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A comparative study of small area estimators*
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Abstract

It is known that direct-survey estimators of small area parameters, calculated with the data from the
given small area, often present large mean squared errors because of small sample sizes in the small
areas. Model-based estimators borrow strength from other related areas to avoid this problem. How
small should domain sample sizes be to recommend the use of model-based estimators? How robust
small area estimators are with respect to the rate sample size/number of domains?

To give answers or recommendations about the questions above, a Monte Carlo simulation experiment
is carried out. In this simulation study, model-based estimators for small areas are compared with some
standard design-based estimators. The simulation study starts with the construction of an artificial
population data file, imitating a census file of an Statistical Office. A stratified random design is used
to draw samples from the artificial population. Small area estimators of the mean of a continuous
variable are calculated for all small areas and compared by using different performance measures. The
evolution of this performance measures is studied when increasing the number of small areas, which
means to decrease their sizes.
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1 Introduction

The problem of small area estimation arises when samplesirasen from (large)
populations, but estimates calculated using sample daarequired for smaller
domains, within which sample data is not enough to providiabike direct-survey
estimators.
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Usually, any geographical population is partitioned atsaMevels, which are often
nested; for instance, Spain is divided in 19 Communitiesgre@leach Community is
divided in several provinces, each province in countied, @ach county is divided in
administrative districts. Thus a design-based estimatmy be accurate enough when
calculated at the Community or the province levels, but ¢susacy may become
unacceptable for counties and districts. In that casesgtrmased estimators decrease
their mean square error by using auxiliary information ia fibrm of regression models.
Here we are interested in observing and analyzing tfeceof decreasing the level
of aggregation (i.e., decrease the r&déal sample sizaumber of domainsin the
behaviour of some design-based estimators and some masiettestimators, in order
to know till which level are design-based estimators rédéiadnd when is necessary to
attend to model-based estimators. Further, it is reasertab$uppose that as long as
we decrease area sizes, extra “useful” auxiliary inforomats needed, so models with
more information should provide better estimators of sraedlas. Models with small
area randomféects are becoming rather popular. Here we compare the pefme of
fixed dfects models and randonffects models for the simulated data.

For this purpose, an artificial population is generateddtirig a census data file
of some geographical population. This file contains thealdeis defining domains or
areas at six nested levels of aggregation, a variable usstr&tification, three auxiliary
variables, one of them categorical, and the target vari&pten this artificial population,
10,000 samples have been extracted. For each sample,a®@@kestimators have been
calculated at each level of aggregation. At the end, tfficiency measures have been
computed for each estimator and each level of aggregatierfirst measuring the bias,
and the second the mean squared error. The evolution of seabures is investigated
when decreasing the level of aggregation.

2 The artificial population

The artificial population is a data file with 11 variables a@0 800 records. Each record
represents a household of an imaginary country. The filenemgged with the purpose

of simulating surveys on income and living conditions. See description of the file

in Table 2.1. The first 7 variables are geographical chariatits, whereD;-Dg have a
nested structure and define the domains or areas, Whilepresenting strata, produces
cross-sections witlD1-Dg. The last 4 variables represent household characteristics
For variableG (socioeconomic condition group), we assume that labouviages are
classified into two groups: “better paid” and “worse paidéndting the first group by
BPA.
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Table 2.1: Description of the Artificial Population.

variable position name and description values

geogr aphical characteristics

D; 1 Region 1-8

D, 2-3 Community 1-16

D3 4-5 Province 1-32

D4 6-7 County 1-64

Ds 8-10 District 1-128

De 11-13  Zone 1-256

H 14 Stratum 1-6
household characteristics

X1 15-16  Total number of household members 01-30

Xo 17-20  Total area of the dwelling (A 0000-9999

G 21 Socioeconomic condition group 1-4
All members of the household are unemployed 1
There are employed members. None of them in BPA 2
There are employed members, but only one in BPA 3
There are employed members. Two or more in BPA 4
target variable

