890 90.194
(0.008) (0.018) (0.025) (0.038) (0.918) (6.423)

eblup1 99.984 99.975 99.938 99.868 98.740 90.171
(0.010) (0.013) (0.023) (0.044) (0.889) (6.382)

eblup2 99.977 99.960 99.885 99.601 99.680 99.827
(0.008) (0.013) (0.030) (1.529) (2.232) (3.035)

eblup3 100.001 100.026 100.020 100.046 100.113 100.264
(0.595) (0.767) (1.028) (1.331) (1.760) (2.336)

In Table 5.3, means and standard deviations (in brackets) ofARBd over small areas,

that is,ARB= D−1∑D
d=1 ARBd andSARB=

[
D−1∑D

d=1(ARBd − ARB)2
]1/2

, are listed for
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each variable defining small areasD1 − D6. In Table 5.4 means and standard deviations
of RMS Ed are given. Observe that in Table 5.3, standard deviations provide more
information about the amount of bias than the mean, which is “average” bias.

Table 5.4: Means over small areas and standard deviations (in brackets) of RMS Ed.

Estimator D1 D2 D3 D4 D5 D6

wdirect 1.320 1.873 2.697 3.805 5.420 6.687
(0.083) (0.152) (1.647) (0.488) (0.917) (1.000)

synt 1.745 2.101 2.659 3.324 4.572 6.065
(0.875) (1.486) (1.631) (2.582) (3.263) (4.159)

ssd 1.801 2.148 2.693 3.267 4.319 5.575
(0.884) (1.497) (1.646) (0.386) (0.726) (1.275)

rsynt 1.187 1.707 2.303 3.172 4.465 5.823
(0.655) (1.306) (1.508) (2.392) (3.061) (4.157)

greg1 1.107 1.558 2.211 3.074 4.246 5.087
(0.089) (0.160) (0.295) (0.502) (0.927) (0.925)

greg2 1.068 1.495 2.118 2.931 4.008 4.756
(0.091) (0.162) (0.314) (0.524) (0.938) (0.890)

greg3 1.033 1.446 2.048 2.827 5.132 6.687
(0.092) (0.165) (0.320) (0.535) (0.900) (1.000)

ebluph1 1.107 1.558 2.211 3.218 9.868 28.056
(0.008) (0.018) (0.025) (0.038) (0.918) (6.423)

eblup1 1.110 1.561 2.205 3.214 9.860 27.697
(0.092) (0.158) (0.287) (0.575) (3.362) (8.234)

eblup2 1.067 1.503 2.132 2.537 3.406 4.448
(0.093) (0.162) (0.303) (0.722) (0.998) (1.421)

eblup3 0.913 1.240 1.642 2.220 2.976 3.842
(0.241) (0.314) (0.380) (0.582) (0.851) (1.263)
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Figure 1: RMS E of design-based andgregestimators, for D1-D6.
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Figure 2: RMS E of best estimators, for D1-D6.

The most interesting estimators are the ones with better performance forD4 − D6,
whose average area sample sizes are smaller than 10 units. Wecan observe better
the evolution ofRMS E for the small areas defined byD1-D6 in Figures 5.1 and
5.2. Figure 5.1 shows theRMS Efor design-based andgregestimators, while Figure
5.2 represents the same efficiency measure only for the group of estimators with a
reasonable behaviour. We make a comparison of estimators one by one.

The w-direct estimator (wdirect) uses just data of the target variable in the given
small area. As expected, it behaves well with respect to biasin all cases; see that the
standard deviation remains small even forD6. However, its behaviour is not very good
in relative mean squared error, since it increases monotonically, differing considerably
from the group of good estimators fromD2 on. Thus, the use ofwdirect can only be
recommended for sample sizes larger than 40.

The basic synthetic estimator (synt), which uses as auxiliary information just the
socioeconomic groupG, is relatively stable inRMS Ewith respect ton/D. But we can
see in Table 5.3 that it is quite biased in all cases, being thestandard deviation of the
ARBd unacceptably large forD4–D6.