Y 22-26  Total net monetary annual income of the household00000—-99999

Generation of stratum-zone sizes

Let Npg, be the number of households on stratinmand zoneds, h = 1,...,6,
ds = 1,...,256. These numbers are generated according to the follaigagithm
1. Generate & 256 = 1,536 uniform numbers in the interval,(0). Denote these
numbers byupg, h=1,...,6,ds = 1,...,256.
2. Calculatad = 3P _; 3'3% Ung, andvig, = Ung, /U, h=1,...,6,ds = 1,...,256.
3. CalculateNnhg, = [300,000vhq], h=1,...,6,ds = 1,...,256, where { denotes
“integer part”.
4. 1f 3p_; 3.2°% Nhg, = 300 000-n, with n > 0, then add one to the firatsizesNng,.
Use lexicographic order in subindexésdg).
5. 1f 203 252% Nhg, = 300,000, then stop.

Generation of geographical characteristics

Imputation of numerical values to variablesandDg is done by assigning sequentially
H = handDg = dg to Npg, records,h = 1,...,6,ds = 1,...,256. VariableDs is
calculated fronDg by applying formula

Dg+1
Ds = 62 .
Similar formulas are used to generdlg D3, D, andD4, i.e.
Ds+1 Ds+1 D3+ 1 D,+1
Dy = 57 , D3=[ 4t , 2= 32+ , Di= 22+ .
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In this way, the number of areas are doubled fidpto D,, 1, which means that sample
sizes are approximately divided by two.

Generation of household characteristics

e X is generated by

X1 ~ Poissolidng) +1 if Poissorfdng,) + 1 < 30
X1 =30 otherwise,

wheredpg, = 0.8 + 1.5U + h/6 + ds/256,h = 1,...,6,ds = 1,...,256 and
U ~ Uniform(0, 1).
e X5 is simulated from
X1 ~ N (ings» Thg.)-
where

2d
fing, = 80+ 20U + 2h, g =5+ 2—566, h=1,...,6 dg=1,...,256

andU ~ Uniform(0, 1).
e Gis simulated, conditionally oy, from the following discrete distributions:

This is to say that for the variabl8, two cases are considered Xf = 1,G is
simulated from a discrete distribution taking values 1, %ith probabilities 0.1,
0.5and 0.4 respectively. ¥; = 2,3,...,Gis simulated from a discrete distribution
taking values 1, 2, 3, 4 with probabilities 0.05, 0.45, 0.4 @ril respectively.

01 05 04
1 2 3 4

0.05 045 04 01
and G|x1_2,3,...~( )

Generation of target variable

Y is simulated from the normal mixed model

Yhdsgj = Uds + @ + Bg + B1Xndgj1 + B2Xndsgj2 + Encegjs (2.1)
h:l,...,6, d6=1,...,256 g:l,,,.,4, j:l,“.’thGg’

whereug, andengg; are the zone and household level residuals, which are indiepé
random variables with distribution€(0, o-2) and (0, o2) respectively. Indexes, ds, g
andj are used to denote stratum, zone, socioeconomic group aiseélhald respectively.
Therefore,Nhqq is the number of households in stratitnzoneds and groupg, and
Yhaegj» Xndsgjl, Xndgj2 are the values that, X;, X, take on the householgof the group
g, zoneds and stratuni.

The following parameter values are used to generate thHeci@ttpopulation3; =
500, 8, = 25,02 = 1000,02 = 750,a, = 4000+ 30Ch, h = 1,...,6, and
by = 5000+ 5003, 9=1,...,4.
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Target parameters

Let us use indexl, for geographical characteristia,, ¢ = 1,...,6. Target parameters
are

whereNpq,g andYpq,qj are defined in the same way Blgg,g and Yng,gj, andNg, is the
number of households in domady = d,.

3 Notation and estimators

3.1 Notation

The following notation is used

e Indexes: ds used for sample andfor nonsampled = 1,...,D for small areas
defined by one of the variablé3, — Dg, g = 1,...,G for socioeconomic group,
and finallyj = 1,...,nfor households.

e Sizes: Nfor population andh for sample. WherN or n have indexes they denote
size of the corresponding indexed set. For examplis the sample size of stratum
h.

e Totals: Y or X. WhenY or X have indexes they denote the total of the
corresponding indexed set. For exampgdenotes the total in small arela

e Means: Y or X. WhenY or X have indexes they denote the mean of the
corresponding indexed set. For examplgdenotes the mean of small arka

o Weights: w is used for householgand is defined as the inverse of the inclusion
probability of household in the sample. Also, whew has indexes it denotes the
sum of weights of the corresponding indexed set.

3.2 Design-based estimators

The following design-based estimators (see e@n8al, Swensson and Wretman
(1992)) are considered:
e W-direct estimatont is the classical direct estimator.

—wdirect ’ Y
VW ! _ ZJ‘ESﬁd WJYJ N‘direct _ § Wi
d 'I\Tdirect ’ d I
d

jesnd

e Basic synthetic estimatolt relies on the idea that the population is partitioned
in groups larger than areas, for which direct estimator$ waod precision are
available. It is approximatelly unbiased when all areagaioed in a group have
the same mean as the whole group. This estimator was usee bj&A National
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Center for Health Statistics in 1968.

Asynt —~wdirect G D jesng Wij YJ
Z ng g Z ( Z W )
=1 Jesng ]
e Sample size dependent estimatois constructed by composition of the direct
and thebasic synthetiestimators. It was proposed by Drew, Sigh and Chouldry

(1982).

—ssd —wdirect —synt

Yo =vdYqg +(L-ya)Yqy
whereyyq is calculated by the following formula

1 if ’I\Tgirect > Ng,
Yd =

’N‘direct

N otherwise.
d

3.3 Generalized regression estimators
These estimators arise from fitting a model with generalshap
y=XB+W 2%, (3.1)

(see e.g. Section 10.5 o&fhdal, Swensson and Wretman (1992)) wheisethe vector
of sample observations of the target variablex is the matrix whose columns are the
observations of auxiliary variablg8js the vector of coicients of mentioned variables,
W is a diagonal matrix of known positive elements, anid the vector of individual
errors, satisfying ~ N(0, o21,), wherel, denotes the identity matrix of size Fitting
this model by weighted least squares, we get individualiptiets

/Y\dede’ﬁ\,d=1,...,D,j=l,...,Nd, (3.2)
wherexgy; represents the row of matrix corresponding to househo|df aread, and
B = (X'WX)1xtwy. (3.3)

Then, the prediction of area mean

1
de —_— Yd'
Nd; .

is the mean of predictions of individual values

= 1 N
=— > Yyj. 3.4
Nd; ai (3.4)

We have used four specific models of the form (3.1), startinogifa simple model,
and sequentially including more information to the modehclt model provides a
generalized regression estimator.
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Generalized regression synthetic estimator (gsynig:based on the model with
common intercept andX; (number of members of the household) as explanatory
variable, i.e.

Ydj = @ + BXdj1 + W, 1/2ed,, d=1,....,D,j=1,...,ng. (3.5)
This model is a particular case of model (3.2) taking (@, 8)' andxgj = (1, Xdj1)-
Applying formula (3.3), estimatgs = (@,p)" is obtained, wher@ = g_(\WdlreCt -
B;)Zfdlrea. Replacingz in predictionsYy; = @ + Bx4j1, We get
—wdirect _ —wdirect

Yo=Y +B(Xajp — Xy ).
Making the average of predictions as in (3.4), we get th@Wdlg expression of
thegsyntestimator
—gsynt —wdirect __ —wdirect
Yo =Y +AXan =Xy ).
Generalized regression estimator 1 (gredgdgre the model is built by replacing
the common intercept of model (3.5) by area fix@@etsuy, i.e.