The sample size dependent estimator (ssd) is a composition of the direct and the
basic synthetic estimator. Surprisingly, this estimator gets quite good results in both
performance measures, relative mean squared error and average relative bias, being its
RMS Ecomparably to thegreg1andgreg2estimators, and being its bias smaller that
all eblupestimators, as expected, and also better than both synthetic and generalized
regression synthetic estimator. This estimator is a good alternative, either when no more
than a grouping variable is available as auxiliary information, or when it is not found a
good model fitting the data.
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The generalized regression synthetic estimator (rsynt) clearly improves the
numerical results ofwdirectandsyntestimators, improving the direct estimator even for
larger areas. The reason is that model (3.5) fits reasonably well to data. However, it has
comparable amount of bias to the basic synthetic estimator (see the standard deviation).

Comparing generalized regression estimators, we can see ingreg1andgreg2how
extra information provide a decrease inARB and RMS E, except when we arrive to
greg3, whoseRMS Eincreases quickly when going fromD4 on. We can look at case
D6 to explain this phenomenon. For small areas defined byD6, model (3.8) fromgreg3
hasD + (G − 1) + 2 = 261 regression parameters. Since sample size is 600, there are
600/261 ≈ 2.3 observations per parameter. This ratio is too small in order to estimate
model parameters with low standard deviations. Under theseconditions, these model is
not stable and therefore its use is not recommended.

Now we compare model-based estimators. Looking at Table 5.4, we see thatebluph1
andeblup1increase considerably theirRMS Efor D5 andD6, beinggreg1(based in the
same model but with fixed effects) much preferable. Since sampling fractionsnd/Nd are
close to zero, the eblup estimators are approximately givenby

Ŷd ¾ Xd̂β + γ
w
d

(
Ŷ

wdirect

d − X̂
wdirect

d β̂

)
. (5.3)

The problem here is that the variability ofX1 in the small number of observations
is not sufficient to estimate with precision the variability between householdsσ2

e and
between areasσ2

u. This fact causes a strong negative bias on the synthetic part of the
eblup1estimator,Xd̂β. In fact, for D6, its ARB is 85.897, and its standard deviation is
1.587. This synthetic estimator is corrected by the second term on the right of (5.3),
but this term is affected by the same problem, making the correction rather poor. In this
experiment, estimators based on linear models with small area random effects appear to
be very sensible to goodness–of–fit, providing worse results than estimators based on
linear models with small area fixed effects, but also worse than design-based estimators
which do not make use of any covariate. It is interesting to note that Fisher–scoring
algorithm (eblup1) is slightly better that Henderson’s method 3 (ebluph1).

Estimatorsgreg2 and eblup2 rely on the same linear regression models. The
difference is that small area effects are fixed in the first case and random in the second
case. We can see that for sample sizes smaller than 20,eblup2has lessRMS E. This
indicates that as soon as selected model fits better to data, their corresponding estimators
perform more efficiently.

The same occurs withgreg3andeblup3. Since the model ofeblup3is very close
to the real one, this estimator presents the best numerical results in the simulation
experiment. Mean squared errors remain small even in the case D6.
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6 Summary and Conclusions

In practical applications of the estimation of means and totals for small areas,
statisticians needs recommendations about what type of estimator to use, when it
is better a model-based approach than a model-assisted one,or how estimators are
affected by the ratiosample size/number of domains. Theoretical properties of estimators
give answers to these questions under ideal conditions, i.e. if sufficient hypotheses
are fulfilled and/or sample sizes are large enough. However, in practice, models do
not perfectly fit to data and sample sizes are small. Then simulation studies play
an important role to gain intuition and obtain conclusions about the behaviour of
estimators. The simulation study presented in this paper has tried to reproduce artificially
populations and sampling designs appearing in official statistics, so that our conclusions
are valuable for applied statisticians and can be taken intoaccount by Statistical Offices.

From the developed simulation study, under the artificial population generated as
described in Section 2, we can extract the following conclusions:

1. If there is an informative grouping variable available, agood choice for estimating
means of areas with average sample sizes smaller than 20 is thessdestimator.

2. If there is available at least one “good” covariable, its use is always recommended.
3. Best numerical results are obtained for those estimatorswith models fitting “well”

to data. A bad model produces a bad estimator.
4. When a good model is not found, it is better to use models with fixed effects.

Among estimators based in models with random effects, the worst numerical
results are obtained byebluph1 and eblup1. These two estimators behave
acceptably well only for average sample sizes greater than 10.

5. If a good model is available, then random effects are clearly preferred to fixed
effects for sample sizes smaller than 20. Note that there is a significant decrease of
relative mean squared error when passing fromgreg2to eblup2or from greg3to
eblup3.
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