Yaj = Us + BXap + Wy “egj d=1,...,D, j=1,...,nq. (3.6)
HereB = (us,...,Ug-1,Ud, Ugs1, - - ., Up, B)t @andXqj = (0,...,0,1,0,...,0, Xqj1).
Again, using formula (3.3), estimators af, d = 1,...,D andg are obtained.
Replacing formulas of estimatodg, d = 1,..., D in individual predictions (3.2),
and averaging, we get the following expression ofghegl estimator

—gregl  —wdirect _ —wdirect

—

Yd = Yd +ﬁ(Xd1 - Xdl ) .
Generalized regression estimator 2 (gref2jhis case the model is obtained from
(3.6) by incorporating a second explicative varialdg(total area of the dwelling
in n?), so that
Ydj = Ud +,31de1 +ﬁ2de2 +Wc_j}|'/zedj, d= 1,...,D, j =1...,ng. (37)
By the same procedure as before, we getitegp estimator

—~greg?  —wdirect __ —~wdirect —wdirect

Yo =Yg +BXa-Xy )+B(Xe-Xp )
Generalized regression estimator 3 (greg8js estimator is based on the model
Yegj = Ua + by + B1Xagj1 + BaXagip + Wy €dgjs (3.8)

whereby is the gfect of socioeconomic groupg=1,...,G-1(bg =0,G = 4).
The estimator of theth small area mean can be expressed as

—gred3  —wdirect —~wdirect —~wdirect

Ng Wq
Yy =Yy o+ Z (—g - W_d) +BXar Xy ) +BXz - Xg2 )

whereBg,El and,Bz are the weighted least squares estimators obtained by (3.3)
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3.4 Empirical best linear unbiased estimators

We consider estimators obtained by fitting to the sample daangfects model of the
form
y=XB+Zu+ W%, (3.9)

wherey = Yoq, X = Xnxpy B = Bpxty £ = Znwp = diag(1n,, ..., 1n,) with
1L =(1,..., 1)1 andW = Wy, = diag(Wi, ..., Wpn,) With wi; > 0,...,Wp,, > O
known. Vectors of area and household randdfeas,u = upx; ~ N(0,c2Ip) and
e = en1 ~ N(0,02l,) respectively, are assumed to be independent with unknown
variance components2 ando2. Under this model, the variance-covariance matriy of
is

V=0222"+ 2w,

The individual predictions of non sampled units are

—wdirect —wdirect

Vdj=><d15+73”(Yd - X4 E),

where

2
gy

Nd
B = (XVix)ixty? W — 4 wy= )y wy, d=1,...,D.
ﬁ ( ) ya yd o_a + O_g/wd ’ d ; dj> > ’

The blup of small area mealiYy is obtained under the assumption of known variance
components (see Chapter 2 of Vaillant et al (2000) for anweer of the Prediction
Theory) by

’V\d Nid[z Ydj+27dj]

jesnd jernd

—~wdirect —wdirect

(1—mﬂiﬁ4yyba X Zﬂ

+fa[Fa + (R - X0, 3.10)

~ 1 N v 1 n = 1 \n
whereXq = 1 X 2; Xdj» Xd = 75 2521 Xaj andyy = 75 2325 V.

Observe that estimatdfy depends on the variance components throqphndV‘l.

By plugging in (3.10) suitable estimators of the variancmponents, thempirical blup
(eblup of small area mealMg is obtained (see Battesse et al. (1988) and Prasad and Rao
(1990)). We present some estimators obtained from speatfiefa of the type (3.9).

e ebluphl:t usesX; as auxiliary variable, so thad;; = X3j1 andp = . Estimated
variance components? and o2 are obtained by Henderson’s method 3 (see
Henderson (1953) or Searle et al (1992)). This small ardena&ir has been
studied by Rao and Choudhry (1995).

e eblupl:The only diference of this estimator with respect @bluphlis thatp,

o2 and o2 are estimated by maximizing the likelihood of model (3.9he%e
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maximum likelihood estimates (MLE) are calculated nunadhjcby using the
Fisher-scoring algorithm. We will check which of both vawt® components
estimation methods (maximum likelihood or Henderson me@)oprovide better
small area estimator.

e eblup2:It usesX; andX; as auxiliary variables. Estimators of model parameters,
B, Ba, o2, 72, are MLE’s and they are calculated via Fisher-scoring dtigor.

e eblup3: It uses Xy, Xz and G as auxiliary variables. Estimators of model
parametersb@l ﬂl, ﬁz, o2, 2 are MLE’s and they are computed by using Fisher-
scoring algorithm.

4 Measures of sampling errors in simulation experiment

In order to evaluate the precision and accuracy of proposedll sarea estimators
for estimating the average net incomé&,;, K samples are drawn from the artificial

population and estimations are obtained for each sampteYd(k) be the estimate of
the mean, for the small areal in the k-th replicated sample. The following standard
performance criteria are considered:

1. Theaverage relative biasor small aread

1 & ?d(k)]
ArEy = [18 100 4.1
Bi= kz1( Y, (4.1)

2. Therelative mean squared errdor small aread

K
RMS E = lY—OOJ % > (Yd(k) Yd)2 (4.2)

k=1

5 Monte Carlo simulation experiment

A C++ Builder program has been developed to extract random sarfipla the data file
and to evaluate estimators and performance measures. Ti®enof replications of the
simulation experiment iK = 10,000. Astratified sampling desigmvith simple random
sampling without replacement inside each of the strata atadl $ample sizen = 600,

has been used. Population sizes of stivtare calculated from the artificial population,
and sampling weightas, have been taken from the Spanish Family Budget Survey for
a province with average size. From these two quantitieshbyrelationw, = Np/np,
sample sizes inside each stratmphave been derived. These quantities are shown in
Table 5.1.
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Table 5.1: Sizes and weights per stratum.

stratum 1 2 3 4 5 6
Np 49828 52717 48051 48865 48831 51708
Ny 100 105 96 98 98 103
Wh 498.28 502.07 500.53 498.62 498.28 502/02

With the obtained sample, all estimators of the averagenoereY, are calculated
for small areas defined by, . .., Ds. When the process &€ = 10,000 replications is
finished, €ficiency measures are evaluated.

In order to clarify the role that sample size£ 600) and number of small ared3)(
play in the analysis of the numerical results, in Table 5.2wesent the quantitiey/ D
for D1—De.

Table 5.2 Average sample sizes per small areas.

D. D, D D4 Ds Ds
D 8 16 32 64 128 256
600/D | 75 37.5 18.75 9.375 4.6875 2.34375

Table 5.3 Means over small areas and standard deviations (in bragk#taRB;.

Estimator D, D, D3 Dy Ds D¢

wdirect 99.998 100.005 100.026 100.001 100.001 100.145
(0.009) (0.022) (3.167) (0.036) (0.107) (0.966

synt 100.012 100.037 100.02f 100.143 100.337 100.704
(2.012) (2.595) (3.127) (4.207) (5.606) (7.318

ssd 100.012 100.037 100.026 100.020 100.062 100.219
(2.068) (2.640) (3.163) (0.551) (1.036) (1.968

rsynt 100.015 100.036 100.038 100.161 100.343 100.698
(1.371) (2.160) (2.758) (3.972) (5.404) (7.120

gregl 100.002 99.999 100.002 100.005 100.004 100.142
(0.008) (0.018) (0.025| (0.031) (0.107) (0.915

greg2 100.002 99.999 100.008 100.006 100.006 100.142
(0.005) (0.016) (0.023) (0.029) (0.108) (0.895

greg3 100.002 99.999 100.002 100.004 100.001 100.145
(0.006) (0.017) (0.024) (0.030) (0.105) (0.966

ebluphl | 100.000 99.994 99.992 99.972 98.890 90.194
(0.008) (0.018) (0.025) (0.038) (0.918) (6.423

eblupl 99.984 99.975 99.938 99.868 98.740 90.171
(0.010) (0.013) (0.023) (0.044) (0.889) (6.382

eblup2 99.977 99.960 99.88% 99.601 99.680 99.827
(0.008) (0.013) (0.030f (1.529) (2.232) (3.035

eblup3 | 100.001 100.026 100.02p 100.046 100.113 100.264
(0.595) (0.767) (1.028) (1.331) (L.760) (2.336

In Table 5.3, means and standard deviations (in bracket&R&§ over small areas,
o — q1/2 .
that is, ARB= D' ¥ ; ARBy andSare = [D™! £5_,(ARB; - ARB?| 2 are listed for
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each variable defining small areBs — Dg. In Table 5.4 means and standard deviations
of RMS | are given. Observe that in Table 5.3, standard deviationsigee more
information about the amount of bias than the mean, whichverage” bias.

Table 5.4: Means over small areas and standard deviations (in bragkdtRMS E.

Estimator D, D, D3 Dy Ds D¢
wdirect 1.320 1.873 2.697 3.805 5.420 6.687
(0.083) (0.152) (1.647) (0.488) (0.917) (1.000

synt 1.745 2101 2659 3.324 4572  6.065
(0.875) (1.486) (1.631) (2.582) (3.263) (4.159
ssd 1.801 2148  2.693 3.267 4.319  5.575
(0.884) (1.497) (1.646) (0.386) (0.726) (1.275
rsynt 1.187  1.707 2.303 3.172 4.465  5.823

(0.655) (1.306) (1.508) (2.392) (3.061) (4.157
gregl 1.107 1558 2211 3.074 4.246  5.087
(0.089) (0.160) (0.295) (0.502) (0.927) (0.925
greg2 1.068 1495  2.119 2931  4.008  4.756
(0.091) (0.162) (0.314) (0.524) (0.938) (0.890
greg3 1.033  1.446 2.048 2.827 5132  6.687
(0.092) (0.165) (0.320)f (0.535) (0.900) (1.000
ebluphl | 1.107 1558 2211 3.218 9.868 28.056
(0.008) (0.018) (0.025) (0.038) (0.918) (6.423
eblupl | 1.110 1561 2205 3214 9.860 27.697
(0.092) (0.158) (0.287) (0.575) (3.362) (8.234
eblup2 | 1.067 1503 2.132 2537  3.406  4.448
(0.093) (0.162) (0.303) (0.722) (0.998) (1.421
eblup3 | 0913 1240 1642 2220 2976  3.842
(0.241) (0.314) (0.380) (0.582) (0.851) (1.263

wadirect
""" synt
- ssd
0 T rsynt
-—-— gregl
——=- greg2
— greg3

Figure 1: RMS E of design-based aggdegestimators, for @-Dg.
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ssd
""" rsynt e B
-= gregl T T
S ST greg2 T ~
——= eblup2 e -
— eblup3 e -

Figure 2: RMS E of best estimators, for iDe.

The most interesting estimators are the ones with bettéonpeance forD, — Deg,
whose average area sample sizes are smaller than 10 unitsaWebserve better
the evolution of RMS E for the small areas defined by,-Dg in Figures 5.1 and
5.2. Figure 5.1 shows theMS Efor design-based angregestimators, while Figure
5.2 represents the saméieiency measure only for the group of estimators with a
reasonable behaviour. We make a comparison of estimaterkyoane.

The w-direct estimatorwdirec) uses just data of the target variable in the given
small area. As expected, it behaves well with respect toibiadl cases; see that the
standard deviation remains small even [fly. However, its behaviour is not very good
in relative mean squared error, since it increases morntbpi differing considerably
from the group of good estimators froBy, on. Thus, the use afvdirectcan only be
recommended for sample sizes larger than 40.

The basic synthetic estimatosynd, which uses as auxiliary information just the
socioeconomic grou, is relatively stable ilRMS Ewith respect ta/D. But we can
see in Table 5.3 that it is quite biased in all cases, beingtiedard deviation of the
ARB; unacceptably large fdp,—De.

The sample size dependent estimatesd(is a composition of the direct and the
basic synthetic estimator. Surprisingly, this estimatetsgyuite good results in both
performance measures, relative mean squared error anabaveiative bias, being its
RMS Ecomparably to thggregland greg2estimators, and being its bias smaller that
all eblupestimators, as expected, and also better than both syntradi generalized
regression synthetic estimator. This estimator is a goedredtive, either when no more
than a grouping variable is available as auxiliary inforimator when it is not found a
good model fitting the data.
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The generalized regression synthetic estimatmyr() clearly improves the
numerical results ofvdirectandsyntestimators, improving the direct estimator even for
larger areas. The reason is that model (3.5) fits reasonadlyovdata. However, it has
comparable amount of bias to the basic synthetic estimsgerthe standard deviation).

Comparing generalized regression estimators, we can sgeegiand gregZhow
extra information provide a decrease ARB and RMS E except when we arrive to
greg3 whoseRMS Eincreases quickly when going from, on. We can look at case
Dg to explain this phenomenon. For small areas defineBdgymodel (3.8) frongreg3
hasD + (G — 1) + 2 = 261 regression parameters. Since sample size is 600, tieere a
600/261 ~ 2.3 observations per parameter. This ratio is too small inroi@lestimate
model parameters with low standard deviations. Under tbesditions, these model is
not stable and therefore its use is not recommended.

Now we compare model-based estimators. Looking at Tablev& 4ee thagbluphl
andebluplincrease considerably thédMS Efor Ds andDg, beinggregl(based in the
same model but with fixedfects) much preferable. Since sampling fractiogy®\g are
close to zero, the eblup estimators are approximately diyen

—~wdirect —~wdirect

Yo XaB+7VYe X4 E). (5.3)

The problem here is that the variability of; in the small number of observations
is not suficient to estimate with precision the variability betweemus$eholdso2 and
between areas?. This fact causes a strong negative bias on the synthetiopére
ebluplestimator,XqB. In fact, for Dg, its ARBis 85897, and its standard deviation is
1.587. This synthetic estimator is corrected by the secend bn the right of (5.3),
but this term is ffected by the same problem, making the correction rather potris
experiment, estimators based on linear models with smedl andom fiects appear to
be very sensible to goodness—offit, providing worse regbln estimators based on
linear models with small area fixedfects, but also worse than design-based estimators
which do not make use of any covariate. It is interesting tteribat Fisher—scoring
algorithm blup) is slightly better that Henderson’s methodebluph].

Estimatorsgreg2 and eblup2rely on the same linear regression models. The
difference is that small are#fects are fixed in the first case and random in the second
case. We can see that for sample sizes smaller thaell0p2has lesRMS E This
indicates that as soon as selected model fits better to Hatagbrresponding estimators
perform more #iciently.

The same occurs withgreg3and eblup3 Since the model oéblup3is very close
to the real one, this estimator presents the best numessalts in the simulation
experiment. Mean squared errors remain small even in theelzas
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6 Summary and Conclusions

In practical applications of the estimation of means andilsofor small areas,
statisticians needs recommendations about what type ohadst to use, when it
is better a model-based approach than a model-assistecoohew estimators are
affected by the ratisample sizaumber of domainsheoretical properties of estimators
give answers to these questions under ideal conditionsif isifficient hypotheses
are fulfilled andor sample sizes are large enough. However, in practice, Isatte
not perfectly fit to data and sample sizes are small. Then lation studies play
an important role to gain intuition and obtain conclusiot®wut the behaviour of
estimators. The simulation study presented in this papetrieal to reproduce artificially
populations and sampling designs appearindficial statistics, so that our conclusions
are valuable for applied statisticians and can be takereittount by Statistical fices.

From the developed simulation study, under the artificigdytation generated as

described in Section 2, we can extract the following corichs

1. If there is an informative grouping variable availablgo®d choice for estimating
means of areas with average sample sizes smaller than 203sdéstimator.

2. Ifthere is available at least one “good” covariable, &s is always recommended.

3. Best numerical results are obtained for those estimatitihanodels fitting “well”
to data. A bad model produces a bad estimator.

4. When a good model is not found, it is better to use modelb Vixed dfects.
Among estimators based in models with randoffeds, the worst numerical
results are obtained bybluphl and eblupl These two estimators behave
acceptably well only for average sample sizes greater tBan 1

5. If a good model is available, then randofffieets are clearly preferred to fixed
effects for sample sizes smaller than 20. Note that there is\disant decrease of
relative mean squared error when passing fgneg2to eblupZor from greg3to
eblup3
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